1
|
Alfie ME, Alim S, Mehta D, Shesely EG, Carretero OA. An enhanced effect of arginine vasopressin in bradykinin B2 receptor null mutant mice. Hypertension 1999; 33:1436-40. [PMID: 10373229 DOI: 10.1161/01.hyp.33.6.1436] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Under water restriction, arginine vasopressin (AVP) is released and promotes water reabsorption in the distal nephron, mainly through AVP V2-receptors. It has been proposed that renal kinins counteract the hydro-osmotic effect of AVP. We hypothesized that kinins acting through B2 receptors antagonize the urinary concentrating effect of AVP. To test this, bradykinin B2 receptor knockout mice (B2-KO) and 129/SvEv mice (controls) were placed in metabolic cages and urine collected for 24 hours (water ad libitum). After that, urine was again collected from the same mice during 24 hours of water restriction. Urinary volume (UV), urinary osmolarity (UOsm), and urinary Na+ (UNaV) and K+ (UKV) excretion were determined. On water restriction, UV in controls decreased by approximately 25%, whereas in B2-KO mice there was almost a 60% drop in urinary output (P=0.001 versus controls). In the controls, water restriction increased UOsm by 347 mOsm/kg H2O, approximately 14% above baseline (NS), whereas in knockout mice the increase was 3 times that seen in the controls: >1000 mOsm/kg H2O (P=0.001 versus controls). Compared with normohydration, UNaV and UKV in the water-restricted state increased more in controls than in B2-KO mice. This difference in electrolyte excretion could be explained by greater dehydration in the controls (dehydration natriuresis). In a second protocol, we tried to mimic the effect of endogenous AVP by exogenous administration of an AVP V2-receptor agonist, desmopressin (DDAVP). To suppress endogenous AVP levels before DDAVP administration, mice were volume-overloaded with dextrose and alcohol. UOsm was 685+/-125 and 561+/-58 mOsm/kg H2O in water-loaded controls and B2-KO mice, respectively. After DDAVP was injected subcutaneously at a dose of 1 microgram/kg, UOsm increased to 1175+/-86 mOsm/kg H2O (Delta+490 mOsm) in the controls and 2347+/-518 mOsm/kg H2O (Delta+1786 mOsm) in B2-KO mice (P<0.05 versus controls). We concluded that water restriction or exogenous administration of an AVP V2-receptor agonist has a greater urinary concentrating effect in B2-KO mice than in controls, suggesting that endogenous kinins acting through B2 receptors oppose the antidiuretic effect of AVP in vivo.
Collapse
Affiliation(s)
- M E Alfie
- Hypertension and Vascular Research Division, Henry Ford Hospital, 2799 West Grand Boulevard, Detroit, Michigan 48202, USA
| | | | | | | | | |
Collapse
|
2
|
Gagnon F, Orlov SN, Tremblay J, Hamet P. Complete inhibition of Na+, K+, Cl- cotransport in Madin-Darby canine kidney cells by PMA-sensitive protein kinase. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1369:233-9. [PMID: 9518630 DOI: 10.1016/s0005-2736(97)00225-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This study examines the involvement of hormones and neuromediators in the regulation of Na+, K+, Cl- cotransport in renal epithelial cells using Madin-Darby canine kidney cells with low transepithelial electrical resistance (194+/-47 Omega/cm2). In this cell line, Na+, K+, Cl- cotransport measured as bumetanide-sensitive 86Rb influx was inhibited up to 50-60% with agonists of P2-purinoceptors (ATP approximately ADP>UTP>AMP), slightly (15-30%) increased by activators of cAMP signaling (forskolin, 8-Br-cAMP) and was insensitive to activators of cGMP signaling (8-Br-cGMP, nitroprusside), EGF, angiotensin II, bradykinin, methacholine, propranolol, vasopressin, adenosine, dopamine and histamine. Thirty min of preincubation of MDCK cells with 0.1 microM PMA completely blocked the activity of Na+, K+, Cl- cotransport whereas down-regulation of this enzyme by 24 h of preincubation with 1 microM PMA activated Na+, K+, Cl- cotransport by 60% and abolished the effect of short-term treatment with PMA. Regulation of Na+, K+, Cl- cotransport by ATP was insensitive to down-regulation of PMA-sensitive isoforms of protein kinase C. In addition, an inhibitor of protein kinase activity, staurosporine, abolished the effect of 0.1 microM PMA but did not change inhibition of this carrier by ATP. Thus, these results show for the first time that P2-purinoceptors and PMA-sensitive isoforms of protein kinase C play a key role in the regulation of Na+, K+, Cl- cotransport in MDCK cells. These results also show that neither PMA- nor staurosporine-sensitive forms of protein kinase are involved in the inhibition of Na+, K+, Cl- cotransport by activators of P2-purinoceptors.
Collapse
Affiliation(s)
- F Gagnon
- Centre de Recherche du CHUM, Pavillon Hôtel-Dieu, Laboratory of Molecular Pathophysiology, 3850 St. Urbain St., Montréal, Qué., Canada
| | | | | | | |
Collapse
|
3
|
Kennedy CR, Proulx PR, Hébert RL. Regulation of bradykinin-stimulated phospholipase C and arachidonic acid release by protein kinase A in MDCK-D1 cells. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1258:206-14. [PMID: 7548185 DOI: 10.1016/0005-2760(95)00049-i] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Regulation of phospholipases C (PLC) and arachidonic acid (AA) release by cAMP-dependent protein kinase (PKA) was investigated in MDCK-D1 cells. Bradykinin (BDK) was used to stimulate PLC and AA release, while arginine vasopressin (AVP), forskolin (FSK), isobutylmethylxanthine (IBMX) were used to increase cAMP levels and stimulate PKA. When cells were preincubated for 20 min with 10 microM FSK + 0.5 mM IBMX, and subsequently treated with 1 microM BDK or control medium for 40 min, the basal and BDK-stimulated PLC activity, measured as accumulated labelled inositol phosphate (InsP) after 40 min and inositol trisphosphate (InsP3) after 10 s, were significantly inhibited. In a parallel manner, FSK + IBMX also significantly decreased both basal and BDK-stimulated diacylglycerol (DAG) production. The basal and BDK-enhanced AA release into the media was also significantly inhibited by pretreatment with FSK + IBMX. In parallel experiments, H-89, a specific inhibitor of PKA, was preincubated for 60 min prior to addition of BDK and this resulted in a reversal of FSK+IBMX-induced inhibition of basal and BDK-stimulated PLC activity and AA release. An inhibitor of inositide-hydrolysing PLC, U73122, (1 microM) was also found to blunt BDK-stimulated PLC activity and BDK-enhanced AA release which indicated that stimulation of AA release by the nonapeptide was second to PLC activation. The ionophore, A23187, (10 microM) greatly stimulated AA release and to a much lesser extent, PLC activity. Its effect on AA release however was not blocked by inhibiting protein kinase C (PKC) with staurosporine (SSP) and consequently did not notably involve the PLC-PKC cascade. Activation of PKA with FSK + IBMX was found to significantly inhibit the enhancement of AA release by ionophore. With 12-tetradecanoyl-phorbol-13-acetate (TPA) also present there was a synergistic increase in the A23187-stimulated AA release and activation of PKA under such conditions inhibited AA release to a similar extent though the synergistic effect remained. The results strongly suggest a role for PKA in the regulation of PLC activity and AA release in MDCK-D1 cells. Control of AA release by PKA, is mediated both by mechanisms which involve blunting of PLC activity and mechanisms which are downstream from the PLC-PKC cascade.
Collapse
Affiliation(s)
- C R Kennedy
- Department of Biochemistry, University of Ottawa, Ont., Canada
| | | | | |
Collapse
|
4
|
Kester M, Thomas CP, Wang J, Dunn MJ. Platelet-activating factor stimulates multiple signaling pathways in cultured rat mesangial cells. J Cell Physiol 1992; 153:244-55. [PMID: 1331121 DOI: 10.1002/jcp.1041530204] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We have previously reported that platelet-activating factor (PAF) elevates cytosolic free calcium concentration ([Ca2+]i) in fura-2-loaded glomerular mesangial cells. To confirm that this increase in [Ca2+]i is a result of receptor-mediated activation of phospholipase C, we investigated hydrolysis of phosphatidylinositol-4,5-bisphosphate (PtdIns-4,5-P2) in PAF-treated mesangial cells. PAF (10(-7) M) stimulated a rapid and transient formation of inositol trisphosphate. In concomitant experiments, PAF stimulated a biphasic accumulation of 3H-arachidonate-labeled 1,2-diacylglycerol (DAG). The secondary elevation in DAG was coincident with a rise in 3H-phosphorylcholine (PC) and 3H-phosphorylethanolamine (PE) suggesting that PAF stimulates delayed phospholipase activities which hydrolyze alternate phospholipids besides the polyphosphoinositides. This PAF-stimulated elevation in 3H-water soluble phosphorylbases was seen at 5 min but not at 15 sec suggesting that the initial rise in DAG as well as the initial elevation in [Ca2+]i are due primarily to PtdIns-4,5-P2 hydrolysis. PAF also stimulated PGE2 as well as 3H-arachidonic acid and 3H-lyso phosphatidylcholine (PtdCho) formation. We suggest that arachidonate released specifically from PtdCho via phospholipase A2 is a source of this PAF-elevated PGE2. It has been postulated that anti-inflammatory prostaglandins may antagonize the contractile and proinflammatory effects of PAF via activation of adenylate cyclase. Surprisingly, exogenous PAF reduced basal and receptor-mediated cAMP concentration indicating that PAF-stimulated transmembrane signaling pathways may oppose receptor-mediated activation of adenylyl cyclase. We have taken advantage of the different sensitivities of phospholipases A2 and C(s) to PMA, EGTA, and pertussis toxin to dissociate phospholipase A2 and C activities. Acute PMA-treatment enhanced PAF-stimulated PGE2 formation, reduced PAF-induced elevations in [Ca2+]i and had no effect upon PAF-stimulated 3H-PE. We have also demonstrated that phospholipase A2, but not PtdIns-specific phospholipase C, was sensitive to external calcium concentration. The role of a GTP-binding protein to couple PAF-receptors to the PtdIns-specific phospholipase C was confirmed as GTP gamma S synergistically elevated PAF-stimulated inositol phosphate formation. We also demonstrated that pertussis toxin ADP-ribosylates a single protein of an apparent 42 kD mass and that PAF pretreatment reduced subsequent ADP-ribosylation in a time-dependent manner. However, pertussis toxin had no effect upon phospholipase C-generated water soluble phosphorylbases or inositol phosphates. In contrast, PAF-stimulated phospholipase A2 and PAF-inhibited adenylyl cyclase activities were sensitive to pertussis toxin.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- M Kester
- Department of Medicine, Case Western Reserve University, School of Medicine, Cleveland, Ohio
| | | | | | | |
Collapse
|
5
|
Shahedi M, Laborde K, Bussières L, Dechaux M, Sachs C. Protein kinase C activation causes inhibition of Na/K-ATPase activity in Madin-Darby canine kidney epithelial (MDCK) cells. Pflugers Arch 1992; 420:269-74. [PMID: 1317949 DOI: 10.1007/bf00374458] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
To evaluate the influence of protein kinase C (PKC) activation on Na/K-ATPase activity in MDCK cells, we studied the effect of phorbol myristate acetate (PMA) and two diacylglycerol analogues, oleoylacetylglycerol and dioctanoylglycerol, on the enzyme activity. Na/K-ATPase activity was determined by cytochemistry. PMA induced a time- and dose-dependent inhibition of Na/K-ATPase activity and at 100 ng/ml decreased the enzyme activity by 55% of the initial value. These effects were mimicked by oleoylacetylglycerol and dioctanoylglycerol, and were abolished by two inhibitors of PKC, 1-(5-isoquinolinylsulphonyl)-2-methylpiperazine (H7) and sphingosine. A phorbol ester that does not activate PKC, 4 alpha-phorbol 12,13-didecanoate, did not inhibit Na/K-ATPase activity. PMA inhibition persisted in the presence of cycloheximide and actinomycin D but not in the presence of amiloride. Dopamine (10 microM) inhibition of Na/K-ATPase activity was abolished in a dose-dependent manner by sphingosine. Results suggest that in MDCK cells Na/K-ATPase is an effector protein for PKC and that dopamine inhibition of its activity may be mediated by PKC.
Collapse
Affiliation(s)
- M Shahedi
- Département de Physiologie, Faculté de Médecine Necker Enfants Malades, Paris, France
| | | | | | | | | |
Collapse
|
6
|
Baranczyk-Kuzma A, Audus KL, Guillot FL, Borchardt RT. Effects of selected vasoactive substances on adenylate cyclase activity in brain, isolated brain microvessels, and primary cultures of brain microvessel endothelial cells. Neurochem Res 1992; 17:209-14. [PMID: 1311435 DOI: 10.1007/bf00966802] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The specific activity of adenylate cyclase was assayed in homogenates of gray matter, freshly isolated and primary cultured microvessel endothelial cells from bovine cerebral cortex. Specific activities for the tissues were 14.6 +/- 2.1, 15.6 +/- 2.7, and 8.4 +/- 1.5 pmol cAMP/mg protein/min +/- SD for gray matter, cultured microvessels, and freshly isolated microvessels, respectively. Adenylate cyclase associated with gray matter and cultured microvessels was sensitive to histamine and selected catecholamines. Perhaps due to metabolic deficiencies, adenylate cyclase of freshly isolated microvessels exhibited little or no response to either the catecholamines or histamine. Angiotensin II stimulated adenylate cyclase of both freshly isolated and cultured microvessels but had no effect on gray matter. Bradykinin did not stimulate cAMP generation in any of the tissues. Overall results support the role of cAMP in regulating brain microvessel functions and suggest that primary cultures of brain microvessels may be useful in examining cAMP-mediated biochemical pathways at the blood-brain barrier.
Collapse
|
7
|
Ziegler A, Knesel J, Fabbro D, Nagamine Y. Protein kinase C down-regulation enhances cAMP-mediated induction of urokinase-type plasminogen activator mRNA in LLC-PK1 cells. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)54821-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
8
|
Taskén K, Kvale D, Hansson V, Jahnsen T. Protein kinase C activation selectively increases mRNA levels for one of the regulatory subunits (RI alpha) of cAMP-dependent protein kinases in HT-29 cells. Biochem Biophys Res Commun 1990; 172:409-14. [PMID: 2241943 DOI: 10.1016/0006-291x(90)90688-j] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We have examined the effect of the protein kinase C activator, TPA, on mRNA levels for subunits of cAMP-dependent protein kinases in the human colonic cancer cell line HT-29, subline m2. Messenger RNA for the regulatory subunit, RI alpha, of cAMP-dependent protein kinases was shown to be present and regulated by TPA. Other mRNAs for subunits of cAMP-dependent protein kinases (RI beta, RII alpha, RII beta, C alpha, C beta) were also present in these cells, but revealed no or only minor changes upon TPA stimulation. When HT-29 cells were cultured in the presence of 10 nM TPA for various time periods, a biphasic response was observed in RI alpha mRNA levels with a maximal increase (approximately 4 fold) after 24 hours. TPA stimulated RI alpha mRNA increased in a concentration-dependent manner and maximal response (4-8 fold) was seen at 3-10 nM. The TPA-induced increase in RI alpha mRNA was not obtained when cells were incubated with TPA together with the protein kinase C inhibitors, staurosporine or H7. The cAMP-analog 8-CPTcAMP alone induced RI alpha mRNA levels 50% more than TPA. Combined treatment with TPA (10 nM) and 8-CPTcAMP (0.1 mM) gave an increase in RI alpha mRNA similar to TPA. These results demonstrate an interaction between the protein kinase C pathway and mRNA levels for the RI alpha subunit of cAMP-dependent protein kinases in HT-29 cells.
Collapse
Affiliation(s)
- K Taskén
- Institute of Pathology, Rikshospitalet, Oslo, Norway
| | | | | | | |
Collapse
|
9
|
Teitelbaum I. Cyclic adenosine monophosphate and diacylglycerol. Mutually inhibitory second messengers in cultured rat inner medullary collecting duct cells. J Clin Invest 1990; 86:46-51. [PMID: 2164048 PMCID: PMC296688 DOI: 10.1172/jci114713] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Studies were performed to examine interactions between the adenylyl cyclase (AC) and phospholipase C (PLC) signaling systems in cultured rat inner medullary collecting duct cells. Stimulation of AC by either arginine vasopressin (AVP) or forskolin or addition of exogenous cAMP inhibits epidermal growth factor (EGF)-stimulated PLC. This inhibition is mediated by activation of cAMP-dependent kinase as it is prevented by pretreatment with the A-kinase inhibitor, N-[2-(methylamino)ethyl]-5-isoquinoline-sulfonamide (H8) but not by the C-kinase inhibitor, 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine (H7). Exposure to EGF eliminates AVP-stimulated cAMP generation. This is not mediated by a cyclooxygenase product as inhibition by EGF is observed even in the presence of the cyclooxygenase inhibitor, flurbiprofen. Inhibition by EGF is not due to an increase in inositol trisphosphate (IP3) as exposure of saponin-permeabilized cells to exogenous IP3 is without effect. Inhibition by EGF is prevented by pretreatment with the C-kinase inhibitor, H7, but not by the A-kinase inhibitor, H8. Exposure to the synthetic diacylglycerol (DAG), dioctanoylglycerol, also inhibits AVP-stimulated AC activity; therefore, inhibition by EGF is due to activation of protein kinase C. Thus, in cultured rat inner medullary collecting duct cells, cAMP and DAG function as mutually inhibitory second messengers with each impairing formation of the other.
Collapse
Affiliation(s)
- I Teitelbaum
- Department of Medicine, University of Colorado School of Medicine, Denver 80262
| |
Collapse
|
10
|
Aiyar N, Nambi P, Crooke ST. Desensitization of vasopressin sensitive adenylate cyclase by vasopressin and phorbol esters. Cell Signal 1990; 2:153-60. [PMID: 2169286 DOI: 10.1016/0898-6568(90)90018-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Desensitization of vasopressin V2 receptor-mediated adenylate cyclase was studied in canine kidney cell line, MDCK cells. Overnight treatment of MDCK cells with arginine vasopressin (AVP) resulted in a loss of vasopressin receptors and an inhibition of cAMP accumulation in response to AVP. Both the loss of receptor and reduction in cAMP accumulation were time- and AVP concentration-dependent. Desensitization was selective for AVP because cAMP formation in response to isoproterenol, prostaglandin E1 (PGE1) and forskolin was not affected by AVP pre-treatment. Pre-treatment of MDCK cells with phorbol dibutyrate (PDBu) also caused a dose-dependent inhibition of AVP mediated cAMP accumulation, but not of isoproterenol-, PGE1- and forskolin-induced cAMP accumulation. PDBu pre-treatment did not cause loss of vasopressin receptors. Instead, the affinity for vasopressin was changed by PDBu treatment. Pre-treatment of the cells with pertussis toxin (PT) had no effect on the desensitization and downregulation of vasopressin (V2) receptors, suggesting that the desensitization may not be mediated by pertussis toxin sensitive G-protein. Our data suggest that pre-treatment of MDCK cells with AVP or PDBu caused desensitization of AVP-mediated cAMP accumulation and that downregulation of V2 receptors required agonist occupancy of the receptors, whereas the affinity of the receptors was changed by phorbol ester treatment.
Collapse
Affiliation(s)
- N Aiyar
- Department of Molecular Pharmacology L521, Smith Kline & French Laboratories, King of Prussia, PA 19406-0939
| | | | | |
Collapse
|
11
|
Schaad NC, Schorderet M, Magistretti PJ. Accumulation of cyclic AMP elicited by vasoactive intestinal peptide is potentiated by noradrenaline, histamine, adenosine, baclofen, phorbol esters, and ouabain in mouse cerebral cortical slices: studies on the role of arachidonic acid metabolites and protein kinase C. J Neurochem 1989; 53:1941-51. [PMID: 2553869 DOI: 10.1111/j.1471-4159.1989.tb09265.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In mouse cerebral cortical slices, noradrenaline (NA) potentiates cyclic AMP (cAMP) accumulation elicited by vasoactive intestinal peptide (VIP) through alpha 1-adrenergic receptors. This synergism is inhibited by indomethacin, and the prostaglandins E2 and F2 alpha mimic the effect of NA. In the present study, we observed that the synergism between VIP and NA is not inhibited by the protein kinase C inhibitor 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine (H-7) or the diacylglycerol-lipase inhibitor RHC 80267, thus further stressing the role of phospholipase A2 activation. Various neuroactive agents that potentiate the stimulatory effect of VIP on cAMP formation were also examined. As with NA, the potentiation by histamine and adenosine is inhibited by indomethacin. In contrast to NA, histamine, and adenosine, the synergistic interaction between phorbol esters and VIP on cAMP formation is abolished by H-7 but not by indomethacin. The potentiation by baclofen, a gamma-aminobutyric acidB receptor agonist, is partially inhibited by the 5-lipoxygenase inhibitor nafazatrom. The synergism between ouabain and VIP is reduced by H-7 but not by indomethacin and nafazatrom. These data indicate that the stimulation of cAMP formation elicited by VIP is under the modulation of various neuroactive agents that trigger diverse intracellular mechanisms to potentiate the effect of the peptide.
Collapse
Affiliation(s)
- N C Schaad
- Département de Pharmacologie, Centre Médical Universitaire, Genève, Switzerland
| | | | | |
Collapse
|
12
|
Chansel D, Béa ML, Ardaillou R. Modulation of renin synthesis by lipoxygenase products in cultured human mesangial cells. Mol Cell Endocrinol 1989; 62:263-71. [PMID: 2545491 DOI: 10.1016/0303-7207(89)90013-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Modulation of renin synthesis by lipoxygenase products has been studied in cultured human mesangial cells under basal conditions and in the presence of prostaglandin (PG) E2. Total renin and cyclic AMP productions were stimulated in a dose-dependent manner (0.1-10 microM) by PGE2. The stimulatory effect of PGE2 on renin production was inhibited by 12-hydroxyeicosatetraenoic acid (12-HETE) between 0.1 and 100 nM. Extracellular and intracellular renin were affected similarly. Neither basal and PGE2-dependent cyclic AMP nor basal cyclic GMP productions were modified. 15-Hydroxyeicosatetraenoic acid (15-HPETE), 12-hydroperoxyeicosatetraenoic acid (12-HPETE) and 15-hydroperoxyeicosatetraenoic acid (15-HPETE) had the same effects as 12-HETE. Intracellular calcium concentration was not modified in the presence of 12-HETE. Since oleyl-2-acetylglycerol (OAG), an analog of diacylglycerol, also inhibited PGE2-stimulated renin production, it is hypothesized that the effect of the lipoxygenase products is mediated via protein kinase C stimulation.
Collapse
Affiliation(s)
- D Chansel
- INSERM 64, Hôpital Tenon, Paris, France
| | | | | |
Collapse
|
13
|
Friedlander G, Amiel C. Protein kinase C activation has dissimilar effects on sodium-coupled uptakes in renal proximal tubular cells in primary culture. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(19)84943-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
14
|
Friedlander G, Le Grimellec C, Giocondi MC, Amiel C. Benzyl alcohol increases membrane fluidity and modulates cyclic AMP synthesis in intact renal epithelial cells. BIOCHIMICA ET BIOPHYSICA ACTA 1987; 903:341-8. [PMID: 2820491 DOI: 10.1016/0005-2736(87)90224-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
To evaluate a possible modulation by membrane fluidity of hormonal, cAMP-mediated effects on renal epithelial cells, we studied the effect of the neutral local anesthetic, benzyl alcohol, on membrane fluidity and on basal and stimulated intracellular cAMP content in intact MDCK cells. Benzyl alcohol induced a dose-dependent decrease of lipid order which was measured by steady-state fluorescence anisotropy using trimethylammonium-diphenylhexatriene and propionyl-diphenylhexatriene as fluorescent probes. Benzyl alcohol induced a 2-fold increase in basal cAMP content, likely as a consequence of increased prostaglandin synthesis since this effect was abolished by indomethacin. The effect of benzyl alcohol on stimulated cAMP synthesis depended on the nature of the ligand: 10 mM benzyl alcohol increased significantly the stimulatory effect of prostaglandin E2, glucagon and forskolin but not of vasopressin. At higher concentrations (40 mM), benzyl alcohol did not affect significantly the glucagon-stimulated cAMP content, while it inhibited significantly the prostaglandin E2-, forskolin- and vasopressin-stimulated cAMP synthesis. The 40 mM benzyl alcohol-induced inhibition was reversed by 1 mM Mn2+, which is known to block the inhibitory GTP-binding protein Ni. These results suggest that: (i) the various components of the adenylate cyclase-cAMP system and their coupling are affected differently by changes in membrane fluidity, which might reflect differences in their lipid environment, (ii) changes in membrane fluidity can modulate responses of renal tubular cells to hormones, and thus tubular functions.
Collapse
Affiliation(s)
- G Friedlander
- INSERM U251, Faculté de Médecine Xavier-Bichat, Paris, France
| | | | | | | |
Collapse
|