1
|
Siu CH, Sriskanthadevan S, Wang J, Hou L, Chen G, Xu X, Thomson A, Yang C. Regulation of spatiotemporal expression of cell-cell adhesion molecules during development of Dictyostelium discoideum. Dev Growth Differ 2011; 53:518-27. [DOI: 10.1111/j.1440-169x.2011.01267.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
2
|
Bowers-Morrow VM, Ali SO, Williams KL. Comparison of molecular mechanisms mediating cell contact phenomena in model developmental systems: an exploration of universality. Biol Rev Camb Philos Soc 2004; 79:611-42. [PMID: 15366765 DOI: 10.1017/s1464793103006389] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Are there universal molecular mechanisms associated with cell contact phenomena during metazoan ontogenesis? Comparison of adhesion systems in disparate model systems indicates the existence of unifying principles. Requirements for multicellularity are (a) the construction of three-dimensional structures involving a crucial balance between adhesiveness and motility; and (b) the establishment of integration at molecular, cellular, tissue, and organismal levels of organization. Mechanisms for (i) cell-cell and cell-substrate adhesion, (ii) cell movement, (iii) cell-cell communication, (iv) cellular responses, (v) regulation of these processes, and (vi) their integration with patterning, growth, and other developmental processes are all crucial to metazoan development, and must have been present for the emergence and radiation of Metazoa. The principal unifying themes of this review are the dynamics and regulation of cell contact phenomena. Our knowledge of the dynamic molecular mechanisms underlying cell contact phenomena remains fragmentary. Here we examine the molecular bases of cell contact phenomena using extant model developmental systems (representing a wide range of phyla) including the simplest i.e. sponges, and the eukaryotic protist Dictyostelium discoideum, the more complex Drosophila melanogaster, and vertebrate systems. We discuss cell contact phenomena in a broad developmental context. The molecular language of cell contact phenomena is complex; it involves a plethora of structurally and functionally diverse molecules, and diverse modes of intermolecular interactions mediated by protein and/or carbohydrate moieties. Reasons for this are presumably the necessity for a high degree of specificity of intermolecular interactions, the requirement for a multitude of different signals, and the apparent requirement for an increasingly large repertoire of cell contact molecules in more complex developmental systems, such as the developing vertebrate nervous system. However, comparison of molecular models for dynamic adhesion in sponges and in vertebrates indicates that, in spite of significant differences in the details of the way specific cell-cell adhesion is mediated, similar principles are involved in the mechanisms employed by members of disparate phyla. Universal requirements are likely to include (a) rapidly reversible intermolecular interactions; (b) low-affinity intermolecular interactions with fast on-off rates; (c) the compounding of multiple intermolecular interactions; (d) associated regulatory signalling systems. The apparent widespread employment of molecular mechanisms involving cadherin-like cell adhesion molecules suggests the fundamental importance of cadherin function during development, particularly in epithelial morphogenesis, cell sorting, and segregation of cells.
Collapse
|
3
|
Gomer R, Gao T, Tang Y, Knecht D, Titus MA. Cell motility mediates tissue size regulation in Dictyostelium. J Muscle Res Cell Motil 2003; 23:809-15. [PMID: 12952079 DOI: 10.1023/a:1024487930787] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Little is known about how organisms regulate the size of multicellular structures. This review condenses some of the observations about how Dictyostelium regulates the size of fruiting bodies. Very large fruiting bodies tend to fall over, and one of the ways Dictyostelium cells prevent this is by breaking up the aggregation streams when there is an excessive number of cells in the stream. Developing cells simultaneously secrete and sense counting factor (CF), a 450 kDa complex of proteins. Diffusion calculations showed that as the number of cells in a stream or group increases, the local concentration of CF will increase, allowing the cells to sense the number of cells in the stream or group. Computer simulations predicted that a high level of CF could trigger stream breakup by decreasing cell-cell adhesion and/or increasing cell motility, effectively causing the stream to dissipate and begin to fall apart. The prediction that adhesion and motility affect group size is supported by observations that decreasing adhesion by adding antibodies that bind to adhesion protein causes the formation of smaller groups, while increasing adhesion by overexpressing adhesion proteins, or decreasing motility with drugs that disrupt actin function both cause the formation of larger groups. CF both decreases adhesion and increases motility. CF increases motility in part by increasing actin polymerization and myosin phosphorylation, and decreasing myosin polymerization. New observations using a fusion of a green fluorescent protein to a protein fragment that binds polymerized actin show that in live cells CF does not affect the distribution of polymerized actin. CF increases the levels of ABP-120, an actin-bundling protein, and new observations indicate that very low levels of CF cause an increase in levels of myoB, an unconventional myosin. Our current understanding of group size regulation in Dictyostelium is thus that motility plays a key role, and that to regulate group size cells regulate the expression of at least two proteins, as well as regulating the polymerization of both actin and myosin.
Collapse
Affiliation(s)
- Richard Gomer
- Howard Hughes Medical Institute, Department of Biochemistry and Cell Biology, MS-140, Rice University, 6100 S. Main Street, Houston, TX 77005-1892, USA.
| | | | | | | | | |
Collapse
|
4
|
Brock DA, Ehrenman K, Ammann R, Tang Y, Gomer RH. Two components of a secreted cell number-counting factor bind to cells and have opposing effects on cAMP signal transduction in Dictyostelium. J Biol Chem 2003; 278:52262-72. [PMID: 14557265 DOI: 10.1074/jbc.m309101200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A secreted 450-kDa complex of proteins called counting factor (CF) is part of a negative feedback loop that regulates the size of the groups formed by developing Dictyostelium cells. Two components of CF are countin and CF50. Both recombinant countin and recombinant CF50 decrease group size in Dictyostelium. countin- cells have a decreased cAMP-stimulated cAMP pulse, whereas recombinant countin potentiates the cAMP pulse. We find that CF50 cells have an increased cAMP pulse, whereas recombinant CF50 decreases the cAMP pulse, suggesting that countin and CF50 have opposite effects on cAMP signal transduction. In addition, countin and CF50 have opposite effects on cAMP-stimulated Erk2 activation. However, like recombinant countin, recombinant CF50 increases cell motility. We previously found that cells bind recombinant countin with a Hill coefficient of approximately 2, a KH of 60 pm, and approximately 53 sites/cell. We find here that cells also bind 125I-recombinant CF50, with a Hill coefficient of approximately 2, a KH of approximately 15 ng/ml (490 pm), and approximately 56 sites/cell. Countin and CF50 require each other's presence to affect group size, but the presence of countin is not necessary for CF50 to bind to cells, and CF50 is not necessary for countin to bind to cells. Our working hypothesis is that a signal transduction pathway activated by countin binding to cells modulates a signal transduction pathway activated by CF50 binding to cells and vice versa and that these two pathways can be distinguished by their effects on cAMP signal transduction.
Collapse
Affiliation(s)
- Debra A Brock
- Howard Hughes Medical Institute, Rice University, Houston, Texas 77005-1892, USA
| | | | | | | | | |
Collapse
|
5
|
Ehrenman K, Yang G, Hong WP, Gao T, Jang W, Brock DA, Hatton RD, Shoemaker JD, Gomer RH. Disruption of aldehyde reductase increases group size in dictyostelium. J Biol Chem 2003; 279:837-47. [PMID: 14551196 DOI: 10.1074/jbc.m310539200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Developing Dictyostelium cells form structures containing approximately 20,000 cells. The size regulation mechanism involves a secreted counting factor (CF) repressing cytosolic glucose levels. Glucose or a glucose metabolite affects cell-cell adhesion and motility; these in turn affect whether a group stays together, loses cells, or even breaks up. NADPH-coupled aldehyde reductase reduces a wide variety of aldehydes to the corresponding alcohols, including converting glucose to sorbitol. The levels of this enzyme previously appeared to be regulated by CF. We find that disrupting alrA, the gene encoding aldehyde reductase, results in the loss of alrA mRNA and AlrA protein and a decrease in the ability of cell lysates to reduce both glyceraldehyde and glucose in an NADPH-coupled reaction. Counterintuitively, alrA- cells grow normally and have decreased glucose levels compared with parental cells. The alrA- cells form long unbroken streams and huge groups. Expression of AlrA in alrA- cells causes cells to form normal fruiting bodies, indicating that AlrA affects group size. alrA- cells have normal adhesion but a reduced motility, and computer simulations suggest that this could indeed result in the formation of large groups. alrA- cells secrete low levels of countin and CF50, two components of CF, and this could partially account for why alrA- cells form large groups. alrA- cells are responsive to CF and are partially responsive to recombinant countin and CF50, suggesting that disrupting alrA inhibits but does not completely block the CF signal transduction pathway. Gas chromatography/mass spectroscopy indicates that the concentrations of several metabolites are altered in alrA- cells, suggesting that the Dictyostelium aldehyde reductase affects several metabolic pathways in addition to converting glucose to sorbitol. Together, our data suggest that disrupting alrA affects CF secretion, causes many effects on cellular metabolism, and has a major effect on group size.
Collapse
Affiliation(s)
- Karen Ehrenman
- Howard Hughes Medical Institute and Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005-1892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Gao T, Ehrenman K, Tang L, Leippe M, Brock DA, Gomer RH. Cells respond to and bind countin, a component of a multisubunit cell number counting factor. J Biol Chem 2002; 277:32596-605. [PMID: 12070154 DOI: 10.1074/jbc.m203075200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Dictyostelium discoideum counting factor (CF), a secreted approximately 450-kDa complex of polypeptides, inhibits group and fruiting body size. When the gene encoding countin (a component of CF) was disrupted, cells formed large groups. We find that recombinant countin causes developing cells to form small groups, with an EC(50) of approximately 3 ng/ml, and affects cAMP signal transduction in the same manner as semipurified CF. Recombinant countin increases cell motility, decreases cell-cell adhesion, and regulates gene expression in a manner similar to the effect of CF. However, countin does not decrease adhesion or group size to the extent that semipurified CF does. A 1-min exposure of developing cells to countin causes an increase in F-actin polymerization and myosin phosphorylation and a decrease in myosin polymerization, suggesting that countin activates a rapid signal transduction pathway. (125)I-Labeled countin has countin bioactivity, and binding experiments suggest that vegetative and developing cells have approximately 53 cell-surface sites that bind countin with a K(D) of approximately 1.5 ng/ml or 60 pm. We hypothesize that countin regulates cell development through the same pathway as CF and that other proteins within the complex may modify the activity of countin and/or have independent size-regulating activities.
Collapse
Affiliation(s)
- Tong Gao
- Howard Hughes Medical Institute, Rice University, Houston, Texas 77005-1892, USA
| | | | | | | | | | | |
Collapse
|
7
|
Harris TJ, Ravandi A, Siu CH. Assembly of glycoprotein-80 adhesion complexes in Dictyostelium. Receptor compartmentalization and oligomerization in membrane rafts. J Biol Chem 2001; 276:48764-74. [PMID: 11604403 DOI: 10.1074/jbc.m108030200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The phospholipid-anchored membrane glycoprotein (gp)-80 mediates cell-cell adhesion through a homophilic trans-interaction mechanism during Dictyostelium development and is enriched in a Triton X-100-insoluble floating fraction. To elucidate how gp80 adhesion complexes assemble in the plasma membrane, gp80-gp80 and gp80-raft interactions were investigated. A low density raft-like membrane fraction was isolated using a detergent-free method. It was enriched in sterols, the phospholipid-anchored proteins gp80, gp138, and ponticulin, as well as DdCD36 and actin, corresponding to components found in the Triton X-100-insoluble floating fraction. Chemical cross-linking revealed that gp80 oligomers were enriched in the raft-like membrane fraction, implicating stable oligomer-raft interactions. However, gp80 oligomers resisted sterol sequestration and were partially dissociated with Triton X-100, suggesting that compartmentalization in rafts was not solely responsible for their formation. The trans-dimer known to mediate adhesion was identified, but cis-oligomerization predominated and displayed greater accumulation during development. In fact, oligomerization was dependent on the level of gp80 expression and occurred among isolated gp80 extracellular domains, indicating that it was mediated by direct gp80-gp80 interactions. Rafts existed in gp80-null cells and such pre-existent membrane domains may provide optimal microenvironments for gp80 cis-oligomerization and the assembly of adhesion complexes.
Collapse
Affiliation(s)
- T J Harris
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario M5G 1L6, Canada
| | | | | |
Collapse
|
8
|
Wang J, Hou L, Awrey D, Loomis WF, Firtel RA, Siu CH. The membrane glycoprotein gp150 is encoded by the lagC gene and mediates cell-cell adhesion by heterophilic binding during Dictyostelium development. Dev Biol 2000; 227:734-45. [PMID: 11071787 DOI: 10.1006/dbio.2000.9881] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
gp150 is a membrane glycoprotein which has been implicated in cell-cell adhesion in the postaggregation stages of Dictyostelium development. An analysis of its tryptic peptides by mass spectrometry has identified gp150 as the product of the lagC gene, which was previously shown to play a role in morphogenesis and cell-type specification. Antibodies raised against the GST-LagC fusion protein specifically recognized gp150 in wild-type cells and showed that it is missing in lagC-null cells. Immunolocalization studies have confirmed its enrichment in cell-cell contact regions. In mutant cells that lack the aggregation stage-specific cell adhesion molecule gp80, gp150 is expressed precociously. Moreover, these cells acquire EDTA-resistant cell-cell binding during aggregation, suggesting a role for gp150 in this process. Cells in which the genes encoding gp80 and gp150 are both inactivated do not acquire EDTA-resistant cell adhesion during aggregation. Strains transformed with an actin 15::lagC construct express gp150 precociously, but do not show EDTA-resistant adhesion during early development. However, vegetative cells expressing gp150 can be recruited into aggregates of 16-h lagC-null cells. These results, together with those obtained with the cell-to-substratum binding assay, indicate that gp150 mediates cell-cell adhesion via heterophilic interactions with another component that accumulates during the aggregation stage.
Collapse
Affiliation(s)
- J Wang
- Banting and Best Department of Medical Research, University of Toronto, Canada
| | | | | | | | | | | |
Collapse
|
9
|
Chanchao C, Eristi CM, Favis R, Rutherford CL. 5'-Nucleotidase in Dictyostelium: protein purification, cloning, and developmental expression. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1473:376-90. [PMID: 10594375 DOI: 10.1016/s0304-4165(99)00206-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
5'-Nucleotidase (5NU) in Dictyostelium discoideum is an enzyme that shows high substrate specificity to 5'-AMP. The enzyme has received considerable attention in the past because of the critical role played by cyclic AMP in cell differentiation in this organism. Degradation of cAMP by cAMP phosphodiesterase (PDE) produces 5'-AMP, the substrate of 5NU. During the time course of development, the enzyme activity of 5NU increases and becomes restricted to a narrow band of cells that form the interface between the prestalk/prespore zones. We have purified a polypeptide associated with 5NU enzyme activity. Protein sequence of this peptide was obtained from mass spectrometry and Edman degradation. Polymerase chain reaction PCR amplification of genomic DNA using degenerate oligonucleotides and a search of sequences of a cDNA project yielded DNA fragments with sequence corresponding to the peptide sequence of 5NU. In addition, a clone was found that corresponded to the classical 'alkaline phosphatase' (AP) as described in several organisms. The sequences of the 5NU and AP cDNAs were not similar, indicating they are the products of separate genes and that both genes exist in Dictyostelium. Analysis of the expression of 5nu during Dictyostelium development by Northern blotting determined that the gene is developmentally regulated. Southern blot analysis showed a single form of the 5nu gene. Targeted gene disruption and knockout mutagenesis using the 5nu sequences suggested that a 5nu mutation may be lethal.
Collapse
Affiliation(s)
- C Chanchao
- Biology Department, Molecular and Cellular Biology Section, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0406, USA
| | | | | | | |
Collapse
|
10
|
Williams RS, Eames M, Ryves WJ, Viggars J, Harwood AJ. Loss of a prolyl oligopeptidase confers resistance to lithium by elevation of inositol (1,4,5) trisphosphate. EMBO J 1999; 18:2734-45. [PMID: 10329620 PMCID: PMC1171355 DOI: 10.1093/emboj/18.10.2734] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The therapeutic properties of lithium ions (Li+) are well known; however, the mechanism of their action remains unclear. To investigate this problem, we have isolated Li+-resistant mutants from Dictyostelium. Here, we describe the analysis of one of these mutants. This mutant lacks the Dictyostelium prolyl oligopeptidase gene (dpoA). We have examined the relationship between dpoA and the two major biological targets of lithium: glycogen synthase kinase 3 (GSK-3) and signal transduction via inositol (1,4,5) trisphosphate (IP3). We find no evidence for an interaction with GSK-3, but instead find that loss of dpoA causes an increased concentration of IP3. The same increase in IP3 is induced in wild-type cells by a prolyl oligopeptidase (POase) inhibitor. IP3 concentrations increase via an unconventional mechanism that involves enhanced dephosphorylation of inositol (1,3,4,5,6) pentakisphosphate. Loss of DpoA activity therefore counteracts the reduction in IP3 concentration caused by Li+ treatment. Abnormal POase activity is associated with both unipolar and bipolar depression; however, the function of POase in these conditions is unclear. Our results offer a novel mechanism that links POase activity to IP3 signalling and provides further clues for the action of Li+ in the treatment of depression.
Collapse
Affiliation(s)
- R S Williams
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | | | | | | | | |
Collapse
|
11
|
Yang C, Brar SK, Desbarats L, Siu CH. Synthesis of the Ca(2+)-dependent cell adhesion molecule DdCAD-1 is regulated by multiple factors during Dictyostelium development. Differentiation 1997; 61:275-84. [PMID: 9342838 DOI: 10.1046/j.1432-0436.1997.6150275.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In Dictyostelium discoideum, the cadA gene encodes the cell adhesion molecule DdCAD-1, a protein of M(r) 24,000, which mediates Ca(2+)-dependent cell-cell adhesion during development. We have examined the effects of cAMP, cell-cell contact, and growth conditions on cadA expression. cadA has a unique pattern of expression, which appears to be a combination of the expression patterns of early genes and aggregation-stage genes. Expression of the cadA gene in bacterially grown cells is activated at the beginning of the developmental cycle, followed by a period of rapid DdCAD-1 accumulation. The mRNA level reaches its maximum at 9 h of development and then declines to the basal level at approximately 18 h, while the protein level remains constant after reaching its maximum at 12 h. Pulse-chase experiments have demonstrated that DdCAD-1 has a significantly longer half-life than the average cellular protein. Transcription of the cadA gene is stimulated by exogenous cAMP pulses, leading to a 3- to 5-fold increase in the transcription rate. In the fgdA mutant, which lacks a functional G alpha 2, cAMP fails to enhance cadA expression, suggesting that cAMP stimulates cadA transcription via a G protein-dependent pathway. However, inhibition of cell-cell contact has no effect on the synthesis of DdCAD-1. Growth conditions also have a major influence on cadA expression. Axenically grown cells produce a high level of cadA transcripts during vegetative growth. The mRNA level shows a steady decrease during development and is reduced to the basal level by 12 h. In contrast, the level of DdCAD-1 remains relatively high throughout development, suggesting that axenic growth affects the accumulation of cadA mRNA but not the stability of the protein. These results indicate that multiple mechanisms are involved to maintain a high level of DdCAD-1 during development.
Collapse
Affiliation(s)
- C Yang
- Banting and Best Department of Medical Research, University of Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
12
|
Fratelli M, Galli G, Minto M, Pasinetti GM. Role of clusterin in cell adhesion during early phases of programmed cell death in P19 embryonic carcinoma cells. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1311:71-6. [PMID: 8630332 DOI: 10.1016/0167-4889(95)00192-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
This study explored the role of clusterin in mechanisms of cell adhesion and apoptosis in P19 embryonic carcinoma cells. We found that serum deprivation induced transient but dramatic elevation in cell adhesion strength to the culture substrate and eventually led to apoptotic cell death. The time course of cell-adhesion increase overlapped temporally with the elevation of clusterin mRNA (peak 8 h after serum deprivation). The coincidental elevation of clusterin expression and cell adhesion strength preceded the schedule of apoptotic cell death. Clusterin antiserum partially antagonized cell adhesion, but did not modify the course of apoptosis. These data suggest that clusterin expression may partially control cell adhesion with no influence on apoptosis in P19 cells, under defined conditions.
Collapse
Affiliation(s)
- M Fratelli
- Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | | | | | | |
Collapse
|
13
|
Souza GM, Klein C, Maia JC, Da Silva AM. Calcium uptake and gp80 messenger RNA destabilization follows cAMP receptor down regulation in Dictyostelium discoideum. Cell Signal 1994; 6:883-95. [PMID: 7718408 DOI: 10.1016/0898-6568(94)90021-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The mechanism by which high concentrations of cAMP selectively destabilize the gp80 mRNA in Dictyostelium discoideum was investigated. This treatment which leads to down-regulation of the cAMP receptor was also found to cause an increase in calcium uptake. Given this observation, we sought a role for calcium as a second messenger in the degradation of the gp80 mRNA. Changes in the mRNA levels were examined after treating cells with compounds known to alter their intracellular Ca2+ concentrations. This included the use of A23187, Ca2+, 8-(N,N-diethylamino)octyl-3,4,5-trimethoxybenzoate HC1 (TMB-8), LiCl and 8-p-chlorophenylthioadenosine 3',5'-cyclic monophosphate (ClPhS-Ado-3':5'-P). The sum of the data suggest that it is the cAMP-induced influx of Ca2+ across the plasma membrane, as apposed to a cAMP-mediated release of Ca2+ from intracellular stores, that initiates gp80 mRNA degradation. Treatment of cells with Concanavalin A (ConA) to induce cAMP receptor down-regulation, also causes a reduction in gp80 mRNA levels and an increase in calcium uptake.
Collapse
Affiliation(s)
- G M Souza
- Departamento de Bioquímica, Universidade de São Paulo, Brazil
| | | | | | | |
Collapse
|
14
|
Desbarats L, Brar SK, Siu CH. Involvement of cell-cell adhesion in the expression of the cell cohesion molecule gp80 in Dictyostelium discoideum. J Cell Sci 1994; 107 ( Pt 6):1705-12. [PMID: 7962211 DOI: 10.1242/jcs.107.6.1705] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Soon after the initiation of the developmental cycle of Dictyostelium discoideum, cells acquire EDTA-sensitive cell-cell binding sites mediated by the glycoprotein gp24. Cells at the aggregation stage display a second type of cell adhesion site, the EDTA-resistant cell-cell binding sites, mediated by the glycoprotein gp80. The gene encoding gp80 is first turned on to a low basal level of expression in the preaggregation stage. At the onset of the aggregation stage, cells produce pulses of low levels of cAMP, which greatly augment the expression of gp80. To investigate the role of cell-cell adhesion in the regulation of gp80 expression, cells were developed in the presence of EDTA or carnitine to block the EDTA-sensitive cell binding sites. Alternatively, cell cohesion was disrupted by shaking low-density cultures at high shearing forces. In all three instances, gp80 was expressed at a substantially reduced level. In addition, exogenous cAMP pulses, which normally were capable of stimulating a precocious and enhanced expression of gp80, failed to restore the high level of gp80 expression. However, if the formation of cell-cell contact was permitted, exogenous cAMP pulses were able to rescue the expression of gp80 even when the cAMP signal relay was blocked. These results indicate that previous cell-cell contact, provided by the EDTA-sensitive binding sites, is required for the activation of the cAMP-mediated signal transduction pathway producing high levels of gp80 expression.
Collapse
Affiliation(s)
- L Desbarats
- Banting and Best Department of Medical Research, University of Toronto, Ontario, Canada
| | | | | |
Collapse
|
15
|
Brar SK, Siu CH. Characterization of the cell adhesion molecule gp24 in Dictyostelium discoideum. Mediation of cell-cell adhesion via a Ca(2+)-dependent mechanism. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)74550-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
16
|
Fontana DR. Two distinct adhesion systems are responsible for EDTA-sensitive adhesion in Dictyostelium discoideum. Differentiation 1993; 53:139-47. [PMID: 8405764 DOI: 10.1111/j.1432-0436.1993.tb00702.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Early in their developmental program, Dictyostelium discoideum exhibit EDTA-sensitive and EDTA-resistant adhesion. The molecules which mediate the adhesions have been called contact sites, with contact sites A mediating EDTA-resistant adhesion and contact sites B mediating EDTA-sensitive adhesion. The studies described here have revealed that prior to aggregation, a second EDTA-sensitive adhesion system emerges. In keeping with previously established nomenclature, the molecules mediating the newly discovered adhesion system have been called contact sites C. Unlike contact sites B, contact sites C are unaffected by a contact sites B-blocking peptide. Contact sites C-mediated adhesion is also distinct from contact sites B-mediated adhesion in that contact sites C-mediated adhesion is EGTA-resistant and in the presence of EDTA it can be rescued by the addition of Mg2+. Thus Mg2+ may be the cation present under physiological conditions that is essential for contact sites C activity. Unlike contact sites B-mediated adhesion, contact sites C-mediated adhesion is not observed in growing amoebae. Contact sites C-mediated adhesion first becomes apparent within hours after the initiation of development and its strength appears to increase throughout the first 10 h of the developmental program. A mutant lacking the EDTA-resistant contact sites A exhibits normal contact sites B- and C-mediated adhesion, demonstrating that both EDTA-sensitive adhesion systems are independent of contact sites A. Thus aggregating D. discoideum amoebae possess three distinct adhesion systems, one of them is EDTA-resistant and the other two are EDTA-sensitive.
Collapse
Affiliation(s)
- D R Fontana
- Department of Microbiology, University of Minnesota, Minneapolis 55455
| |
Collapse
|
17
|
Identification of a unique cAMP-response element in the gene encoding the cell adhesion molecule gp80 in Dictyostelium discoideum. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)41825-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
18
|
Siu CH, Brar P, Fritz IB. Inhibition of cell-cell adhesion and morphogenesis of Dictyostelium by carnitine. J Cell Physiol 1992; 152:157-65. [PMID: 1618917 DOI: 10.1002/jcp.1041520120] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Carnitine (gamma-trimethylammonium beta-hydroxy-butyric acid) possesses the novel property of preventing cell aggregation elicited by clusterin or by fibrinogen (I.B. Fritz and K. Burdzy, J. Cell. Physiol., 140:18-28 [1989]). In investigations reported here, we show that carnitine also affects cell-cell adhesion in Dictyostelium discoideum, a cellular slime mold whose cells interact in specific and complex manners during discrete stages of development. Two types of cell adhesion systems sequentially appear on the surface of developing Dictyostelium cells, involving the surface glycoprotein gp24 which mediates EDTA-sensitive binding sites, and the surface glycoprotein gp80 which mediates the EDTA-resistant binding sites. Addition of increasing concentrations of D(+)-carnitine and L(-)-carnitine resulted in a progressive inhibition of both the EDTA-sensitive binding sites and the EDTA-resistant binding sites of Dictyostelium cells at different stages of development. In contrast, comparable or higher concentrations of choline, acetyl-beta-methylcholine, or deoxycarnitine had no detectable effects on cell aggregation. Concentrations of carnitine required for 50% inhibition of EDTA-resistant adhesion sites were found to be dependent upon levels of gp80 expressed by Dictyostelium, with greatest inhibition by carnitine of reassociation of cells containing the lowest levels of gp80. Removal of carnitine from cells by washing resulted in the rapid restoration of the ability of Dictyostelium to form aggregates and to resume normal development. We discuss possible mechanisms by which carnitine inhibits the aggregation of cells.
Collapse
Affiliation(s)
- C H Siu
- Banting and Best Department of Medical Research, C.H. Best Institute, University of Toronto, Ontario, Canada
| | | | | |
Collapse
|
19
|
Gao E, Shier P, Siu C. Purification and partial characterization of a cell adhesion molecule (gp150) involved in postaggregation stage cell-cell binding in Dictyostelium discoideum. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)50438-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
20
|
Dictyostelium discoideum lipids modulate cell-cell cohesion and cyclic AMP signaling. Mol Cell Biol 1991. [PMID: 1846024 DOI: 10.1128/mcb.11.1.468] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During Dictyostelium discoideum development, cell-cell communication is mediated through cyclic AMP (cAMP)-induced cAMP synthesis and secretion (cAMP signaling) and cell-cell contact. Cell-cell contact elicits cAMP secretion and modulates the magnitude of a subsequent cAMP signaling response (D. R. Fontana and P. L. Price, Differentiation 41:184-192, 1989), demonstrating that cell-cell contact and cAMP signaling are not independent events. To identify components involved in the contact-mediated modulation of cAMP signaling, amoebal membranes were added to aggregation-competent amoebae in suspension. The membranes from aggregation-competent amoebae inhibited cAMP signaling at all concentrations tested, while the membranes from vegetative amoebae exhibited a concentration-dependent enhancement or inhibition of cAMP signaling. Membrane lipids inhibited cAMP signaling at all concentrations tested. The lipids abolished cAMP signaling by blocking cAMP-induced adenylyl cyclase activation. The membrane lipids also inhibited amoeba-amoeba cohesion at concentrations comparable to those which inhibited cAMP signaling. The phospholipids and neutral lipids decreased cohesion and inhibited the cAMP signaling response. The glycolipid/sulfolipid fraction enhanced cohesion and cAMP signaling. Caffeine, a known inhibitor of cAMP-induced adenylyl cyclase activation, inhibited amoeba-amoeba cohesion. These studies demonstrate that endogenous lipids are capable of modulating amoeba-amoeba cohesion and cAMP-induced activation of the adenylyl cyclase. These results suggest that cohesion may modulate cAMP-induced adenylyl cyclase activation. Because the complete elimination of cohesion is accompanied by the complete elimination of cAMP signaling, these results further suggest that cohesion may be necessary for cAMP-induced adenylyl cyclase activation in D. discoideum.
Collapse
|
21
|
Fontana DR, Luo CS, Phillips JC. Dictyostelium discoideum lipids modulate cell-cell cohesion and cyclic AMP signaling. Mol Cell Biol 1991; 11:468-75. [PMID: 1846024 PMCID: PMC359651 DOI: 10.1128/mcb.11.1.468-475.1991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
During Dictyostelium discoideum development, cell-cell communication is mediated through cyclic AMP (cAMP)-induced cAMP synthesis and secretion (cAMP signaling) and cell-cell contact. Cell-cell contact elicits cAMP secretion and modulates the magnitude of a subsequent cAMP signaling response (D. R. Fontana and P. L. Price, Differentiation 41:184-192, 1989), demonstrating that cell-cell contact and cAMP signaling are not independent events. To identify components involved in the contact-mediated modulation of cAMP signaling, amoebal membranes were added to aggregation-competent amoebae in suspension. The membranes from aggregation-competent amoebae inhibited cAMP signaling at all concentrations tested, while the membranes from vegetative amoebae exhibited a concentration-dependent enhancement or inhibition of cAMP signaling. Membrane lipids inhibited cAMP signaling at all concentrations tested. The lipids abolished cAMP signaling by blocking cAMP-induced adenylyl cyclase activation. The membrane lipids also inhibited amoeba-amoeba cohesion at concentrations comparable to those which inhibited cAMP signaling. The phospholipids and neutral lipids decreased cohesion and inhibited the cAMP signaling response. The glycolipid/sulfolipid fraction enhanced cohesion and cAMP signaling. Caffeine, a known inhibitor of cAMP-induced adenylyl cyclase activation, inhibited amoeba-amoeba cohesion. These studies demonstrate that endogenous lipids are capable of modulating amoeba-amoeba cohesion and cAMP-induced activation of the adenylyl cyclase. These results suggest that cohesion may modulate cAMP-induced adenylyl cyclase activation. Because the complete elimination of cohesion is accompanied by the complete elimination of cAMP signaling, these results further suggest that cohesion may be necessary for cAMP-induced adenylyl cyclase activation in D. discoideum.
Collapse
Affiliation(s)
- D R Fontana
- Department of Microbiology, University of Minnesota, Minneapolis 55455
| | | | | |
Collapse
|
22
|
Chandrasekhar A, Rotman M, Kraft B, Soll DR. Developmental mechanisms regulating the rapid decrease in a cohesion glycoprotein mRNA in Dictyostelium function primarily at the level of mRNA degradation. Dev Biol 1990; 141:262-9. [PMID: 2210035 DOI: 10.1016/0012-1606(90)90382-s] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
During the morphogenetic program in Dictyostelium discoideum, the transcript of the gene encoding the cohesion glycoprotein gp80 accumulates to a maximum level between 4 and 6 hr, (just prior to the onset of aggregation), remains high between 6 and 10 hr (the ripple to loose aggregate stages), and then decreases to less than 10% of the maximum level between 10 and 12 hr (the tight aggregate stage). The level of gp80 transcript also decreases precipitously at the time of the erasure event in the program of dedifferentiation, or when cAMP is added to a dedifferentiating cell population prior to the erasure event. In the dedifferentiation-defective mutant HI4, the cAMP-stimulated system for rapidly reducing the level of gp80 transcript is intact, but the mechanism functioning at the time of the erasure event is defective, demonstrating that the two reduction mechanisms are dissociable. By comparing the levels of gp80 transcript with the levels of in vitro transcription of the gene in isolated nuclei, it is demonstrated that the rapid reduction of gp80 transcript immediately after aggregation and immediately after addition of 10(-4) M cAMP are the result of increased transcript degradation. The rapid reduction of gp80 transcript at the erasure event may also be due to increased transcript degradation, but transcriptional regulation cannot be completely ruled out in this case.
Collapse
|
23
|
Kamboj RK, Lam TY, Siu CH. Regulation of slug size by the cell adhesion molecule gp80 in Dictyostelium discoideum. CELL REGULATION 1990; 1:715-29. [PMID: 1966011 PMCID: PMC361651 DOI: 10.1091/mbc.1.10.715] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We previously provided in vitro evidence that the cell surface glycoprotein of Mr80,000 (gp80) of Dictyostelium discoideum is capable of mediating EDTA-resistant cell-cell binding. Expression of gp80 is specific for the aggregation stage when cells form tight aggregates. To investigate the physiological role of gp80, Dictyostelium cells were transformed with a vector containing gp80 cDNA fused to an actin promoter. gp80 transcripts were detected in transformed cells in their vegetative growth phase. Transformants at this stage also exhibited EDTA-resistant cell cohesion, thus providing direct in vivo evidence that gp80 mediates cell-cell binding via homophilic interaction. While aggregates of the parental strain KAX3 had the tendency to break up to form small slugs, transformants expressing an increased amount of gp80 were able to maintain the integrity of aggregates, giving rise to larger slugs, resulting in the formation of bigger fruiting bodies. To further demonstrate that the increase in slug size could be correlated with the expression of gp80, cells of the parental strain were treated with exogenous cAMP pulses to stimulate an over-expression of gp80. The treated cells also gave rise to larger slugs, consistent with the notion that slug size is influenced by intercellular adhesiveness during development.
Collapse
Affiliation(s)
- R K Kamboj
- Banting and Best Department of Medical Research, University of Toronto, Ontario, Canada
| | | | | |
Collapse
|
24
|
Abstract
Multicellularity in the cellular slime mold Dictyostelium discoideum is achieved by the expression of two types of cell-cell adhesion sites. The EDTA-sensitive adhesion sites are expressed very early in the development cycle and a surface glycoprotein of 24,000 Da is known to be responsible for these sites. The EDTA-resistant contact sites begin to accumulate on the cell surface at the aggregation stage of development. Several glycoproteins have been implicated in the EDTA-resistant type of cell-cell binding and the best characterized one has an Mr of 80,000 (gp80). gp80 mediates cell-cell binding via homophilic interaction and its cell binding site has been mapped to an octapeptide sequence. The mechanism by which gp80 mediates cell-cell adhesion will be discussed.
Collapse
Affiliation(s)
- C H Siu
- Charles H. Best Institute, University of Toronto, Ontario, Canada
| |
Collapse
|
25
|
A pharmacologically distinct cyclic AMP receptor is responsible for the regulation of gp80 expression in Dictyostelium discoideum. Mol Cell Biol 1990. [PMID: 2162472 DOI: 10.1128/mcb.10.7.3297] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The EDTA-resistant cell-cell adhesion expressed at the aggregation stage of Dictyostelium discoideum is mediated by a cell surface glycoprotein of Mr 80,000 (gp80). The expression of gp80 is developmentally regulated by cyclic AMP (cAMP). In vitro nuclear run-on experiments show that transcription of the gp80 gene is initiated soon after the onset of development. The basal level of gp80 transcription is significantly augmented by exogenous cAMP pulses. Interestingly, in analog studies, 2'-deoxy-cAMP, 8-bromo-cAMP, and N6-monobutyryl-cAMP are all capable of inducing a rapid accumulation of gp80 mRNA, suggesting the presence of a unique cAMP receptor that responds equally well to these analogs. To determine whether intracellular cAMP plays a role in the regulation of gp80 expression, caffeine was used to block cAMP-induced receptor-mediated adenylate cyclase activation. Expression of gp80 mRNA was blocked in caffeine-treated cells but could be substantially restored by treatment with exogenous cAMP pulses, suggesting that adenylate cyclase activation is not required. gp80 expression was also examined in the signal transduction mutants synag 7 and frigid A. In both mutants, gp80 was expressed at the basal level. Pulses of cAMP as well as 2'-deoxy-cAMP and N6-monobutyryl-cAMP were capable of restoring the normal level of gp80 expression in synag 7 cells. These results, taken together, indicate bimodal regulation of gp80 expression during development and the involvement of a novel cAMP receptor in the transmembrane signalling pathway that regulates gp80 gene expression.
Collapse
|
26
|
da Silva AM, Klein C. Cell adhesion in transformed D. discoideum cells: expression of gp80 and its biochemical characterization. Dev Biol 1990; 140:139-48. [PMID: 2358114 DOI: 10.1016/0012-1606(90)90061-m] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Dictyostelium discoideum amoebae were transformed with an expression vector for the gp80, a protein believed to mediate EDTA-resistant cell adhesion in developmental cells. Vegetative cells, that do not normally contain gp80, expressed the protein and this expression was correlated with the formation of cell-cell adhesions. These contacts exhibited minimal EDTA-resistance. Biochemical analyses of the protein synthesized by vegetative cells suggested that it is identical to that produced by aggregation-competent cells, including the presence of a glycolipid anchor. Additional experiments indicated that the anchor was insensitive to hydrolysis by exogenous (glycosly)phosphatidylinositol-specific phospholipase C [G)PI-PLCs) but was sensitive to the endogenous anchor degrading enzyme. This enzyme, initially described in aggregating cells (da Silva and Klein, Exp. Cell Res., in press) was found to be present also in vegetative amoebae.
Collapse
Affiliation(s)
- A M da Silva
- E. A. Doisy Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, Missouri 63104
| | | |
Collapse
|
27
|
Ma PC, Siu CH. A pharmacologically distinct cyclic AMP receptor is responsible for the regulation of gp80 expression in Dictyostelium discoideum. Mol Cell Biol 1990; 10:3297-306. [PMID: 2162472 PMCID: PMC360746 DOI: 10.1128/mcb.10.7.3297-3306.1990] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The EDTA-resistant cell-cell adhesion expressed at the aggregation stage of Dictyostelium discoideum is mediated by a cell surface glycoprotein of Mr 80,000 (gp80). The expression of gp80 is developmentally regulated by cyclic AMP (cAMP). In vitro nuclear run-on experiments show that transcription of the gp80 gene is initiated soon after the onset of development. The basal level of gp80 transcription is significantly augmented by exogenous cAMP pulses. Interestingly, in analog studies, 2'-deoxy-cAMP, 8-bromo-cAMP, and N6-monobutyryl-cAMP are all capable of inducing a rapid accumulation of gp80 mRNA, suggesting the presence of a unique cAMP receptor that responds equally well to these analogs. To determine whether intracellular cAMP plays a role in the regulation of gp80 expression, caffeine was used to block cAMP-induced receptor-mediated adenylate cyclase activation. Expression of gp80 mRNA was blocked in caffeine-treated cells but could be substantially restored by treatment with exogenous cAMP pulses, suggesting that adenylate cyclase activation is not required. gp80 expression was also examined in the signal transduction mutants synag 7 and frigid A. In both mutants, gp80 was expressed at the basal level. Pulses of cAMP as well as 2'-deoxy-cAMP and N6-monobutyryl-cAMP were capable of restoring the normal level of gp80 expression in synag 7 cells. These results, taken together, indicate bimodal regulation of gp80 expression during development and the involvement of a novel cAMP receptor in the transmembrane signalling pathway that regulates gp80 gene expression.
Collapse
Affiliation(s)
- P C Ma
- Banting and Best Department of Medical Research, University of Toronto, Ontario, Canada
| | | |
Collapse
|
28
|
Siu CH, Kamboj RK. Cell-cell adhesion and morphogenesis in Dictyostelium discoideum. DEVELOPMENTAL GENETICS 1990; 11:377-87. [PMID: 2096015 DOI: 10.1002/dvg.1020110509] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
During development of Dictyostelium discoideum, cells acquire EDTA-resistant cell-cell adhesion at the aggregation stage. The EDTA-resistant cell binding activity is associated with a cell surface glycoprotein of Mr 80,000 (gp80), which mediates cell-cell binding via homophilic interaction. Analysis of the structure of gp80 deduced from cDNA sequence reveals the presence of three internally homologous segments in the NH2-terminal domain, which also contains regions with homology to the neural cell adhesion molecule. Secondary structure predictions show an abundance of beta-structures and very few alpha-helices. This is confirmed by circular dichroism measurements. It is likely that the homologous segments are organized into globular structures, extended from the cell surface by a Pro-rich stalk domain. The cell binding activity of gp80 resides within the first globular repeat of the NH2-terminal domain and has been mapped to a 51 amino acid region between Val123 and Leu173. Synthetic oligopeptides corresponding to sequences within this region have been prepared and assayed for their ability to bind to cell surface gp80. Results lead to identification of the homophilic binding site to an octapeptide sequence within this region. Synthetic peptides containing this octapeptide sequence and univalent antibodies directed against this site block the formation of organized cell streams during aggregation. Although cell aggregates are eventually formed, most fail to undergo further development to give rise to slugs and fruiting bodies, indicating that cell-cell adhesion involving gp80 is an important step in normal morphogenesis.
Collapse
Affiliation(s)
- C H Siu
- Banting and Best Department of Medical Research, Charles H. Best Institute, University of Toronto, Ontario, Canada
| | | |
Collapse
|
29
|
Kamboj RK, Gariepy J, Siu CH. Identification of an octapeptide involved in homophilic interaction of the cell adhesion molecule gp80 of dictyostelium discoideum. Cell 1989; 59:615-25. [PMID: 2582489 DOI: 10.1016/0092-8674(89)90007-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
During development of Dictyostelium discoideum, a surface glycoprotein of Mr 80,000 (gp80) is known to mediate EDTA-resistant cell-cell adhesion via homophilic interaction. Antibodies directed against a 13 amino acid sequence (13-mer) near the NH2 terminus of the protein were found to inhibit cell reassociation. This 13-mer also inhibited gp80-cell interaction and gp80-gp80 interaction. The cell binding site was mapped to the octapeptide sequence YKLNVNDS by using shorter peptide sequences to inhibit gp80 interaction. High salt concentrations inhibited homophilic interactions of both the 13-mer and gp80, suggesting that ionic interactions are involved in the forward binding reaction. Since disruption of homophilic interactions between the bound molecules required the presence of Triton X-100, hydrophobic interactions may occur after the initial ionic binding.
Collapse
Affiliation(s)
- R K Kamboj
- Banting and Best Department of Medical Research, University of Toronto, Ontario, Canada
| | | | | |
Collapse
|
30
|
Ingalls HM, Barcelo G, Wuestehube LJ, Luna EJ. Developmental changes in protein composition and the actin-binding protein ponticulin in Dictyostelium discoideum plasma membranes purified by an improved method. Differentiation 1989; 41:87-98. [PMID: 2612766 DOI: 10.1111/j.1432-0436.1989.tb00736.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We have used a new combination of previously-described methods to obtain a 29-fold purification of plasma membranes from Dictyostelium discoideum. In this procedure, the pellet from a cell lysate is centrifuged through a high-pH sucrose gradient and then through a Renografin gradient. Electron microscopy shows that the resultant "Renografin membranes" are essentially homogeneous. As measured by enzymatic marker assays, contamination with mitochondria, lysosomes, and endoplasmic reticulum is minimal. As assayed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), the protein composition of Renografin membranes is similar to that of highly purified membranes isolated using concanavalin A stabilization and detergent extraction. Using Renografin membranes, we have examined developmental changes in the membrane protein composition. In agreement with previous investigations, we observe major changes in lectin-binding glycoproteins and cell-surface-labeled proteins during the first 18 h of D. discoideum development. In contrast to most previous work, which may have employed plasma membranes of lesser purity, we also observe major changes in silver-stained membrane proteins. We conclude that many developmentally regulated proteins, previously thought to be minor membrane constituents, are a larger proportion of the plasma membrane than originally believed. The observed changes in membrane protein composition may correlate with changes in plasma membrane functions during development. For instance, ponticulin, the major salt-sensitive F-actin-binding protein in plasma membranes from vegetative cells, increases at least twofold in plasma membranes during early development when the cells are chemotaxing into large aggregates. The amount of plasma membrane ponticulin then decreases during the pseudoplasmodial stage.
Collapse
Affiliation(s)
- H M Ingalls
- Department of Biology, Princeton University, NJ 08544
| | | | | | | |
Collapse
|
31
|
Springer WR. Developmentally regulated cell-cell adhesion in Dictyostelium purpureum is mediated by a glycoprotein synthesized in nonadhesive cells. Dev Biol 1989; 133:447-55. [PMID: 2499494 DOI: 10.1016/0012-1606(89)90048-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Upon starvation the cellular slime mold, Dictyostelium purpureum, develops a form of cell-cell adhesion aiding in the formation of large multicellular aggregates, which are capable of further differentiation. The molecule that mediates this adhesion is a glycoprotein of Mr approximately 40,000. The protein shares a common carbohydrate epitope with another well-characterized cell adhesion molecule from Dictyostelium discoideum, contact sites A, but the polypeptides to which it is attached differ for each species. Although mediating a developmental form of adhesiveness, the protein is synthesized in vegetative cells at a time when they do not adhere. Most of the vegetative protein is associated with cell membranes and appears to be on the surface of these cells. The protein is compared to other cell adhesion molecules from other species of cellular slime molds, and possible explanations for its inability to function in vegetative cells are discussed.
Collapse
Affiliation(s)
- W R Springer
- Department of Psychiatry, Veterans Administration Medical Center, San Diego, California 92161
| |
Collapse
|
32
|
Kamboj RK, Siu CH. Mapping of the monoclonal antibody 80L5C4 epitope on the cell adhesion molecule gp80 of Dictyostelium discoideum. BIOCHIMICA ET BIOPHYSICA ACTA 1988; 951:78-84. [PMID: 2461226 DOI: 10.1016/0167-4781(88)90027-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
EDTA-resistant cell-cell binding sites are expressed on Dictyostelium discoideum cells at the aggregation stage of development. A cell surface glycoprotein of Mr 80,000 (gp80) has been found to mediate these binding sites via homophilic interaction. We have previously raised a monospecific monoclonal antibody 80L5C4 against gp80, which blocks the cell binding site of gp80 (Siu, C.-H., Lam, T.Y. and Choi, A.H.C. (1985) J. Biol. Chem. 260, 16030-16036). To map the 80L5C4 epitope, gp80 was digested with protease V8, and the smallest proteolytic fragment that retained immunoreactivity with 80L5C4 was about 27,000 Da, corresponding to the amino-terminal fragment predicted from the cleavage sites. In addition, cDNA fragments containing different gp80 coding regions were used to construct trpE/gp80 gene fusions in the expression vector pATH10. An analysis of these fusion proteins led to the mapping of the 80L5C4 epitope to a 51 amino-acid segment between residues 123 and 173.
Collapse
Affiliation(s)
- R K Kamboj
- Banting and Best Department of Medical Research, University of Toronto, Canada
| | | |
Collapse
|
33
|
Kamboj RK, Wong LM, Lam TY, Siu CH. Mapping of a cell-binding domain in the cell adhesion molecule gp80 of Dictyostelium discoideum. J Cell Biol 1988; 107:1835-43. [PMID: 3182938 PMCID: PMC2115339 DOI: 10.1083/jcb.107.5.1835] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
At the aggregation stage of Dictyostelium discoideum development, a cell surface glycoprotein of Mr 80,000 (gp80) has been found to mediate the EDTA-resistant type of cell-cell adhesion via homophilic interaction (Siu, C.-H., A. Cho, and A. H. C. Choi. 1987. J. Cell Biol. 105:2523-2533). To investigate the structure-function relationships of gp80, we have isolated full length cDNA clones for gp80 and determined the DNA sequence. The deduced structure of gp80 showed three major domains. An amino-terminal globular domain composed of the bulk of the protein is supported by a short stalk region, which is followed by a membrane anchor at the carboxy terminus. Structural analysis suggested that the cell-binding domain of gp80 resides within the globular domain near the amino terminus. To investigate the relationship of the cell-binding activity to this region of the polypeptide, three protein A/gp80 (PA80) gene fusions were constructed using the expression vector pRIT2T. These PA80 fusion proteins were assayed for their ability to bind to aggregation stage cells. Binding of 125I-labeled fusion proteins PA80I (containing the Val123 to Ile514 fragment of gp80) and PA80II (Val123 to Ala258) was dosage dependent and could be inhibited by precoating cells with the cell cohesion-blocking mAb 80L5C4. On the other hand, there was no appreciable binding of PA80III (Ile174 to Ile514) to cells. Reassociation of cells was significantly inhibited in the presence of PA80I or PA80II. In addition, 125I-labeled PA80II exhibited homophilic interaction with immobilized PA80I, PA80II, or gp80. The results of these studies lead to the mapping of a cell-binding domain in the region between Val123 and Leu173 of gp80 and provide direct evidence that the cell-binding activity of gp80 resides in the protein moiety.
Collapse
Affiliation(s)
- R K Kamboj
- Banting and Best Department of Medical Research, Charles H. Best Institute, University of Toronto, Canada
| | | | | | | |
Collapse
|
34
|
Siu CH, Lam TY. Mediation of cell-cell adhesion by the altered contact site A glycoprotein expressed in modB mutants of Dictyostelium discoideum. Exp Cell Res 1988; 177:338-46. [PMID: 3134249 DOI: 10.1016/0014-4827(88)90467-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In Dictyostelium discoideum, a surface glycoprotein with Mr 80,000 (gp80) has been found to mediate the EDTA-resistant contact sites A at the aggregation stage of development. To evaluate the role of the carbohydrate moiety in cell-cell adhesion, we have examined the accumulation and activity of an altered gp80 molecule in two glycosylation (modB) mutants. Both mutants synthesize an altered gp80 of lower molecular size. This modB-gp80 can be detected by the monoclonal antibody 80L5C4, which is capable of blocking cell-cell adhesion (C. -H. Siu, T. Y. Lam, and A. Choi, (1985) J. Biol. Chem. 260, 16,030-16,036). The mutant cells exhibit both EDTA-sensitive and EDTA-resistant types of cell-cell binding, though to a lesser extent than that of the parental strain, and the EDTA-resistant binding sites are blocked in the presence of 80L5C4 Fab. Mutant cells can also bind Covaspheres conjugated with gp80. These results suggest that the modB-gp80 protein still retains the domain essential for its cell binding activity and the carbohydrate moiety affected by the modB mutation is not directly involved in cell-cell adhesion.
Collapse
Affiliation(s)
- C H Siu
- Banting and Best Department of Medical Research, Charles H. Best Institute, University of Toronto, Ontario, Canada
| | | |
Collapse
|