1
|
Yan Z, Wan J, Liu J, Yao B, Lu Y, Guo Z, Li Y. α-lipoic acid ameliorates hepatotoxicity induced by chronic ammonia toxicity in crucian carp (Carassius auratus gibelio) by alleviating oxidative stress, inflammation and inhibiting ERS pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115533. [PMID: 37806127 DOI: 10.1016/j.ecoenv.2023.115533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/10/2023]
Abstract
High environment ammonia (HEA) poses a deadly threat to aquatic animals and indirectly impacts human healthy life, while nutritional regulation can alleviate chronic ammonia toxicity. α-lipoic acid exhibits antioxidative effects in both aqueous and lipid environments, mitigating cellular and tissue damage caused by oxidative stress by aiding in the neutralization of free radicals (reactive oxygen species). Hence, investigating its potential as an effective antioxidant and its protective mechanisms against chronic ammonia stress in crucian carp is highly valuable. Experimental fish (initial weight 20.47 ± 1.68 g) were fed diets supplemented with or without 0.1% α-lipoic acid followed by a chronic ammonia exposure (10 mg/L) for 42 days. The results revealed that chronic ammonia stress affected growth (weight gain rate, specific growth rate, and feed conversion rate), leading to oxidative stress (decreased the activities of antioxidant enzymes catalase, superoxide dismutase, glutathione peroxidase; decreased total antioxidant capacity), increased lipid peroxidation (accumulation of malondialdehyde), immune suppression (decreased contents of nonspecific immune enzymes AKP and ACP, 50% hemolytic complement, and decrease of immunoglobulin M), impaired ammonia metabolism (reduced contents of Glu, GS, GSH, and Gln), imbalance of expression of induced antioxidant-related genes (downregulation of Cu/Zu SOD, CAT, Nrf2, and HO-1; upregulation of GST and Keap1), induction of pro-apoptotic molecules (transcription of BAX, Caspase3, and Caspase9), downregulation of anti-apoptotic gene Bcl-2 expression, and induction of endoplasmic reticulum stress (upregulation of IRE1, PERK, and ATF6 expression). The results suggested that the supplementation of α-lipoic acid could effectively induce humoral immunity, alleviate oxidative stress injury and endoplasmic reticulum stress, and ultimately alleviate liver injury induced by ammonia poisoning (50-60% reduction). This provides theoretical basis for revealing the toxicity of long-term ammonia stress and provides new insights into the anti-ammonia toxicity mechanism of α-lipoic acid.
Collapse
Affiliation(s)
- Zihao Yan
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Jiwu Wan
- Jilin Provincial Aquatic Technology Extension Center, Changchun 130118, China
| | - Jia Liu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Baolan Yao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Yuqian Lu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Zhengyao Guo
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Yuehong Li
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
2
|
Karalis DT, Karalis T, Karalis S, Kleisiari AS, Malakoudi F, Maimari KEV. The Effect of Alpha-Lipoic Acid on Diabetic Peripheral Neuropathy and the Upcoming Depressive Disorders of Type II Diabetics. Cureus 2021; 13:e12773. [PMID: 33614362 PMCID: PMC7888960 DOI: 10.7759/cureus.12773] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Introduction Peripheral neuropathy is one of the possible complications of diabetes. Alpha-lipoic acid (a-lipoic acid or ALA) is a powerful antioxidant cofactor synthesized in mitochondria that could help stimulate nerves and regenerate nerve fibers, thus preventing disease progression. Moreover, the possible feeling of oppression from the lifestyle changes needed to avoid the complications of diabetes may contribute to the development of depressive symptoms. ALA increases insulin sensitivity, which could increase serotonin synthesis and thus reduce the manifestations of depressive disorder. Aim The aim of this study is to investigate the therapeutic effect after oral administration of a-lipoic acid in patients with type II diabetes mellitus, regarding the possibility of developing peripheral neuropathy and the possibility of developing depressive disorder due to the existence of diabetes type II. Methods The study sample consisted of 148 Greek patients, type II diabetics, 68 men and 80 women, aged 50-75 years. All of them were non-smokers and did not consume alcohol. Their treatment was a combination of gliclazide, sodium-glucose-linked transporter 2 (SGLT-2) inhibitors, metformin, and glucagon-like peptide 1 (GLP-1) analogs. None of them were under insulin administration. Any other treatment received chronically from the patients for other comorbidities was not altered or paused. All patients were in regular monitoring of renal, hepatic, and ocular function, which was normal. Patients were monitored with a balanced diet, based on equivalents, in order to maintain an almost constant body mass index (BMI). All were given one tablet of 600 mg a-lipoic acid, two hours before a meal, for eight months, and the incidence of developing peripheral neuropathy and depressive disorder was assessed, using the Subjective Peripheral Neuropathy Screen Questionnaire (SPNSQ) and Beck Depression Inventory (BDI) questionnaire. Results ALA administration after both four and eight months resulted in statistically significant results and, specifically, the peripheral neuropathy development mean score was reduced by 4.79 at four months and 6.22 after eight months. Concerning the incidence of depressive disorder, an average decrease of 4.43 in the related depression score was observed at the four-month milestone and 7.56 at eight months, both statistically significant. Conclusion A-lipoic acid is a powerful antioxidant and, when used with conventional treatment, has shown to significantly decrease the incidence of depression and peripheral neuropathy in patients with type 2 diabetes mellitus.
Collapse
|
3
|
Zaazaa AM, Motelp BAAE, Aniss NND. Potential Protective Role of Rutin and Alpha-lipoic Acid Against Cisplatin-induced Nephrotoxicity in Rats. Pak J Biol Sci 2020; 22:361-371. [PMID: 31930824 DOI: 10.3923/pjbs.2019.361.371] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND OBJECTIVE Cisplatin-induced nephrotoxicity is a serious complication that restricts its utilization in cancer treatment. Rutin and alpha-lipoic acid have antioxidant effectiveness, anti-inflammatory efficacy and prevent oxidative stress. Therefore, the current study planned to investigate the potential defensive impacts of rutin and alpha-lipoic acid on cisplatin-induced renal damage in rats. MATERIALS AND METHODS Fifty-six adult male Wistar albino rats were randomly divided into seven groups. Rats of group 1: Treated with saline as the control. Group 2: Orally received rutin daily for 2 weeks. Group 3: Rats were orally administered with alpha-lipoic acid (ALA) daily for 2 weeks. Group 4: Rats were intraperitoneal (i.p.) injected with cisplatin to develop the acute renal injury. Group 5: Rats injected with cisplatin then treated orally with RT. Group 6: Rats were injected i.p., with cisplatin then treated orally with ALA. Group 7: Rats injected with cisplatin then treated orally with RT and ALA daily for 2 weeks. RESULTS The cisplatin administration to rats induced nephrotoxicity associated with a significant increase in serum urea, creatinine, albumin and significantly reduce haemoglobin and red blood cells count. The animal treated with cisplatin showed a significant increase in the level of renal malondialdehyde associated with reduction in the levels of glutathione-s-transferase, glutathione reductase and catalase compared to control group. Moreover, cisplatin treated group recorded significant increase in nuclear factor kappa B, IL-6 and p53 levels compared to control group. Additionally, histopathological examination showed that cisplatin-induced interstitial congestion, focal mononuclear cell inflammatory, cell infiltrate and acute tubular injury. In correlation with the cisplatin group, Rutin and alpha-lipoic acid ameliorated cisplatin-induction increase in serum urea, creatinine, albumin, oxidative stress and inflammation were observed. Moreover, rutin and alpha-lipoic acid showed an enhancement in haematological and histopathological structures. CONCLUSION These results indicated that rutin and alpha-lipoic acid showed a protective effect against cisplatin-induced nephrotoxicity in rats.
Collapse
|
4
|
Sahin Z, Ozkaya A, Yilmaz O, Yuce A, Gunes M. Investigation of the role of α-lipoic acid on fatty acids profile, some minerals (zinc, copper, iron) and antioxidant activity against aluminum-induced oxidative stress in the liver of male rats. J Basic Clin Physiol Pharmacol 2017; 28:355-361. [PMID: 28306527 DOI: 10.1515/jbcpp-2015-0160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 01/20/2017] [Indexed: 06/06/2023]
Abstract
BACKGROUND We have investigated the effects of α-lipoic acid (LA), a powerful antioxidant, on the fatty acid (FA) profiles, aluminum accumulation, antioxidant activity and some minerals such as zinc, copper and iron against aluminum chloride (AlCl3)-induced oxidative stress in rat liver. METHODS Twenty-eight male Wistar rats were divided into four groups as control, LA, AlCl3 and LA+AlCl3. For 30 days, LA was intraperitoneally administrated (50 mg/kg) and AlCl3 was given via orogastric gavage (1600 ppm) every other day. RESULTS AlCl3-treated animals exhibited higher hepatic malondialdehyde concentration and lower glutathione peroxidase and catalase activity, whereas these alterations were restored by the LA supplementation. Total saturated FA of the AlCl3-treated group was higher than the LA supplementation groups. Moreover, total unsaturated FA level of the LA+AlCl3 group was higher than the AlCl3-treated group. Hepatic zinc level of the AlCl3-treated group was lower than the control group, whereas it was higher in the LA and the LA+AlCl3 groups. Hepatic copper levels did not significantly change in the experimental groups. Iron level was lower in the LA and LA+AlCl3 groups compared with the AlCl3-treated group. Moreover, the liver Al concentration was found to be lower in the LA and LA+AlCl3 groups compared to the AlCl3 group. CONCLUSIONS These results indicate that AlCl3 treatment can induce oxidative stress in the liver. LA supplementation has a beneficial effect on the AlCl3-induced alterations such as high lipid peroxidation, Al accumulation, FA profile ratios and mineral concentrations.
Collapse
|
5
|
Macias-Barragan J, Huerta-Olvera SG, Hernandez-Cañaveral I, Pereira-Suarez AL, Montoya-Buelna M. Cadmium and α-lipoic acid activate similar de novo synthesis and recycling pathways for glutathione balance. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 52:38-46. [PMID: 28366867 DOI: 10.1016/j.etap.2017.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 03/06/2017] [Accepted: 03/07/2017] [Indexed: 06/07/2023]
Abstract
Glutathione (GSH) protects cells against oxidative stress. Redox modifiers induce GSH biosynthesis and recycling to maintain reduced environment inside cells. Cadmium (Cd2+) is a heavy metal that activates redox-sensitive transcriptional factors. The antioxidant α-lipoic acid (ALA) has shown to modulate GSH pathways. This study aimed to investigate de novo synthesis and recycling pathways for GSH balance by different Cd2+ concentrations and ALA in HepG2 cells. ALA activates Nrf2 pathway leading to GSH increment. Pre-treatment with 1μM Cd2+ or ALA produces tolerance to 5μM Cd2+ toxic effects. 5μM Cd2+ exposure significantly augmented nuclear Nrf2, GSH and GCLC, GCLM, HMOX1, TNFα and IL-6 mRNA expression but not GSR, however these upsurges were significantly abrogated by ALA or 1μM Cd2+ pre-treatments. Exposure to low Cd2+ concentration generate timely protective responses, similar to that elicited by ALA, maintaining a normal redox balance inside the cell due to GSH replenishment.
Collapse
Affiliation(s)
- Jose Macias-Barragan
- Department of Health Sciences, CUValles, University of Guadalajara, Guadalajara - Ameca Rd Km. 45.5, Ameca, Jalisco, 46600, Mexico; Laboratory of Immunology, Department of Physiology, CUCS, University of Guadalajara, 950 Sierra Mojada St., Guadalajara, Jalisco, 44340, Mexico.
| | - Selene G Huerta-Olvera
- Department of Medical and Life Sciences, CUCienega, University of Guadalajara, 1115 Universidad Ave., Ocotlán, Jalisco, 47820, Mexico
| | - Ivan Hernandez-Cañaveral
- Department of Microbiology and Pathology, CUCS, University of Guadalajara, 950 Sierra Mojada St., Guadalajara, Jalisco, 44340, Mexico
| | - Ana Laura Pereira-Suarez
- Laboratory of Immunology, Department of Physiology, CUCS, University of Guadalajara, 950 Sierra Mojada St., Guadalajara, Jalisco, 44340, Mexico
| | - Margarita Montoya-Buelna
- Laboratory of Immunology, Department of Physiology, CUCS, University of Guadalajara, 950 Sierra Mojada St., Guadalajara, Jalisco, 44340, Mexico
| |
Collapse
|
6
|
Mirzahosseini A, Szilvay A, Noszál B. Physicochemical Profiling of α-Lipoic Acid and Related Compounds. Chem Biodivers 2016; 13:861-9. [PMID: 27272749 DOI: 10.1002/cbdv.201500272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 11/13/2015] [Indexed: 11/09/2022]
Abstract
Lipoic acid, the biomolecule of vital importance following glycolysis, shows diversity in its thiol/disulfide equilibria and also in its eight different protonation forms of the reduced molecule. In this paper, lipoic acid, lipoamide, and their dihydro derivatives were studied to quantify their solubility, acid-base, and lipophilicity properties at a submolecular level. The acid-base properties are characterized in terms of six macroscopic, 12 microscopic protonation constants, and three interactivity parameters. The species-specific basicities, the pH-dependent distribution of the microspecies, and lipophilicity parameters are interpreted by various intramolecular effects, and contribute to understanding the antioxidant, chelate-forming, and enzyme cofactor behavior of the molecules observed.
Collapse
Affiliation(s)
- Arash Mirzahosseini
- Department of Pharmaceutical Chemistry, Semmelweis University, Hőgyes Endre utca 9, H-1092, Budapest.,Research Group of Drugs of Abuse and Doping Agents, Hungarian Academy of Sciences, Széchenyi István tér 9, H-1051, Budapest
| | - András Szilvay
- Department of Pharmaceutical Chemistry, Semmelweis University, Hőgyes Endre utca 9, H-1092, Budapest.,Research Group of Drugs of Abuse and Doping Agents, Hungarian Academy of Sciences, Széchenyi István tér 9, H-1051, Budapest
| | - Béla Noszál
- Department of Pharmaceutical Chemistry, Semmelweis University, Hőgyes Endre utca 9, H-1092, Budapest. .,Research Group of Drugs of Abuse and Doping Agents, Hungarian Academy of Sciences, Széchenyi István tér 9, H-1051, Budapest.
| |
Collapse
|
7
|
The design of redox active thiol peroxidase mimics: Dihydrolipoic acid recognition correlates with cytotoxicity and prooxidant action. Biochem Pharmacol 2016; 104:19-28. [DOI: 10.1016/j.bcp.2016.01.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 01/14/2016] [Indexed: 10/22/2022]
|
8
|
Castañeda-Arriaga R, Alvarez-Idaboy JR, Mora-Diez N. Theoretical study of copper complexes with lipoic and dihydrolipoic acids. RSC Adv 2016. [DOI: 10.1039/c6ra23553k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A Cu(ii) complex with doubly-deprotonated dihydrolipoic acid has antioxidant capacity, since it is able to slow down by two orders the first step of the Haber–Weiss cycle reducing the potential damage caused by ˙OH radical formation.
Collapse
Affiliation(s)
- Romina Castañeda-Arriaga
- Facultad de Química
- Departamento de Física y Química Teórica
- Universidad Nacional Autónoma de México
- Mexico
- Department of Chemistry
| | - J. Raul Alvarez-Idaboy
- Facultad de Química
- Departamento de Física y Química Teórica
- Universidad Nacional Autónoma de México
- Mexico
| | | |
Collapse
|
9
|
Chirality induction and chiron approaches to enantioselective total synthesis of α-lipoic acid. Tetrahedron 2015. [DOI: 10.1016/j.tet.2015.04.090] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Karabay AZ, Koc A, Gurkan-Alp AS, Buyukbingol Z, Buyukbingol E. Inhibitory effects of indoleα-lipoic acid derivatives on nitric oxide production in LPS/IFNγ activated RAW 264.7 macrophages. Cell Biochem Funct 2015; 33:121-7. [DOI: 10.1002/cbf.3095] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 01/24/2015] [Accepted: 01/27/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Arzu Zeynep Karabay
- Department of Biochemistry, Faculty of Pharmacy; Ankara University; Ankara Turkey
| | - Aslı Koc
- Faculty of Pharmacy; Ankara University; Ankara Turkey
| | - A. Selen Gurkan-Alp
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy; Ankara University; Ankara Turkey
| | - Zeliha Buyukbingol
- Department of Biochemistry, Faculty of Pharmacy; Ankara University; Ankara Turkey
| | - Erdem Buyukbingol
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy; Ankara University; Ankara Turkey
| |
Collapse
|
11
|
Karaytug S, Sevgiler Y, Karayakar F. Comparison of the protective effects of antioxidant compounds in the liver and kidney of Cd- and Cr-exposed common carp. ENVIRONMENTAL TOXICOLOGY 2014; 29:129-137. [PMID: 21987389 DOI: 10.1002/tox.20779] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 09/10/2011] [Indexed: 05/31/2023]
Abstract
The aim of this study was to see whether the taurine (TAU), alpha-lipoic acid (LA), curcumin (CUR), and N-acetylcysteine (NAC) protection against oxidative stress caused by heavy metals is owed to the metal-decreasing or antioxidative effect. In this context, liver and kidney tissues of common carp (Cyprinus carpio carpio L.) were exposed in vivo to model toxicants cadmium (Cd) and chromium (Cr). The tissues were dissected 96 h after intraperitoneal injection of the metals and antioxidant substances. Cd and Cr levels were determined in the liver using the ICP-OES, but we could not obtain enough kidney tissue to make the same measurements in the kidney. The enzymatic activities of SOD, CAT, and GPx, and the GSH redox status and lipid peroxidation levels were analyzed using spectrophotometric methods. Of all investigated antioxidants, only NAC decreased metal levels in the liver. Cd had little effect on oxidative stress parameters, while Cr showed a weak prooxidative effect. Cotreatment with TAU/LA/CUR/NAC and Cr significantly increased liver SOD activity. Chromium induced kidney SOD and CAT, but all antioxidants lowered CAT activity. Cadmium reduced liver and increased kidney GSSG. NAC increased liver GSH, but the increase did not correlate with decrease in Cd. Curcumin given with Cd increased kidney and decreased liver lipid peroxidation, whereas TAU with Cr increased lipid peroxidation in both tissues. N-Acetylcysteine was the most effective antioxidative agent, owing to its metal-decreasing function as well as to its effects on the GSH redox status. We believe that the investigated antioxidant substances which may have been involved in the reduction of Cr caused an increase in SOD activity and a decrease in CAT activity. Changes in the GSSG levels in both tissues might be an adaptive response to the prooxidative potential of Cd. Because of their respective tissue- and metal-dependent prooxidative effects, CUR and TAU deserve particular attention in regard to their use against metal toxicity, Cr in particular.
Collapse
Affiliation(s)
- Sahire Karaytug
- Department of Basic Sciences, Faculty of Aquaculture, Mersin University, Yenisehir Campus, 33169 Mersin, Turkey
| | | | | |
Collapse
|
12
|
Ali Hussei S, . O, Abd El-Ham M, M. Sabry F A. Protective Effects of Alpha-lipoic Acid and Melatonin Against Cadmium-induced Oxidative Stress in Erythrocytes of Rats. ACTA ACUST UNITED AC 2013. [DOI: 10.3923/jpt.2014.1.24] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
Yamada T, Hashida K, Takarada-Iemata M, Matsugo S, Hori O. α-Lipoic acid (LA) enantiomers protect SH-SY5Y cells against glutathione depletion. Neurochem Int 2011; 59:1003-9. [DOI: 10.1016/j.neuint.2011.09.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 09/13/2011] [Accepted: 09/14/2011] [Indexed: 11/25/2022]
|
14
|
Alpha-lipoic acid preserves the structural and functional integrity of red blood cells by adjusting the redox disturbance and decreasing O-GlcNAc modifications of antioxidant enzymes and heat shock proteins in diabetic rats. Eur J Nutr 2011; 51:975-86. [DOI: 10.1007/s00394-011-0275-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 11/02/2011] [Indexed: 10/15/2022]
|
15
|
Antioxidative Effects of N-acetylcysteine, Lipoic Acid, Taurine, and Curcumin in the Muscle of Cyprinus carpio L. Exposed to Cadmium. Arh Hig Rada Toksikol 2011; 62:1-9. [DOI: 10.2478/10004-1254-62-2011-2082] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
16
|
Huerta-Olvera SG, Macías-Barragán J, Ramos-Márquez ME, Armendáriz-Borunda J, Díaz-Barriga F, Siller-López F. Alpha-lipoic acid regulates heme oxygenase gene expression and nuclear Nrf2 activation as a mechanism of protection against arsenic exposure in HepG2 cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2010; 29:144-149. [PMID: 21787596 DOI: 10.1016/j.etap.2009.12.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2009] [Revised: 11/26/2009] [Accepted: 12/23/2009] [Indexed: 05/31/2023]
Abstract
Oxidative stress is a known mechanism induced, among other things, by arsenic toxicity. As a response, the cell triggers the synthesis of antioxidant and stress response elements like glutathione and heme oxygenase. Alpha-lipoic acid (ALA) is a well-known antioxidant that confers protection to oxidative stress conditions. We analyzed the effect of ALA pretreatment on Nrf2-responsive gene expression of HepG2 cells exposed to As(3+). Cells were treated with 5mM ALA and 8h later exposed to 50μM As(3+) for 24h, analyzing MTT-activity, glutathione content, Nrf2 induction and antioxidant gene expression. As(3+) increased glutathione (154%), heme oxygenase, glutamate cystein ligase, modifier subunit and metallothionein (35-fold, 10-fold and 9-fold, respectively). ALA prevented the strong expression of heme oxygenase by As(3+) exposure (from 35- to 5-times of control cells), which correlated with the reduction of Nrf2 observed in As(3+) group. ALA pretreatment can down-modulate the response mediated by Nrf2 and provide protection to As(3+) exposed HepG2 cells.
Collapse
Affiliation(s)
- Selene G Huerta-Olvera
- Doctorado en Ciencias Biomédicas Básicas, Universidad Autónoma de San Luis Potosí, Mexico; OPD Hospital Civil de Guadalajara, Mexico
| | | | | | | | | | | |
Collapse
|
17
|
Dihydro-alpha-lipoic acid has more potent cytotoxicity than alpha-lipoic acid. In Vitro Cell Dev Biol Anim 2009; 45:275-80. [DOI: 10.1007/s11626-008-9164-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Accepted: 12/03/2008] [Indexed: 10/21/2022]
|
18
|
Coleman MD, Williams C, Haenen GRMM. Effects of Lipoic Acid and Dihydrolipoic Acid on 4-Aminophenol-Mediated Erythrocytic Toxicity in vitro. Basic Clin Pharmacol Toxicol 2006; 99:225-9. [PMID: 16930295 DOI: 10.1111/j.1742-7843.2006.pto_499.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The effects of the antioxidant lipoic acid and its reduced form, dihydrolipoic acid (DHLA), were studied on the process of the erythrocytic toxicity of 4-aminophenol in human erythrocytes in vitro. 4-Aminophenol alone caused a stepwise increase in methaemoglobin formation, along with a commensurate decrease in total thiols. At 10 min., in the presence of lipoic acid alone and the thiol depletor 1-chloro-2,4-dinitrobenzene (CDNB) alone, 4-aminophenol-mediated methaemoglobin formation was significantly increased, whilst thiol levels were significantly reduced compared with the 4-aminophenol alone. At 10 min., with DHLA and CDNB alone, 4-aminophenol was associated with significantly increased methaemoglobin formation. However, thiol levels were not significantly different in the presence of DHLA compared with 4-aminophenol alone, although thiol levels were different compared with control (4-aminophenol alone) in the incubations with CDNB alone. At 15 min., only CDNB/4-aminophenol methaemoglobin formation differed from control, whilst thiol levels were significantly lower in the presence of CDNB alone compared with 4-aminophenol alone. Lipoic acid enhanced the toxicity of 4-aminophenol in terms of increased methaemoglobin formation coupled with increased thiol depletion, whilst DHLA showed increased 4-aminophenol-mediated methaemoglobin formation without thiol depletion. Lipoic acid, and to a lesser extent its reduced derivative DHLA, acted as a prooxidant in the presence of 4-aminophenol, enhancing the oxidative stress effects of the amine in human erythrocytes.
Collapse
Affiliation(s)
- Michael D Coleman
- School of Life and Health Sciences, Aston University, Birmingham B4 7ET, UK.
| | | | | |
Collapse
|
19
|
van Meeteren ME, Teunissen CE, Dijkstra CD, van Tol EAF. Antioxidants and polyunsaturated fatty acids in multiple sclerosis. Eur J Clin Nutr 2006; 59:1347-61. [PMID: 16118655 DOI: 10.1038/sj.ejcn.1602255] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS). Oligodendrocyte damage and subsequent axonal demyelination is a hallmark of this disease. Different pathomechanisms, for example, immune-mediated inflammation, oxidative stress and excitotoxicity, are involved in the immunopathology of MS. The risk of developing MS is associated with increased dietary intake of saturated fatty acids. Polyunsaturated fatty acid (PUFA) and antioxidant deficiencies along with decreased cellular antioxidant defence mechanisms have been observed in MS patients. Furthermore, antioxidant and PUFA treatment in experimental allergic encephalomyelitis, an animal model of MS, decreased the clinical signs of disease. Low-molecular-weight antioxidants may support cellular antioxidant defences in various ways, including radical scavenging, interfering with gene transcription, protein expression, enzyme activity and by metal chelation. PUFAs may not only exert immunosuppressive actions through their incorporation in immune cells but also may affect cell function within the CNS. Both dietary antioxidants and PUFAs have the potential to diminish disease symptoms by targeting specific pathomechanisms and supporting recovery in MS.
Collapse
Affiliation(s)
- M E van Meeteren
- Department of Biomedical Research, Numico Research BV, Wageningen, The Netherlands
| | | | | | | |
Collapse
|
20
|
Jesudason EP, Masilamoni JG, Kirubagaran R, Davis GDJ, Jayakumar R. The protective role of dl-α-lipoic acid in biogenic amines catabolism triggered by Aβ amyloid vaccination in mice. Brain Res Bull 2005; 65:361-7. [PMID: 15811602 DOI: 10.1016/j.brainresbull.2005.01.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2005] [Accepted: 01/31/2005] [Indexed: 10/25/2022]
Abstract
The major pathological consequence of Alzheimer disease (AD) is accumulation of beta-amyloid (Abeta) peptide fibrillar plaque in the brain and subsequent inflammatory reaction associated with the surrounding cells due to the presence of these aggregates. Inflammation is the major complication associated with Abeta peptide vaccination. Abeta peptide activated T-helper cells are shown to enhance the existing-inflammatory conditions in the brain and other organs of AD patients. Hence systematic studies on potential approaches that will prevent inflammation during the vaccination are highly desired. DL-alpha-lipoic acid (LA), an antioxidant with known function as cofactor in mitochondrial dehydrogenase reactions, will be a good candidate to annul the oxidative damage due to vaccination triggered inflammation. For the first time, levels of principal neurotransmitters and their major metabolites in hippocampus and neocortex regions of brain are quantified to find out the level of inflammation. We have used high performance liquid chromatography with electro chemical detection (HPLC-EC) for monitoring neurotransmitter levels. We have shown a significant (p<0.05) reduction of 5-hydroxytryptamine (5-HT), dopamine (DA) and norepinephrine (NE) in the systemic inflammation induced (SI), vaccinated (VA) and inflammation induced vaccinated (IV) mice. Nevertheless their metabolites such as 5-hydroxyindole acetic acid (5-HIAA) and homovanillic acid (HVA) are significantly (p<0.05) increased when compared with control. Interestingly, antioxidant LA treated mice with systemic inflammation (IL), vaccinated (VL) and inflammation induced vaccinated (IVL) mice exhibited enhanced level of 5-HT, DA and NE and the concentration of 5-HIAA and HVA gradually returned to normal. These results suggest a possible new way for monitoring and modifying the inflammation and thereby preventing Abeta vaccination mediated tissue damage.
Collapse
Affiliation(s)
- E Philip Jesudason
- Bio-Organic and Neurochemistry Laboratory, Central Leather Research Institute, Adyar, Chennai 600 020, India
| | | | | | | | | |
Collapse
|
21
|
Selvakumar E, Prahalathan C, Mythili Y, Varalakshmi P. Protective effect of dl-α-lipoic acid in cyclophosphamide induced oxidative injury in rat testis. Reprod Toxicol 2004; 19:163-7. [PMID: 15501381 DOI: 10.1016/j.reprotox.2004.06.015] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2004] [Revised: 06/11/2004] [Accepted: 06/23/2004] [Indexed: 10/26/2022]
Abstract
The aim of the present study was to evaluate the protective effect of DL-alpha-lipoic acid on the biochemical changes, tissue peroxidative damage and abnormal antioxidant levels in the rat testis during cyclophosphamide (CP)-induced injury. Adult male Wistar rats were divided into four treatment groups: (I) control, (II) 15 mg/kg CP once a week for 10 weeks by gavage, (III) 35 mg/kg lipoic acid once a week for 10 weeks by intraperitoneal injection, and (IV) CP plus lipoic acid (24 h prior to CP administration). Testicular toxicity, assessed by decreased enzymatic activities of lactate dehydrogenase and glucose-6-phosphate dehydrogenase, was reversed with lipoic acid pretreatment. CP-exposed rats (group II) showed abnormal levels of enzymes (superoxide dismutase, catalase, glutathione peroxidase, glutathione-S-transferase and glutathione reductase) and antioxidants (reduced glutathione, ascorbate and alpha-tocopherol) along with high malondialdehyde levels. In contrast, rats pretreated with lipoic acid (group IV) showed normal lipid peroxidation and antioxidant defenses. These findings indicate a cytoprotective role of lipoic acid in this experimental model of testicular toxicity.
Collapse
Affiliation(s)
- Elangovan Selvakumar
- Department of Medical Biochemistry, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai 600113, India
| | | | | | | |
Collapse
|
22
|
Rogers SA. Lipoic Acid as a Potential First Agent for Protection from Mycotoxins and Treatment of Mycotoxicosis. ACTA ACUST UNITED AC 2003; 58:528-32. [PMID: 15259433 DOI: 10.3200/aeoh.58.8.528-532] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mycotoxins--toxic substances produced by fungi or molds--are ubiquitous in the environment and are capable of damaging multiple biochemical mechanisms, resulting in a variety of human symptoms referred to collectively as "mycotoxicosis." In fact, mycotoxins mimic multiple xenobiotics, not only with respect to their ultimate damage, but also in their routes of detoxification. This suggests potential therapeutic options for the challenging treatment of mycotoxicosis. In this brief review, the author examines the use of lipoic acid as an example of an inexpensive and available nutrient that has been shown to protect against, or reverse, the adverse health effects of mycotoxins.
Collapse
Affiliation(s)
- Sherry A Rogers
- Northeast Center for Environmental Medicine, Sarasota, Florida, USA
| |
Collapse
|
23
|
Coleman MD, Eason RC, Bailey CJ. The therapeutic use of lipoic acid in diabetes: a current perspective. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2001; 10:167-172. [PMID: 21782573 DOI: 10.1016/s1382-6689(01)00080-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Lipoic acid and its reduced derivative, dihydrolipoic acid (DHLA) are highly promising antioxidant agents, which are potent attenuators of reactive species-mediated damage in vitro and in animal studies. Lipoic acid is a universal antioxidant, effective in lipophilic and aqueous environments. In contrast to an equivalent endogenous agent, such as oxidised glutathione (GSSG), lipoic acid acts as an antioxidant in its oxidised form. Lipoic acid has been evaluated in diabetic polyneuropathy, a condition which is thought to result in part from oxidant damage caused by long-term hyperglycaemia. Diabetic patients are prone to incur enhanced cellular free radical formation and reduced antioxidant defence. Treatment with lipoic acid has improved nerve conduction velocity during studies in diabetic animals. Trials in diabetic patients have often observed some relief of neuropathic symptoms during treatment with lipoic acid, but consistent objective benefits have been difficult to establish. Lipoic acid is now used in Germany for the treatment of diabetic neuropathy and definitive evidence of efficacy should arise from postmarketing surveillance studies. It is possible that lipoic acid may be more effective as a long-term dietary supplement aimed at the prophylactic protection of diabetics from complications.
Collapse
Affiliation(s)
- M D Coleman
- Department of Pharmaceutical Sciences, Aston University, Mechanisms of Drug Toxicity Group, School of Pharmacy, Aston Triangle, Birmingham B4 7ET, UK
| | | | | |
Collapse
|
24
|
Perricone N, Nagy K, Horváth F, Dajkó G, Uray I, Zs -Nagy I. Alpha lipoic acid (ALA) protects proteins against the hydroxyl free radical-induced alterations: rationale for its geriatric topical application. Arch Gerontol Geriatr 1999; 29:45-56. [PMID: 15374076 DOI: 10.1016/s0167-4943(99)00022-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/1999] [Revised: 05/21/1999] [Accepted: 05/31/1999] [Indexed: 11/23/2022]
Abstract
The well known OH* free radical scavenging properties of alpha-lipoic acid (ALA) cannot be easily utilized for biological experiments, because the compound is practically insoluble in water. We elaborated a simple method of preparing its Na-salt (Na-ALA) which proved to be water soluble. It has been demonstrated by ESR spin trapping experiments with DMPO, using the Fenton reaction as the source of OH* free radicals that Na-ALA maintains its OH* free radical scavenging ability: it reacts nearly an order of magnitude faster with these radicals than the spin trap itself. It was tested in two different systems to determine whether Na-ALA was able to protect bovine serum albumin (BSA) against the OH* free radical-induced polymerization and protein oxidation. (i) OH* free radicals were generated by Fenton reaction in the presence of BSA. This protein is polymerized by these radicals shown by the loss of its water solubility; Na-ALA exerted a considerable protective effect against this type of protein damage. (ii) BSA oxidation was induced by Co-gamma irradiation of 80 krad, resulting in a strong increase in the protein carbonyl content. Na-ALA inhibited this carbonyl formation very efficiently. The data suggest that the interaction of the OH radical with Na-ALA takes place on the disulfide group, yielding thiosulfinate or thiosulfonate. The results indicate that the geriatric topical application of Na-ALA may have an established rationale.
Collapse
Affiliation(s)
- N Perricone
- Department of Dermatology, Yale School of Medicine, New Haven, CT, USA
| | | | | | | | | | | |
Collapse
|
25
|
Neal R, Cooper K, Kellogg G, Gurer H, Ercal N. Effects of some sulfur-containing antioxidants on lead-exposed lenses. Free Radic Biol Med 1999; 26:239-43. [PMID: 9890658 DOI: 10.1016/s0891-5849(98)00214-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Lead (Pb) is known to negatively affect glutathione (GSH) metabolism in the lens. The present study examined the effects of Captopril, Taurine, and alpha-Lipoic acid on the Pb-induced GSH depletion and lipid peroxide increase in the lenticular system. Captopril administration returned the GSH, cysteine (CYS), and malondialdehyde (MDA) levels to near normal. Following Taurine administration the GSH, CYS and MDA levels were intermediate between the control group and the Pb group levels. Alpha-Lipoic acid administration, however, only increased the CYS levels. No significant changes in oxidized glutathione (GSSG) levels were observed in any treatment group.
Collapse
Affiliation(s)
- R Neal
- Department of Chemistry, University of Missouri-Rolla, 65409, USA
| | | | | | | | | |
Collapse
|
26
|
Kataoka H. Chromatographic analysis of lipoic acid and related compounds. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL SCIENCES AND APPLICATIONS 1998; 717:247-62. [PMID: 9832248 DOI: 10.1016/s0378-4347(97)00628-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The analysis of lipoic acid and related compounds, such as its reduced form dihydrolipoic acid, its amide form lipoamide and other analogues, in biological and food samples is important in biochemistry, nutritional and clinical chemistry. This review summarizes the chromatographic methods for the determination of lipoic acid and related compounds, and their applications to various samples such as bacteria, tissues, drugs and food. Gas chromatographic methods with flame ionization detection and flame photometric detection are commonly used for the quantification of lipoic acid present as its protein-bound form, after acid or base hydrolysis of these samples. High-performance liquid chromatographic methods with ultraviolet, fluorescence and electrochemical detection are mainly used for the determination of free lipoic acid and related compounds, such as dihydrolipoic acid, lipoamide and other analogues. Moreover, gas chromatography-mass spectrometry and capillary electrophoresis methods are also developed.
Collapse
Affiliation(s)
- H Kataoka
- Faculty of Pharmaceutical Sciences, Okayama University, Tsushima, Japan
| |
Collapse
|
27
|
Packer L. alpha-Lipoic acid: a metabolic antioxidant which regulates NF-kappa B signal transduction and protects against oxidative injury. Drug Metab Rev 1998; 30:245-75. [PMID: 9606603 DOI: 10.3109/03602539808996311] [Citation(s) in RCA: 172] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Although the metabolic role of alpha-lipoic acid has been known for over 40 years, it is only recently that its effects when supplied exogenously have become known. Exogenous alpha-lipoic acid is reduced intracellularly by at least two and possibly three enzymes, and through the actions of its reduced form, it influences a number of cell process. These include direct radical scavenging, recycling of other antioxidants, accelerating GSH synthesis, and modulating transcription factor activity, especially that of NF-kappa B (Fig. 12). These mechanisms may account for the sometimes dramatic effects of alpha-lipoic acid in oxidative stress conditions (e.g., brain ischemia-reperfusion), and point the way toward its therapeutic use.
Collapse
Affiliation(s)
- L Packer
- Department of Molecular and Cell Biology, University of California, Berkeley 94720-3200, USA
| |
Collapse
|
28
|
Biewenga GP, Haenen GR, Bast A. The pharmacology of the antioxidant lipoic acid. GENERAL PHARMACOLOGY 1997; 29:315-31. [PMID: 9378235 DOI: 10.1016/s0306-3623(96)00474-0] [Citation(s) in RCA: 544] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
1. Lipoic acid is an example of an existing drug whose therapeutic effect has been related to its antioxidant activity. 2. Antioxidant activity is a relative concept: it depends on the kind of oxidative stress and the kind of oxidizable substrate (e.g., DNA, lipid, protein). 3. In vitro, the final antioxidant activity of lipoic acid is determined by its concentration and by its antioxidant properties. Four antioxidant properties of lipoic acid have been studied: its metal chelating capacity, its ability to scavenge reactive oxygen species (ROS), its ability to regenerate endogenous antioxidants and its ability to repair oxidative damage. 4. Dihydrolipoic acid (DHLA), formed by reduction of lipoic acid, has more antioxidant properties than does lipoic acid. Both DHLA and lipoic acid have metal-chelating capacity and scavenge ROS, whereas only DHLA is able to regenerate endogenous antioxidants and to repair oxidative damage. 5. As a metal chelator, lipoic acid was shown to provide antioxidant activity by chelating Fe2+ and Cu2+; DHLA can do so by chelating Cd2+. 6. As scavengers of ROS, lipoic acid and DHLA display antioxidant activity in most experiments, whereas, in particular cases, pro-oxidant activity has been observed. However, lipoic acid can act as an antioxidant against the pro-oxidant activity produced by DHLA. 7. DHLA has the capacity to regenerate the endogenous antioxidants vitamin E, vitamin C and glutathione. 8. DHLA can provide peptide methionine sulfoxide reductase with reducing equivalents. This enhances the repair of oxidatively damaged proteins such as alpha-1 antiprotease. 9. Through the lipoamide dehydrogenase-dependent reduction of lipoic acid, the cell can draw on its NADH pool for antioxidant activity additionally to its NADPH pool, which is usually consumed during oxidative stress. 10. Within drug-related antioxidant pharmacology, lipoic acid is a model compound that enhances understanding of the mode of action of antioxidants in drug therapy.
Collapse
Affiliation(s)
- G P Biewenga
- Leiden/Amsterdam Center for Drug Research, Vrije Universiteit, Department of Pharmacochemistry, The Netherlands
| | | | | |
Collapse
|
29
|
Koropatnick J, Zalups RK. Effect of non-toxic mercury, zinc or cadmium pretreatment on the capacity of human monocytes to undergo lipopolysaccharide-induced activation. Br J Pharmacol 1997; 120:797-806. [PMID: 9138684 PMCID: PMC1564538 DOI: 10.1038/sj.bjp.0700975] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
1. Metal salts can inhibit cell activity through direct toxicity to critical cellular molecules and structures. On the other hand, they can also change cell behaviour by inducing specific genes (including genes encoding members of the metallothionein [MT] gene family). Therefore, transition metals may affect cell functions either by acting as a toxin, or by transmitting or influencing signals controlling gene expression. 2. To explore the latter possibility, we measured the ability of low, non-toxic metal pretreatment to alter immune cell behaviour. We previously found that pretreatment of human monocytes with zinc induces metallothionein gene expression and alters their capacity to undergo a bacterial lipopolysaccharide-induced respiratory burst. We showed here that cadmium and mercury salts, at concentrations that exert no discernible toxicity, inhibit activation of human monocytic leukemia (THP-1) cells. CdCl2 1 microM, ZnCl2 20-40 microM or HgCl2 2 microM pretreatment for 20 h induced MT-2 mRNA and total MT protein accumulation and had no effect on proliferation potential or metabolic activity, but significantly inhibited the ability of subsequent lipopolysaccharide treatment to induce the oxidative burst, increased adhesion to plastic, and MT-2 and interleukin-1 beta (IL-1 beta) mRNA accumulation. 3. The phenomenon of metal-induced suppression of monocyte activation, at metal concentrations that have no effect on cell viability, has important implications for assessment of acceptable levels of human exposure to cadmium, zinc and mercury.
Collapse
|
30
|
Kataoka H, Hirabayashi N, Makita M. Analysis of lipoic acid by gas chromatography with flame photometric detection. Methods Enzymol 1997; 279:166-76. [PMID: 9211268 DOI: 10.1016/s0076-6879(97)79020-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- H Kataoka
- Faculty of Pharmaceutical Sciences, Okayama University, Japan
| | | | | |
Collapse
|
31
|
Haramaki N, Han D, Handelman GJ, Tritschler HJ, Packer L. Cytosolic and mitochondrial systems for NADH- and NADPH-dependent reduction of alpha-lipoic acid. Free Radic Biol Med 1997; 22:535-42. [PMID: 8981046 DOI: 10.1016/s0891-5849(96)00400-5] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In cellular, tissue, and organismal systems, exogenously supplied alpha-lipoic acid (thioctic acid) has a variety of significant effects, including direct radical scavenging, redox modulation of cell metabolism, and potential to inhibit oxidatively-induced injury. Because reduction of lipoate to dihydrolipoate is a crucial step in many of these processes, we investigated mechanisms of its reduction. The mitochondrial NADH-dependent dihydrolipoamide dehydrogenase exhibits a marked preference for R(+)-lipoate, whereas NADPH-dependent glutathione reductase shows slightly greater activity toward the S(-)-lipoate stereoisomer. Rat liver mitochondria also reduced exogenous lipoic acid. The rate of reduction was stimulated by substrates which increased the NADH content of the mitochondria, and was inhibited by methoxyindole-2-carboxylic acid, a dihydrolipoamide dehydrogenase inhibitor. In rat liver cytosol, NADPH-dependent reduction was greater than NADH, and lipoate reduction was inhibited by glutathione disulfide. In rat heart, kidney, and brain whole cell-soluble fractions, NADH contributed more to reduction (70-90%) than NADPH, whereas with liver, NADH and NADPH were about equally active. An intact organ, the isolated perfused rat heart, reduced R-lipoate six to eight times more rapidly than S-lipoate, consistent with high mitochondrial dihydrolipoamide dehydrogenase activity and results with isolated cardiac mitochondria. On the other hand, erythrocytes, which lack mitochondria, somewhat more actively reduced S- than R-lipoate. These results demonstrate differing stereospecific reduction by intact cells and tissues. Thus, mechanisms of reduction of alpha-lipoate are highly tissue-specific and effects of exogenously supplied alpha-lipoate are determined by tissue glutathione reductase and dihydrolipoamide dehydrogenase activity.
Collapse
Affiliation(s)
- N Haramaki
- Department of Molecular and Cell Biology, University of California at Berkeley 94720-3200, USA
| | | | | | | | | |
Collapse
|
32
|
Packer L, Roy S, Sen CK. Alpha-lipoic acid: a metabolic antioxidant and potential redox modulator of transcription. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 1996; 38:79-101. [PMID: 8895805 DOI: 10.1016/s1054-3589(08)60980-1] [Citation(s) in RCA: 176] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- L Packer
- Department of Molecular and Cell Biology, University of California at Berkeley 94720, USA
| | | | | |
Collapse
|
33
|
Abstract
alpha-Lipoic acid, which plays an essential role in mitochondrial dehydrogenase reactions, has recently gained considerable attention as an antioxidant. Lipoate, or its reduced form, dihydrolipoate, reacts with reactive oxygen species such as superoxide radicals, hydroxyl radicals, hypochlorous acid, peroxyl radicals, and singlet oxygen. It also protects membranes by interacting with vitamin C and glutathione, which may in turn recycle vitamin E. In addition to its antioxidant activities, dihydrolipoate may exert prooxidant actions through reduction of iron. alpha-Lipoic acid administration has been shown to be beneficial in a number of oxidative stress models such as ischemia-reperfusion injury, diabetes (both alpha-lipoic acid and dihydrolipoic acid exhibit hydrophobic binding to proteins such as albumin, which can prevent glycation reactions), cataract formation, HIV activation, neurodegeneration, and radiation injury. Furthermore, lipoate can function as a redox regulator of proteins such as myoglobin, prolactin, thioredoxin and NF-kappa B transcription factor. We review the properties of lipoate in terms of (1) reactions with reactive oxygen species; (2) interactions with other antioxidants; (3) beneficial effects in oxidative stress models or clinical conditions.
Collapse
Affiliation(s)
- L Packer
- Department of Molecular & Cell Biology, University of California, Berkeley 94720, USA
| | | | | |
Collapse
|
34
|
Handelman GJ, Han D, Tritschler H, Packer L. Alpha-lipoic acid reduction by mammalian cells to the dithiol form, and release into the culture medium. Biochem Pharmacol 1994; 47:1725-30. [PMID: 8204089 DOI: 10.1016/0006-2952(94)90298-4] [Citation(s) in RCA: 129] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Lipoic acid has been reported recently to be an effective antioxidant in biological systems. It may act in vivo through reduction to its dithiol form, dihydrolipoic acid. Using a dual Hg/Au electrode, and HPLC with electrochemical detection, a method was developed which allowed simultaneous measurement of lipoic acid and dihydrolipoic acid, at nanomolar levels. (RS)-alpha-Lipoic acid was added to human cells in tissue culture (Jurkat T-lymphocytes and primary neonatal diploid fibroblasts). Lipoic acid was converted rapidly by the cells to dihydrolipoic acid, which accumulated in the cell pellet. Monitored over a 2-hr interval, dihydrolipoic acid was released, and several-fold more dihydrolipoic acid could be found in the medium than in the pellet.
Collapse
|
35
|
Affiliation(s)
- M Sugiyama
- Department of Medical Biochemistry, Kurume University School of Medicine, Japan
| |
Collapse
|
36
|
Suzuki YJ, Tsuchiya M, Packer L. Determination of structure-antioxidant activity relationships of dihydrolipoic acid. Methods Enzymol 1994; 234:454-61. [PMID: 7808319 DOI: 10.1016/0076-6879(94)34116-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Y J Suzuki
- Department of Molecular and Cell Biology, University of California at Berkeley 94720
| | | | | |
Collapse
|
37
|
Kataoka H, Hirabayashi N, Makita M. Analysis of lipoic acid in biological samples by gas chromatography with flame photometric detection. JOURNAL OF CHROMATOGRAPHY 1993; 615:197-202. [PMID: 8335698 DOI: 10.1016/0378-4347(93)80333-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A selective and sensitive gas chromatographic method for the analysis of lipoic acid in biological samples has been developed. After base hydrolysis of the sample, the liberated lipoic acid was converted into its S,S-diethoxycarbonyl methyl ester derivative and measured by gas chromatography using a DB-210 capillary column and a flame photometric detector. The calibration curve was linear in the range 20-500 ng, and the detection limit was ca. 50 pg injected. The best hydrolysis conditions for the biological samples were obtained by using 2 M potassium hydroxide containing 4% bovine serum albumin at 110 degrees C for 3 h. Using this method, lipoic acid in the hydrolysate could be selectively determined without any interference from matrix substances. Analytical results for the determination of lipoic acid in the mouse tissue and bacterial cell samples are presented.
Collapse
Affiliation(s)
- H Kataoka
- Faculty of Pharmaceutical Sciences, Okayama University, Japan
| | | | | |
Collapse
|
38
|
Kagan VE, Shvedova A, Serbinova E, Khan S, Swanson C, Powell R, Packer L. Dihydrolipoic acid--a universal antioxidant both in the membrane and in the aqueous phase. Reduction of peroxyl, ascorbyl and chromanoxyl radicals. Biochem Pharmacol 1992; 44:1637-49. [PMID: 1417985 DOI: 10.1016/0006-2952(92)90482-x] [Citation(s) in RCA: 283] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Thioctic (lipoic) acid is used as a therapeutic agent in a variety of diseases in which enhanced free radical peroxidation of membrane phospholipids has been shown to be a characteristic feature. It was suggested that the antioxidant properties of thioctic acid and its reduced form, dihydrolipoic acid, are at least in part responsible for the therapeutic potential. The reported results on the antioxidant efficiency of thioctic and dihydrolipoic acids obtained in oxidation models with complex multicomponent initiation systems are controversial. In the present work we used relatively simple oxidation systems to study the antioxidant effects of dihydrolipoic and thioctic acids based on their interactions with: (1) peroxyl radicals which are essential for the initiation of lipid peroxidation, (2) chromanoxyl radicals of vitamin E, and (3) ascorbyl radicals of vitamin C, the two major lipid- and water-soluble antioxidants, respectively. We demonstrated that: (1) dihydrolipoic acid (but not thioctic acid) was an efficient direct scavenger of peroxyl radicals generated in the aqueous phase by the water-soluble azoinitiator 2,2'-azobis(2-amidinopropane)-dihydrochloride, and in liposomes or in microsomal membranes by the lipid-soluble azoinitiator 2,2'-azobis(2,4-dimethylvaleronitrile); (2) both dihydrolipoic acid and thioctic acid did not interact directly with chromanoxyl radicals of vitamin E (or its synthetic homologues) generated in liposomes or in the membranes by three different ways: UV-irradiation, peroxyl radicals of 2,2'-azobis(2,4-dimethylvaleronitrile), or peroxyl radicals of linolenic acid formed by the lipoxygenase-catalyzed oxidation; and (3) dihydrolipoic acid (but not thioctic acid) reduced ascorbyl radicals (and dehydroascorbate) generated in the course of ascorbate oxidation by chromanoxyl radicals. This interaction resulted in ascorbate-mediated dihydrolipoic acid-dependent reduction of the vitamin E chromanoxyl radicals, i.e. vitamin E recycling. We conclude that dihydrolipoic acid may act as a strong direct chain-breaking antioxidant and may enhance the antioxidant potency of other antioxidants (ascorbate and vitamin E) in both the aqueous and the hydrophobic membraneous phases.
Collapse
Affiliation(s)
- V E Kagan
- Department of Molecular and Cell Biology, University of California, Berkeley 94720
| | | | | | | | | | | | | |
Collapse
|
39
|
Fariss MW. Cadmium toxicity: unique cytoprotective properties of alpha tocopheryl succinate in hepatocytes. Toxicology 1991; 69:63-77. [PMID: 1926156 DOI: 10.1016/0300-483x(91)90154-s] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Rat hepatocyte suspensions were exposed to toxic concentrations of cadmium (Cd) in the presence and absence of unesterified alpha-tocopherol (T) or alpha-tocopheryl succinate (TS). The exogenous administration of TS completely protected hepatocytes from Cd-induced injury and lipid peroxidation. However, hepatocytes exposed to T were not protected from the toxic manifestations of cadmium even though this treatment resulted in a rapid marked accumulation of cellular T. The rate of cadmium uptake by hepatocytes was not significantly altered by exogenous TS or T treatment. These studies indicate that TS cytoprotection against Cd toxicity results not from alterations in Cd uptake or the accumulation of T but rather from the cellular presence of the intact TS molecule. The data also indicate that the depletion of cellular T is not the critical cellular event that is responsible for Cd-induced injury. Instead it appears that TS possess unique cytoprotective properties that intervene in the critical cellular events that lead to Cd toxicity. Thus, TS administration represents a promising new strategy for the mechanistic study and prevention of tissue damage resulting from Cd exposure.
Collapse
Affiliation(s)
- M W Fariss
- Department of Pathology, Medical College of Virginia, Virginia Commonwealth University, Richmond 23298-0662
| |
Collapse
|
40
|
Suzuki YJ, Tsuchiya M, Packer L. Thioctic acid and dihydrolipoic acid are novel antioxidants which interact with reactive oxygen species. FREE RADICAL RESEARCH COMMUNICATIONS 1991; 15:255-63. [PMID: 1666623 DOI: 10.3109/10715769109105221] [Citation(s) in RCA: 186] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Thioctic acid (TA) and its reduced form dihydrolipoic acid (DHLA) have recently gained some recognition as useful biological antioxidants. In particular, the ability of DHLA to inhibit lipid peroxidation has been reported. In the present study, the effects of TA and DHLA on reactive oxygen species (ROS) generated in the aqueous phase have been investigated. Xanthine plus xanthine oxidase-generated superoxide radicals (O2-), detected by electron spin resonance spectroscopy (ESR) using DMPO as a spin trap, were eliminated by DHLA but not by TA. The sulfhydryl content of DHLA, measured using Ellman's reagent decreased subsequent to the incubation with xanthine plus xanthine oxidase confirming the interaction between DHLA and O2-. An increase of hydrogen peroxide concentration accompanied the reaction between DHLA and O2-, suggesting the reduction of O2- by DHLA. Competition of O2- with epinephrine allowed us to estimate a second order kinetic constant of the reaction between O2- and DHLA, which was found to be a 3.3 x 10(5) M-1 s-1. On the other hand, the DMPO signal of hydroxyl radicals (HO.) generated by Fenton's reagent were eliminated by both TA and DHLA. Inhibition of the Fenton reaction by TA was confirmed by a chemiluminescence measurement using luminol as a probe for HO.. There was no electron transfer from Fe2+ to TA or from DHLA to Fe3+ detected by measuring the Fe(2+)-phenanthroline complex. DHLA did not potentiate the DMPO signal of HO. indicating no prooxidant activity of DHLA. These results suggest that both TA and DHLA possess antioxidant properties. In particular, DHLA is very effective as shown by its dual capability by eliminating both O2- and HO..
Collapse
Affiliation(s)
- Y J Suzuki
- Department of Molecular & Cell Biology, University of California, Berkeley 94720
| | | | | |
Collapse
|