1
|
De Sousa-Coelho AL, Fraqueza G, Aureliano M. Repurposing Therapeutic Drugs Complexed to Vanadium in Cancer. Pharmaceuticals (Basel) 2023; 17:12. [PMID: 38275998 PMCID: PMC10819319 DOI: 10.3390/ph17010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Repurposing drugs by uncovering new indications for approved drugs accelerates the process of establishing new treatments and reduces the high costs of drug discovery and development. Metal complexes with clinically approved drugs allow further opportunities in cancer therapy-many vanadium compounds have previously shown antitumor effects, which makes vanadium a suitable metal to complex with therapeutic drugs, potentially improving their efficacy in cancer treatment. In this review, covering the last 25 years of research in the field, we identified non-oncology-approved drugs suitable as ligands to obtain different vanadium complexes. Metformin-decavanadate, vanadium-bisphosphonates, vanadyl(IV) complexes with non-steroidal anti-inflammatory drugs, and cetirizine and imidazole-based oxidovanadium(IV) complexes, each has a parent drug known to have different medicinal properties and therapeutic indications, and all showed potential as novel anticancer treatments. Nevertheless, the precise mechanisms of action for these vanadium compounds against cancer are still not fully understood.
Collapse
Affiliation(s)
- Ana Luísa De Sousa-Coelho
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), Universidade do Algarve, 8005-139 Faro, Portugal
- Escola Superior de Saúde, Universidade do Algarve (ESSUAlg), 8005-139 Faro, Portugal
| | - Gil Fraqueza
- Instituto Superior de Engenharia (ISE), Universidade do Algarve, 8005-139 Faro, Portugal;
- Centro de Ciências do Mar (CCMar), Universidade do Algarve, 8005-139 Faro, Portugal
| | - Manuel Aureliano
- Centro de Ciências do Mar (CCMar), Universidade do Algarve, 8005-139 Faro, Portugal
- Faculdade de Ciências e Tecnologia (FCT), Universidade do Algarve, 8005-139 Faro, Portugal
| |
Collapse
|
2
|
Inhibition of SERCA and PMCA Ca 2+-ATPase activities by polyoxotungstates. J Inorg Biochem 2022; 236:111952. [PMID: 36049257 DOI: 10.1016/j.jinorgbio.2022.111952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/20/2022] [Accepted: 07/27/2022] [Indexed: 12/15/2022]
Abstract
Plasma membrane calcium ATPases (PMCA) and sarco(endo) reticulum calcium ATPases (SERCA) are key proteins in the maintenance of calcium homeostasis. Herein, we compare for the first time the inhibition of SERCA and PMCA calcium pumps by several polyoxotungstates (POTs), namely by Wells-Dawson phosphotungstate anions [P2W18O62]6- (intact, {P2W18}), [P2W17O61]10- (monolacunary, {P2W17}), [P2W15O56]12- (trilacunary, {P2W15}), [H2P2W12O48]12- (hexalacunary, {P2W12}), [H3P2W15V3O62]6- (trivanadium-substituted, {P2W15V3}) and by Preyssler-type anion [NaP5W30O110]14- ({P5W30}). The speciation in the solutions of tested POTs was investigated by 31P and 51V NMR spectroscopy. The tested POTs inhibited SERCA Ca2+-ATPase activity, whereby the Preyssler POT showed the strongest effect, with an IC50 value of 0.37 μM. For {P2W17} and {P2W15V3} higher IC50 values were determined: 0.72 and 0.95 μM, respectively. The studied POTs showed to be more potent inhibitors of PMCA Ca2+-ATPase activity, with lower IC50 values for {P2W17}, {P5W30} and {P2W15V3}.
Collapse
|
3
|
Aureliano M, Gumerova NI, Sciortino G, Garribba E, McLauchlan CC, Rompel A, Crans DC. Polyoxidovanadates' interactions with proteins: An overview. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214344] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
4
|
Sánchez-Lara E, García-García A, González-Vergara E, Cepeda J, Rodríguez-Diéguez A. Magneto-structural correlations of cyclo-tetravanadates functionalized with mixed-ligand copper(ii) complexes. NEW J CHEM 2021. [DOI: 10.1039/d0nj06004f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Bimetallic materials based on tetravanadate anions and mixed ligand copper(ii) complexes were readily synthesized under non-hydrothermal conditions. The compounds show interesting structural and magnetic diversity mediated by copper symmetry.
Collapse
Affiliation(s)
- Eduardo Sánchez-Lara
- Instituto de Ciencias
- Benemérita Universidad Autónoma de Puebla
- Colonia San Manuel
- Puebla
- Mexico
| | - Amalia García-García
- Departamento de Química Inorgánica
- Facultad de Ciencias
- Universidad de Granada
- Avda. Fuentenueva
- 18071 Granada
| | | | - Javier Cepeda
- Departamento de Química Aplicada
- Facultad de Química
- Universidad del País Vasco UPV/EHU
- 20018 Donostia-San Sebastián
- Spain
| | - Antonio Rodríguez-Diéguez
- Departamento de Química Inorgánica
- Facultad de Ciencias
- Universidad de Granada
- Avda. Fuentenueva
- 18071 Granada
| |
Collapse
|
5
|
Aureliano M. Decavanadate Toxicology and Pharmacological Activities: V10 or V1, Both or None? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:6103457. [PMID: 26904166 PMCID: PMC4745863 DOI: 10.1155/2016/6103457] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 12/24/2015] [Indexed: 02/07/2023]
Abstract
This review covers recent advances in the understanding of decavanadate toxicology and pharmacological applications. Toxicological in vivo studies point out that V10 induces several changes in several oxidative stress parameters, different from the ones observed for vanadate (V1). In in vitro studies with mitochondria, a particularly potent V10 effect, in comparison with V1, was observed in the mitochondrial depolarization (IC50 = 40 nM) and oxygen consumption (99 nM). It is suggested that mitochondrial membrane depolarization is a key event in decavanadate induction of necrotic cardiomyocytes death. Furthermore, only decavanadate species and not V1 potently inhibited myosin ATPase activity stimulated by actin (IC50 = 0.75 μM) whereas exhibiting lower inhibition activities for Ca(2+)-ATPase activity (15 μM) and actin polymerization (17 μM). Because both calcium pump and actin decavanadate interactions lead to its stabilization, it is likely that V10 interacts at specific locations with these proteins that protect against hydrolysis but, on the other hand, it may induce V10 reduction to oxidovanadium(IV). Putting it all together, it is suggested that the pharmacological applications of V10 species and compounds whose mechanism of action is still to be clarified might involve besides V10 and V1 also vanadium(IV) species.
Collapse
Affiliation(s)
- M. Aureliano
- 1Faculty of Sciences and Technology, University of Algarve, Campus of Gambelas, 8005-135 Faro, Portugal
- 2CCMar (Centre of Marine Sciences), University of Algarve, Campus of Gambelas, 8005-135 Faro, Portugal
- *M. Aureliano:
| |
Collapse
|
6
|
Aureliano M, Ohlin CA. Decavanadate in vitro and in vivo effects: facts and opinions. J Inorg Biochem 2014; 137:123-30. [PMID: 24865633 DOI: 10.1016/j.jinorgbio.2014.05.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 05/03/2014] [Accepted: 05/03/2014] [Indexed: 02/07/2023]
Abstract
This review covers recent advances in the understanding of the in vitro and in vivo effects of decavanadate, (V10O28)(6-), particularly in mitochondria. In vivo toxicological studies involving vanadium rarely account for the fact that under physiological conditions some vanadium may be present in the form of the decavanadate ion, which may behave differently from ortho- and metavanadates. It has for example been demonstrated that vanadium levels in heart or liver mitochondria are increased upon decavanadate exposure. Additionally, in vitro studies have shown that mitochondrial depolarization (IC50, 40 nM) and oxygen consumption (IC50, 99 nM) are strongly affected by decavanadate, which causes reduction of cytochrome b (complex III). We review these recent findings which together suggest that the observed cellular targets, metabolic pathway and toxicological effects differ according to the species of vanadium present. Finally, the toxicological effects of decavanadate depend on several factors such as the mode of administration, exposure time and type of tissue.
Collapse
Affiliation(s)
- M Aureliano
- DCBB, Faculty of Sciences and Technology, University of Algarve, Campus de Gambelas, 8005-135 Faro, Portugal; CCMar, University of Algarve, Campus de Gambelas, 8005-135 Faro, Portugal.
| | - C André Ohlin
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
7
|
Kerek F, Voicu VA. Spherical Oligo-Silicic Acid SOSA Disclosed as Possible Endogenous Digitalis-Like Factor. Front Endocrinol (Lausanne) 2014; 5:233. [PMID: 25667581 PMCID: PMC4304351 DOI: 10.3389/fendo.2014.00233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 12/16/2014] [Indexed: 11/15/2022] Open
Abstract
The Na(+)/K(+)-ATPase is a membrane ion-transporter protein, specifically inhibited by digitalis glycosides used in cardiac therapy. The existence in mammals of some endogenous digitalis-like factors (EDLFs) as presumed ATPase ligands is generally accepted. But the chemical structure of these factors remained elusive because no weighable amounts of pure EDLFs have been isolated. Recent high-resolution crystal structure data of Na(+)/K(+)-ATPase have located the hydrophobic binding pocket of the steroid glycoside ouabain. It remained uncertain if the EDLF are targeting this steroid-receptor or another specific binding site(s). Our recently disclosed spherical oligo-silicic acids (SOSA) fulfill the main criteria to be identified with the presumed EDL factors. SOSA was found as a very potent inhibitor of the Na(+)/K(+)-ATPase, Ca(2+)-ATPase, H(+)/K(+)-ATPase, and of K-dp-ATPase, with IC50 values between 0.2 and 0.5 μg/mL. These findings are even more astonishing while so far, neither monosilicic acid nor its poly-condensed forms have been remarked biologically active. With the diameter ϕ between 1 and 3 nm, SOSA still belong to molecular species definitely smaller than silica nano-particles with ϕ > 5 nm. In SOSA molecules, almost all Si-OH bonds are displayed on the external shell, which facilitates the binding to hydrophilic ATPase domains. SOSA is stable for long term in solution but is sensitive to freeze-drying, which could explain the failure of countless attempts to isolate pure EDLF. There is a strong resemblance between SOSA and vanadates, the previously known general inhibitors of P-type ATPases. SOSA may be generated endogenously by spherical oligomerization of the ubiquitously present monosilicic acid in animal fluids. The structure of SOSA is sensitive to the concentration of Na(+), K(+), Ca(2+), Mg(2+), and other ions suggesting a presumably archaic mechanism for the regulation of the ATPase pumps.
Collapse
Affiliation(s)
- Franz Kerek
- SiNatur GmbH, Martinsried, Germany
- *Correspondence: Franz Kerek, SiNatur GmbH, Am Klopferspitz 19, IZB, 82152 Munich, Germany e-mail:
| | - Victor A. Voicu
- Department of Clinical Pharmacology, Toxicology and Psychopharmacology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
8
|
Abstract
The putative applications of poly-, oligo- and mono-oxometalates in biochemistry, biology, pharmacology and medicine are rapidly attracting interest. In particular, these compounds may act as potent ion pump inhibitors and have the potential to play a role in the treatment of e.g. ulcers, cancer and ischemic heart disease. However, the mechanism of action is not completely understood in most cases, and even remains largely unknown in other cases. In the present review we discuss the most recent insights into the interaction between mono- and polyoxometalate ions with ion pumps, with particular focus on the interaction of decavanadate with Ca(2+)-ATPase. We also compare the proposed mode of action with those of established ion pump inhibitors which are currently in therapeutic use. Of the 18 classes of compounds which are known to act as ion pump inhibitors, the complete mechanism of inhibition is only known for a handful. It has, however, been established that most ion pump inhibitors bind mainly to the E2 ion pump conformation within the membrane domain from the extracellular side and block the cation release. Polyoxometalates such as decavanadate, in contrast, interact with Ca(2+)-ATPase near the nucleotide binding site domain or at a pocket involving several cytoplasmic domains, and therefore need to cross through the membrane bilayer. In contrast to monomeric vanadate, which only binds to the E2 conformation, decavanadate binds to all protein conformations, i.e. E1, E1P, E2 and E2P. Moreover, the specific interaction of decavanadate with sarcoplasmic reticulum Ca(2+)-ATPase has been shown to be non-competitive with respect to ATP and induces protein cysteine oxidation with concomitant vanadium reduction which might explain the high inhibitory capacity of V10 (IC50 = 15 μM) which is quite similar to the majority of the established therapeutic drugs.
Collapse
|
9
|
Fraqueza G, Batista de Carvalho LAE, Marques MPM, Maia L, Ohlin CA, Casey WH, Aureliano M. Decavanadate, decaniobate, tungstate and molybdate interactions with sarcoplasmic reticulum Ca(2+)-ATPase: quercetin prevents cysteine oxidation by vanadate but does not reverse ATPase inhibition. Dalton Trans 2012; 41:12749-58. [PMID: 22968713 DOI: 10.1039/c2dt31688a] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Recently we demonstrated that the decavanadate (V(10)) ion is a stronger Ca(2+)-ATPase inhibitor than other oxometalates, such as the isoelectronic and isostructural decaniobate ion, and the tungstate and molybdate monomer ions, and that it binds to this protein with a 1 : 1 stoichiometry. The V(10) interaction is not affected by any of the protein conformations that occur during the process of calcium translocation (i.e. E1, E1P, E2 and E2P) (Fraqueza et al., J. Inorg. Biochem., 2012). In the present study, we further explore this subject, and we can now show that the decaniobate ion, [Nb(10) = Nb(10)O(28)](6-), is a useful tool in deducing the interaction and the non-competitive Ca(2+)-ATPase inhibition by the decavanadate ion [V(10) = V(10)O(28)](6-). Moreover, decavanadate and vanadate induce protein cysteine oxidation whereas no effects were detected for the decaniobate, tungstate or molybdate ions. The presence of the antioxidant quercetin prevents cysteine oxidation, but not ATPase inhibition, by vanadate or decavanadate. Definitive V(IV) EPR spectra were observed for decavanadate in the presence of sarcoplasmic reticulum Ca(2+)-ATPase, indicating a vanadate reduction at some stage of the protein interaction. Raman spectroscopy clearly shows that the protein conformation changes that are induced by V(10), Nb(10) and vanadate are different from the ones induced by molybdate and tungstate monomer ions. Here, Mo and W cause changes similar to those by phosphate, yielding changes similar to the E1P protein conformation. The putative reduction of vanadium(V) to vanadium(IV) and the non-competitive binding of the V(10) and Nb(10) decametalates may explain the differences in the Raman spectra compared to those seen in the presence of molybdate or tungstate. Putting it all together, we suggest that the ability of V(10) to inhibit the Ca(2+)-ATPase may be at least in part due to the process of vanadate reduction and associated protein cysteine oxidation. These results contribute to the understanding and application of these families of mono- and polyoxometalates as effective modulators of many biological processes, particularly those associated with calcium homeostasis.
Collapse
Affiliation(s)
- Gil Fraqueza
- ISE and CCmar, University of Algarve, 8005-139 Faro, Portugal
| | | | | | | | | | | | | |
Collapse
|
10
|
Ho PH, Mihaylov T, Pierloot K, Parac-Vogt TN. Hydrolytic Activity of Vanadate toward Serine-Containing Peptides Studied by Kinetic Experiments and DFT Theory. Inorg Chem 2012; 51:8848-59. [DOI: 10.1021/ic300761g] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Phuong Hien Ho
- Department
of Chemistry, KU Leuven, Celestijnenlaan
200F, B-3001, Leuven, Belgium
| | - Tzvetan Mihaylov
- Department
of Chemistry, KU Leuven, Celestijnenlaan
200F, B-3001, Leuven, Belgium
| | - Kristine Pierloot
- Department
of Chemistry, KU Leuven, Celestijnenlaan
200F, B-3001, Leuven, Belgium
| | | |
Collapse
|
11
|
Fraqueza G, Ohlin CA, Casey WH, Aureliano M. Sarcoplasmic reticulum calcium ATPase interactions with decaniobate, decavanadate, vanadate, tungstate and molybdate. J Inorg Biochem 2012; 107:82-9. [PMID: 22178669 DOI: 10.1016/j.jinorgbio.2011.10.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 10/08/2011] [Accepted: 10/20/2011] [Indexed: 02/07/2023]
Abstract
Over the last few decades there has been increasing interest in oxometalate and polyoxometalate applications to medicine and pharmacology. This interest arose, at least in part, due to the properties of these classes of compounds as anti-cancer, anti-diabetic agents, and also for treatment of neurodegenerative diseases, among others. However, our understanding of the mechanism of action would be improved if biological models could be used to clarify potential toxicological effects in main cellular processes. Sarcoplasmic reticulum (SR) vesicles, containing a large amount of Ca(2+)-ATPase, an enzyme that accumulates calcium by active transport using ATP, have been suggested as a useful model to study the effects of oxometalates on calcium homeostasis. In the present article, it is shown that decavanadate, decaniobate, vanadate, tungstate and molybdate, all inhibited SR Ca(2+)-ATPase, with the following IC(50) values: 15, 35, 50, 400 μM and 45 mM, respectively. Decaniobate (Nb(10)), is the strongest P-type enzyme inhibitor, after decavanadate (V(10)). Atomic-absorption spectroscopy (AAS) analysis, indicates that decavanadate binds to the protein with a 1:1 decavanadate:Ca(2+)-ATPase stoichiometry. Furthermore, V(10) binds with similar extension to all the protein conformations, which occur during calcium translocation by active transport, namely E1, E1P, E2 and E2P, as analysed by AAS. In contrast, it was confirmed that the binding of monomeric vanadate (H(2)VO(4)(2-); V(1)) to the calcium pump is favoured only for the E2 and E2P conformations of the ATPase, whereas no significant amount of vanadate is bound to the E1 and E1P conformations. Scatchard plot analysis, confirmed a 1:1 ratio for decavanadate-Ca(2+)-ATPase, with a dissociation constant, k(d) of 1 μM(-1). The interaction of decavanadate V(10)O(28)(6-) (V(10)) with Ca(2+)-ATPase is prevented by the isostructural and isoelectronic decaniobate Nb(10)O(28)(6-) (Nb(10)), whereas no significant effects were detected with ATP or with heparin, a known competitive ATP binding molecule, suggesting that V(10) binds non-competitively, with respect to ATP, to the protein. Finally, it was shown that decaniobate inhibits SR Ca(2+)-ATPase activity in a non competitive type of inhibition, with respect to ATP. Taken together, these data demonstrate that decameric niobate and vanadate species are stronger inhibitors of the SR calcium ATPase than simple monomeric vanadate, tungstate and molybdate oxometalates, thus affecting calcium homeostasis, cell signalling and cell bioenergetics, as well many other cellular processes. The ability of these oxometalates to act either as phosphate analogues, as a transition-state analogue in enzyme-catalysed phosphoryl group transfer processes and as potentially nucleotide-dependent enzymes modulators or inhibitors, suggests that different oxometalates may reveal different mechanistic preferences in these classes of enzymes.
Collapse
Affiliation(s)
- Gil Fraqueza
- Department of Food Engineering, ISE, University of Algarve, 8005-139 Faro, Portugal
| | | | | | | |
Collapse
|
12
|
Ramos S, Moura JJG, Aureliano M. Recent advances into vanadyl, vanadate and decavanadate interactions with actin. Metallomics 2012; 4:16-22. [PMID: 22012168 DOI: 10.1039/c1mt00124h] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Although the number of papers about "vanadium" has doubled in the last decade, the studies about "vanadium and actin" are scarce. In the present review, the effects of vanadyl, vanadate and decavanadate on actin structure and function are compared. Decavanadate (51)V NMR signals, at -516 ppm, broadened and decreased in intensity upon actin titration, whereas no effects were observed for vanadate monomers, at -560 ppm. Decavanadate is the only species inducing actin cysteine oxidation and vanadyl formation, both processes being prevented by the natural ligand of the protein, ATP. Vanadyl titration with monomeric actin (G-actin), analysed by EPR spectroscopy, reveals a 1:1 binding stoichiometry and a K(d) of 7.5 μM(-1). Both decavanadate and vanadyl inhibited G-actin polymerization into actin filaments (F-actin), with a IC(50) of 68 and 300 μM, respectively, as analysed by light scattering assays, whereas no effects were detected for vanadate up to 2 mM. However, only vanadyl (up to 200 μM) induces 100% of G-actin intrinsic fluorescence quenching, whereas decavanadate shows an opposite effect, which suggests the presence of vanadyl high affinity actin binding sites. Decavanadate increases (2.6-fold) the actin hydrophobic surface, evaluated using the ANSA probe, whereas vanadyl decreases it (15%). Both vanadium species increased the ε-ATP exchange rate (k = 6.5 × 10(-3) s(-1) and 4.47 × 10(-3) s(-1) for decavanadate and vanadyl, respectively). Finally, (1)H NMR spectra of G-actin treated with 0.1 mM decavanadate clearly indicate that major alterations occur in protein structure, which are much less visible in the presence of ATP, confirming the preventive effect of the nucleotide on the decavanadate interaction with the protein. Putting it all together, it is suggested that actin, which is involved in many cellular processes, might be a potential target not only for decavanadate but above all for vanadyl. By affecting actin structure and function, vanadium can regulate many cellular processes of great physiological significance.
Collapse
Affiliation(s)
- S Ramos
- REQUIMTE/CQFB, Dpto Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | | | | |
Collapse
|
13
|
Aureliano M. Recent perspectives into biochemistry of decavanadate. World J Biol Chem 2011; 2:215-25. [PMID: 22031844 PMCID: PMC3202125 DOI: 10.4331/wjbc.v2.i10.215] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 09/07/2011] [Accepted: 09/14/2011] [Indexed: 02/05/2023] Open
Abstract
The number of papers about decavanadate has doubled in the past decade. In the present review, new insights into decavanadate biochemistry, cell biology, and antidiabetic and antitumor activities are described. Decameric vanadate species (V10) clearly differs from monomeric vanadate (V1), and affects differently calcium pumps, and structure and function of myosin and actin. Only decavanadate inhibits calcium accumulation by calcium pump ATPase, and strongly inhibits actomyosin ATPase activity (IC50 = 1.4 μmol/L, V10), whereas no such effects are detected with V1 up to 150 μmol/L; prevents actin polymerization (IC50 of 68 μmol/L, whereas no effects detected with up to 2 mmol/L V1); and interacts with actin in a way that induces cysteine oxidation and vanadate reduction to vanadyl. Moreover, in vivo decavanadate toxicity studies have revealed that acute exposure to polyoxovanadate induces different changes in antioxidant enzymes and oxidative stress parameters, in comparison with vanadate. In vitro studies have clearly demonstrated that mitochondrial oxygen consumption is strongly affected by decavanadate (IC50, 0.1 μmol/L); perhaps the most relevant biological effect. Finally, decavanadate (100 μmol/L) increases rat adipocyte glucose accumulation more potently than several vanadium complexes. Preliminary studies suggest that decavanadate does not have similar effects in human adipocytes. Although decavanadate can be a useful biochemical tool, further studies must be carried out before it can be confirmed that decavanadate and its complexes can be used as anticancer or antidiabetic agents.
Collapse
|
14
|
Ramos S, Moura JJG, Aureliano M. Actin as a potential target for decavanadate. J Inorg Biochem 2010; 104:1234-9. [PMID: 20807665 DOI: 10.1016/j.jinorgbio.2010.08.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 08/04/2010] [Accepted: 08/05/2010] [Indexed: 02/07/2023]
Abstract
ATP prevents G-actin cysteine oxidation and vanadyl formation specifically induced by decavanadate, suggesting that the oxometalate-protein interaction is affected by the nucleotide. The ATP exchange rate is increased by 2-fold due to the presence of decavanadate when compared with control actin (3.1×10(-3) s(-1)), and an apparent dissociation constant (k(dapp)) of 227.4±25.7 μM and 112.3±8.7 μM was obtained in absence or presence of 20 μM V(10), respectively. Moreover, concentrations as low as 50 μM of decameric vanadate species (V(10)) increases the relative G-actin intrinsic fluorescence intensity by approximately 80% whereas for a 10-fold concentration of monomeric vanadate (V(1)) no effects were observed. Upon decavanadate titration, it was observed a linear increase in G-actin hydrophobic surface (2.6-fold), while no changes were detected for V(1) (0-200 μM). Taken together, three major ideas arise: i) ATP prevents decavanadate-induced G-actin cysteine oxidation and vanadate reduction; ii) decavanadate promotes actin conformational changes resulting on its inactivation, iii) decavanadate has an effect on actin ATP binding site. Once it is demonstrated that actin is a new potential target for decavanadate, being the ATP binding site a suitable site for decavanadate binding, it is proposed that some of the biological effects of vanadate can be, at least in part, explained by decavanadate interactions with actin.
Collapse
Affiliation(s)
- Susana Ramos
- DCBB-FCT and CCMar, University of Algarve, 8005-139 Faro, Portugal
| | | | | |
Collapse
|
15
|
Steens N, Ramadan AM, Absillis G, Parac-Vogt TN. Hydrolytic cleavage of DNA-model substrates promoted by polyoxovanadates. Dalton Trans 2010:585-92. [DOI: 10.1039/b913471a] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Pereira MJ, Carvalho E, Eriksson JW, Crans DC, Aureliano M. Effects of decavanadate and insulin enhancing vanadium compounds on glucose uptake in isolated rat adipocytes. J Inorg Biochem 2009; 103:1687-92. [PMID: 19850351 DOI: 10.1016/j.jinorgbio.2009.09.015] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 09/17/2009] [Accepted: 09/21/2009] [Indexed: 02/07/2023]
Abstract
The effects of different vanadium compounds namely pyridine-2,6-dicarboxylatedioxovanadium(V) (V5-dipic), bis(maltolato) oxovanadium(IV) (BMOV) and amavadine, and oligovanadates namely metavanadate and decavanadate were analysed on basal and insulin stimulated glucose uptake in rat adipocytes. Decavanadate (50 microM), manifest a higher increases (6-fold) on glucose uptake compared with basal, followed by BMOV (1 mM) and metavanadate (1 mM) solutions (3-fold) whereas V5 dipic and amavadine had no effect. Decavanadate (100 microM) also shows the highest insulin like activity when compared with the others compounds studied. In the presence of insulin (10 nM), only decavanadate increases (50%) the glucose uptake when compared with insulin stimulated glucose uptake whereas BMOV and metavanadate, had no effect and V5 dipic and amavadine prevent the stimulation to about half of the basal value. Decavanadate is also able to reduce or eradicate the suppressor effect caused by dexamethasone on glucose uptake at the level of the adipocytes. Altogether, vanadium compounds and oligovanadates with several structures and coordination spheres reveal different effects on glucose uptake in rat primary adipocytes.
Collapse
Affiliation(s)
- Maria João Pereira
- CCMAR and FCT, University of Algarve, Campus das Gambelas, 8005-139 Faro, Portugal
| | | | | | | | | |
Collapse
|
17
|
Ramos S, Duarte RO, Moura JJG, Aureliano M. Decavanadate interactions with actin: cysteine oxidation and vanadyl formation. Dalton Trans 2009:7985-94. [PMID: 19771361 DOI: 10.1039/b906255f] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Incubation of actin with decavanadate induces cysteine oxidation and oxidovanadium(IV) formation. The studies were performed combining kinetic with spectroscopic (NMR and EPR) methodologies. Although decavanadate is converted to labile oxovanadates, the rate of deoligomerization can be very slow (half-life time of 5.4 h, at 25 degrees C, with a first order kinetics), which effectively allows decavanadate to exist for some time under experimental conditions. It was observed that decavanadate inhibits F-actin-stimulated myosin ATPase activity with an IC(50) of 0.8 microM V(10) species, whereas 50 microM of vanadate or oxidovanadium(IV) only inhibits enzyme activity up to 25%. Moreover, from these three vanadium forms, only decavanadate induces the oxidation of the so called "fast" cysteines (or exposed cysteine, Cys-374) when the enzyme is in the polymerized and active form, F-actin, with an IC(50) of 1 microM V(10) species. Decavanadate exposition to F- and G-actin (monomeric form) promotes vanadate reduction since a typical EPR oxidovanadium(IV) spectrum was observed. Upon observation that V(10) reduces to oxidovanadium(IV), it is proposed that this cation interacts with G-actin (K(d) of 7.48 +/- 1.11 microM), and with F-actin (K(d) = 43.05 +/- 5.34 microM) with 1:1 and 4:1 stoichiometries, respectively, as observed by EPR upon protein titration with oxidovanadium(IV). The interaction of oxidovanadium(IV) with the protein may occur close to the ATP binding site of actin, eventually with lysine-336 and 3 water molecules.
Collapse
|
18
|
Steens N, Ramadan AM, Parac-Vogt TN. When structural and electronic analogy leads to reactivity: the unprecedented phosphodiesterase activity of vanadates. Chem Commun (Camb) 2009:965-7. [DOI: 10.1039/b816785k] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Aureliano M, Henao F, Tiago T, Duarte RO, Moura JJG, Baruah B, Crans DC. Sarcoplasmic reticulum calcium ATPase is inhibited by organic vanadium coordination compounds: pyridine-2,6-dicarboxylatodioxovanadium(V), BMOV, and an amavadine analogue. Inorg Chem 2008; 47:5677-84. [PMID: 18510311 DOI: 10.1021/ic702405d] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The general affinity of the sarcoplasmic reticulum (SR) Ca (2+)-ATPase was examined for three different classes of vanadium coordination complexes including a vanadium(V) compound, pyridine-2,6-dicarboxylatodioxovanadium(V) (PDC-V(V)), and two vanadium(IV) compounds, bis(maltolato)oxovanadium(IV) (BMOV), and an analogue of amavadine, bis( N-hydroxylamidoiminodiacetato)vanadium(IV) (HAIDA-V(IV)). The ability of vanadate to act either as a phosphate analogue or as a transition-state analogue with enzymes' catalysis phosphoryl group transfer suggests that vanadium coordination compounds may reveal mechanistic preferences in these classes of enzymes. Two of these compounds investigated, PDC-V(V) and BMOV, were hydrolytically and oxidatively reactive at neutral pH, and one, HAIDA-V(IV), does not hydrolyze, oxidize, or otherwise decompose to a measurable extent during the enzyme assay. The SR Ca (2+)-ATPase was inhibited by all three of these complexes. The relative order of inhibition was PDC-V(V) > BMOV > vanadate > HAIDA-V(IV), and the IC 50 values were 25, 40, 80, and 325 microM, respectively. Because the observed inhibition is more potent for PDC-V(V) and BMOV than that of oxovanadates, the inhibition cannot be explained by oxovanadate formation during enzyme assays. Furthermore, the hydrolytically and redox stable amavadine analogue HAIDA-V(IV) inhibited the Ca (2+)-ATPase less than oxovanadates. To gauge the importance of the lipid environment, studies of oxidized BMOV in microemulsions were performed and showed that this system remained in the aqueous pool even though PDC-V(V) is able to penetrate lipid interfaces. These findings suggest that the hydrolytic properties of these complexes may be important in the inhibition of the calcium pump. Our results show that two simple coordination complexes with known insulin enhancing effects can invoke a response in calcium homeostasis and the regulation of muscle contraction through the SR Ca (2+)-ATPase.
Collapse
Affiliation(s)
- Manuel Aureliano
- Dept. Química, Bioquímica e Farmácia, FCT, Universidade do Algarve, 8005-139 Faro, Portugal.
| | | | | | | | | | | | | |
Collapse
|
20
|
Tiago DM, Laizé V, Cancela ML, Aureliano M. Impairment of mineralization by metavanadate and decavanadate solutions in a fish bone-derived cell line. Cell Biol Toxicol 2008; 24:253-63. [PMID: 17899405 DOI: 10.1007/s10565-007-9034-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Accepted: 08/23/2007] [Indexed: 02/07/2023]
Abstract
Vanadium, a trace metal known to accumulate in bone and to mimic insulin, has been shown to regulate mammalian bone formation using in vitro and in vivo systems. In the present work, short- and long-term effects of metavanadate (containing monomeric, dimeric, tetrameric and pentameric vanadate species) and decavanadate (containing decameric vanadate species) solutions on the mineralization of a fish bone-derived cell line (VSa13) were studied and compared to that of insulin. After 2 h of incubation with vanadate (10 microM in monomeric vanadate), metavanadate exhibited higher accumulation rates than decavanadate (6.85 +/- 0.40 versus 3.95 +/- 0.10 microg V/g of protein, respectively) in fish VSa13 cells and was also shown to be less toxic when applied for short periods. In longer treatments with both metavanadate and decavanadate solutions, similar effects were promoted: stimulation of cell proliferation and strong impairment (75%) of extracellular matrix (ECM) mineralization. The effect of both vanadate solutions (5 microM in monomeric vanadate), on ECM mineralization was increased in the presence of insulin (10 nM). It is concluded that chronic treatment with both vanadate solutions stimulated fish VSa13 cells proliferation and prevented ECM mineralization. Newly developed VSa13 fish cells appeared to be appropriate in the characterization of vanadate effects on vertebrate bone formation, representing a good alternative to mammalian systems.
Collapse
Affiliation(s)
- Daniel M Tiago
- Centre of Marine Sciences, University of Algarve, Campus Gambelas, 8005-139, Faro, Portugal
| | | | | | | |
Collapse
|
21
|
Soares SS, Martins H, Gutiérrez-Merino C, Aureliano M. Vanadium and cadmium in vivo effects in teleost cardiac muscle: metal accumulation and oxidative stress markers. Comp Biochem Physiol C Toxicol Pharmacol 2008; 147:168-78. [PMID: 17920336 DOI: 10.1016/j.cbpc.2007.09.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Revised: 09/09/2007] [Accepted: 09/10/2007] [Indexed: 02/07/2023]
Abstract
Several biological studies associate vanadium and cadmium with the production of reactive oxygen species (ROS), leading to lipid peroxidation and antioxidant enzymes alterations. The present study aims to analyse and compare the oxidative stress responses induced by an acute intravenous exposure (1 and 7 days) to a sub-lethal concentration (5 mM) of two vanadium solutions, containing different vanadate n-oligomers (n=1-5 or n=10), and a cadmium solution on the cardiac muscle of the marine teleost Halobatrachus didactylus (Lusitanian toadfish). It was observed that vanadium is mainly accumulated in mitochondria (1.33+/-0.26 microM), primarily when this element was administrated as decameric vanadate, than when administrated as metavanadate (432+/-294 nM), while the highest content of cadmium was found in cytosol (365+/-231 nM). Indeed, decavanadate solution promotes stronger increases in mitochondrial antioxidant enzymes activities (catalase: +120%; superoxide dismutase: +140%) than metavanadate solution. On contrary, cadmium increases cytosolic catalase (+111%) and glutathione peroxidases (+50%) activities. It is also observed that vanadate oligomers induce in vitro prooxidant effects in toadfish heart, with stronger effects induced by metavanadate solution. In summary, vanadate and cadmium are differently accumulated in blood and cardiac subcellular fractions and induced different responses in enzymatic antioxidant defence mechanisms. In the present study, it is described for the first time the effects of equal doses of two different metals intravenously injected in the same fish species and upon the same exposure period allowing to understand the mechanisms of vanadate and cadmium toxicity in fish cardiac muscle.
Collapse
Affiliation(s)
- S S Soares
- Department of Chemistry, Biochemistry and Pharmacy, Faculty of Sciences and Technology, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | | | | | | |
Collapse
|
22
|
Soares SS, Gutiérrez-Merino C, Aureliano M. Mitochondria as a target for decavanadate toxicity in Sparus aurata heart. AQUATIC TOXICOLOGY 2007; 83:1-9. [PMID: 17420061 DOI: 10.1016/j.aquatox.2007.03.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Revised: 03/07/2007] [Accepted: 03/08/2007] [Indexed: 02/07/2023]
Abstract
In a previous in vivo study we have reported that vanadium distribution, antioxidant enzymes activity and lipid peroxidation in Sparus aurata heart are strongly dependent on the oligomeric vanadate species being administered. Moreover, it was suggested that vanadium is accumulated in mitochondria, in particular when V10 was intravenously injected. In this work we have done a comparative study of the effects of V10 and monomeric vanadate (V1) on cardiac mitochondria from S. aurata. V10 inhibits mitochondrial oxygen consumption with an IC(50) of 400 nM, while the IC(50) for V1 is 23 microM. V10 also induced mitochondrial depolarization at very low concentrations, with an IC(50) of 196 nM, and 55 microM of V1 was required to induce the same effect. Additionally, up to 5 microM V10 did inhibit neither F(0)F(1)-ATPase activity nor NADH levels and it did not affect respiratory complexes I and II, but it induced changes in the redox steady-state of complex III. It is concluded that V10 inhibits mitochondrial oxygen consumption and induces membrane depolarization more strongly than V1, pointing out that mitochondria is a toxicological target for V10 and the importance to take into account the contribution of V10 to the vanadate toxic effects.
Collapse
Affiliation(s)
- Sandra S Soares
- Faculty of Sciences and Technology, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | | | | |
Collapse
|
23
|
Soares SS, Gutiérrez-Merino C, Aureliano M. Decavanadate induces mitochondrial membrane depolarization and inhibits oxygen consumption. J Inorg Biochem 2007; 101:789-96. [PMID: 17349695 DOI: 10.1016/j.jinorgbio.2007.01.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Revised: 01/19/2007] [Accepted: 01/24/2007] [Indexed: 02/07/2023]
Abstract
Decavanadate induced rat liver mitochondrial depolarization at very low concentrations, half-depolarization with 39 nM decavanadate, while it was needed a 130-fold higher concentration of monomeric vanadate (5 microM) to induce the same effect. Decavanadate also inhibits mitochondrial repolarization induced by reduced glutathione in vitro, with an inhibition constant of 1 microM, whereas no effect was observed up to 100 microM of monomeric vanadate. The oxygen consumption by mitochondria is also inhibited by lower decavanadate than monomeric vanadate concentrations, i.e. 50% inhibition is attained with 99 M decavanadate and 10 microM monomeric vanadate. Thus, decavanadate is stronger as mitochondrial depolarization agent than as inhibitor of mitochondrial oxygen consumption. Up to 5 microM, decavanadate does not alter mitochondrial NADH levels nor inhibit neither F(O)F(1)-ATPase nor cytochrome c oxidase activity, but it induces changes in the redox steady-state of mitochondrial b-type cytochromes (complex III). NMR spectra showed that decameric vanadate is the predominant vanadate species in decavanadate solutions. It is concluded that decavanadate is much more potent mitochondrial depolarization agent and a more potent inhibitor of mitochondrial oxygen consumption than monomeric vanadate, pointing out the importance to take into account the contribution of higher oligomeric species of vanadium for the biological effects of vanadate solutions.
Collapse
Affiliation(s)
- S S Soares
- Centro de Ciências do Mar, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | | | | |
Collapse
|
24
|
Ramos S, Manuel M, Tiago T, Duarte R, Martins J, Gutiérrez-Merino C, Moura JJG, Aureliano M. Decavanadate interactions with actin: inhibition of G-actin polymerization and stabilization of decameric vanadate. J Inorg Biochem 2006; 100:1734-43. [PMID: 16890293 DOI: 10.1016/j.jinorgbio.2006.06.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Revised: 06/19/2006] [Accepted: 06/25/2006] [Indexed: 02/07/2023]
Abstract
Decameric vanadate species (V10) inhibit the rate and the extent of G-actin polymerization with an IC50 of 68+/-22 microM and 17+/-2 microM, respectively, whilst they induce F-actin depolymerization at a lower extent. On contrary, no effect on actin polymerization and depolymerization was detected for 2mM concentration of "metavanadate" solution that contains ortho and metavanadate species, as observed by combining kinetic with (51)V NMR spectroscopy studies. Although at 25 degrees C, decameric vanadate (10 microM) is unstable in the assay medium, and decomposes following a first-order kinetic, in the presence of G-actin (up to 8 microM), the half-life increases 5-fold (from 5 to 27 h). However, the addition of ATP (0.2mM) in the medium not only prevents the inhibition of G-actin polymerization by V10 but it also decreases the half-life of decomposition of decameric vanadate species from 27 to 10h. Decameric vanadate is also stabilized by the sarcoplasmic reticulum vesicles, which raise the half-life time from 5 to 18h whereas no effects were observed in the presence of phosphatidylcholine liposomes, myosin or G-actin alone. It is proposed that the "decavanadate" interaction with G-actin, favored by the G-actin polymerization, stabilizes decameric vanadate species and induces inhibition of G-actin polymerization. Decameric vanadate stabilization by cytoskeletal and transmembrane proteins can account, at least in part, for decavanadate toxicity reported in the evaluation of vanadium (V) effects in biological systems.
Collapse
Affiliation(s)
- Susana Ramos
- Dept. Química e Bioquímica, FCT, Universidade do Algarve, Faro, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Soares SS, Martins H, Aureliano M. Vanadium distribution following decavanadate administration. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2006; 50:60-4. [PMID: 16151690 DOI: 10.1007/s00244-004-0246-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2004] [Accepted: 03/27/2005] [Indexed: 02/07/2023]
Abstract
An acute exposure of two vanadate solutions-metavanadate and decavanadate-containing different vanadate oligomers, induces different patterns of subcellular vanadium distribution in blood plasma, red blood cells (RBC), and cardiac muscle subcellular fractions of the fish Sparus aurata (gilthead seabream). The highest amount of vanadium was found in blood plasma 1 h after (5 mM) intravenous vanadate administration (295 +/- 64 and 383 +/- 104 microg V/g dry tissue, for metavanadate and decavanadate solutions, respectively), being 80-fold higher than in RBC. After 12 h of administration, the amount of vanadium in plasma, as well as in cardiac cytosol, decreased about 50%, for both vanadate solutions. During the period between 1 and 12 h, the ratio of vanadium in plasma/vanadium in RBC increased from 27 to 128 for metavanadate, whereas it remains constant (77) for decavanadate. Both vanadium solutions were primarily accumulated in the mitochondrial fraction (138 +/- 0 and 195 +/- 34 ng V/g dry tissue for metavanadate and decavanadate solutions, respectively, after 12 h exposure), rather than in cytosol. The amount of vanadium in cardiac mitochondria was twofold higher than in cytosol, earlier for metavanadate (6 h) than for decavanadate (12 h). It is concluded that, in fish cardiac muscle, the vanadium distribution is dependent on the administration of decameric vanadate, with vanadium being mainly distributed in plasma, before being accumulated into the mitochondrial fraction.
Collapse
Affiliation(s)
- S S Soares
- Group of Comparative Cardiovascular Physiopathology, CCMar, Faculty of Marine and Environmental Science, University of Algarve, Campus de Gambelas, Faro, 8005-139, Portugal
| | | | | |
Collapse
|
26
|
Aureliano M, Tiago T, Gândara RMC, Sousa A, Moderno A, Kaliva M, Salifoglou A, Duarte RO, Moura JJG. Interactions of vanadium(V)-citrate complexes with the sarcoplasmic reticulum calcium pump. J Inorg Biochem 2005; 99:2355-61. [PMID: 16219359 DOI: 10.1016/j.jinorgbio.2005.09.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2005] [Revised: 09/05/2005] [Accepted: 09/07/2005] [Indexed: 02/07/2023]
Abstract
Among the biotargets interacting with vanadium is the calcium pump from the sarcoplasmic reticulum (SR). To this end, initial research efforts were launched with two vanadium(V)-citrate complexes, namely (NH(4))(6)[V(2)O(4)(C(6)H(4)O(7))(2)].6H(2)O and (NH(4))(6)[V(2)O(2)(O(2))(2)(C(6)H(4)O(7))(2)].4H(2)O, potentially capable of interacting with the SR calcium pump by combining kinetic studies with (51)V NMR spectroscopy. Upon dissolution in the reaction medium (concentration range: 4-0.5mM), both vanadium(V):citrate (VC) and peroxovanadium(V):citrate (PVC) complexes are partially converted into vanadate oligomers. A 1mM solution of the PVC complex, containing 184microM of the PVC complex, 94microM oxoperoxovanadium(V) (PV) species, 222microM monomeric (V1), 43microM dimeric (V2) and 53microM tetrameric (V4) species, inhibits Ca(2+) accumulation by 75 %, whereas a solution of the VC complex of the same vanadium concentration, containing 98microM of the VC complex, 263microM monomeric (V1), 64microM dimeric (V2) and 92microM tetrameric (V4) species inhibits the calcium pump activity by 33 %. In contrast, a 1 mM metavanadate solution, containing 460microM monomeric (V1), 90.2microM dimeric (V2) and 80microM tetrameric (V4) species, has no effect on Ca(2+) accumulation. The NMR signals from the VC complex (-548.0ppm), PVC complex (-551.5ppm) and PV (-611.1ppm) are broadened upon SR vesicle addition (2.5mg/ml total protein). The relative order for the half width line broadening of the NMR signals, which reflect the interaction with the protein, was found to be V4>PVC>VC>PV>V2=V1=1, with no effect observed for the V1 and V2 signals. Putting it all together the effects of two vanadium(V)-citrate complexes on the modulation of calcium accumulation and ATP hydrolysis by the SR calcium pump reflected the observed variable reactivity into the nature of key species forming upon dissolution of the title complexes in the reaction media.
Collapse
Affiliation(s)
- Manuel Aureliano
- CBME, Department of Chemistry and Biochemistry, FCT, University of the Algarve, 8005-139 Faro, Portugal.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Aureliano M, Gândara RMC. Decavanadate effects in biological systems. J Inorg Biochem 2005; 99:979-85. [PMID: 15833319 DOI: 10.1016/j.jinorgbio.2005.02.024] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2005] [Revised: 02/23/2005] [Accepted: 02/25/2005] [Indexed: 02/07/2023]
Abstract
Vanadium biological studies often disregarded the formation of decameric vanadate species known to interact, in vitro, with high-affinity with many proteins such as myosin and sarcoplasmic reticulum calcium pump and also to inhibit these biochemical systems involved in energy transduction. Moreover, very few in vivo animal studies involving vanadium consider the contribution of decavanadate to vanadium biological effects. Recently, it has been shown that an acute exposure to decavanadate but not to other vanadate oligomers induced oxidative stress and a different fate in vanadium intracellular accumulation. Several markers of oxidative stress analyzed on hepatic and cardiac tissue were monitored after in vivo effect of an acute exposure (12, 24 h and 7 days), to a sub-lethal concentration (5 mM; 1 mg/kg) of two vanadium solutions ("metavanadate" and "decavanadate"). It was observed that "decavanadate" promote different effects than other vanadate oligomers in catalase activity, glutathione content, lipid peroxidation, mitochondrial superoxide anion production and vanadium accumulation, whereas both solutions seem to equally depress reactive oxygen species (ROS) production as well as total intracellular reducing power. Vanadium is accumulated in mitochondria in particular when "decavanadate" is administered. These recent findings, that are now summarized, point out the decameric vanadate species contributions to in vivo and in vitro effects induced by vanadium in biological systems.
Collapse
Affiliation(s)
- Manuel Aureliano
- CBME, Dept. Química e Bioquímica, FCT, Universidade do Algarve, 8005-139 Faro, Portugal.
| | | |
Collapse
|
28
|
Tiago T, Aureliano M, Moura JJG. Decavanadate as a biochemical tool in the elucidation of muscle contraction regulation. J Inorg Biochem 2004; 98:1902-10. [PMID: 15522416 DOI: 10.1016/j.jinorgbio.2004.08.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2004] [Revised: 08/17/2004] [Accepted: 08/20/2004] [Indexed: 02/07/2023]
Abstract
Recently reported decameric vanadate (V(10)) high affinity binding site in myosin S1, suggests that it can be used as a tool in the muscle contraction regulation. In the present article, it is shown that V(10) species induces myosin S1 cleavage, upon irradiation, at the 23 and 74 kDa sites, the latter being prevented by actin and the former blocked by the presence of ATP. Identical cleavage patterns were found for meta- and decavanadate solutions, indicating that V(10) and tetrameric vanadate (V(4)) have the same binding sites in myosin S1. Concentrations as low as 50 muM decavanadate (5 muM V(10) species) induces 30% of protein cleavage, whereas 500 muM metavanadate is needed to attain the same extent of cleavage. After irradiation, V(10) species is rapidly decomposed, upon protein addition, forming vanadyl (V(4+)) species during the process. It was also observed by NMR line broadening experiments that, V(10) competes with V(4) for the myosin S1 binding sites, having a higher affinity. In addition, V(4) interaction with myosin S1 is highly affected by the products release during ATP hydrolysis in the presence or absence of actin, whereas V(10) appears to be affected at a much lower extent. From these results it is proposed that the binding of vanadate oligomers to myosin S1 at the phosphate loop (23 kDa site) is probably the cause of the actin stimulated myosin ATPase inhibition by the prevention of ATP/ADP exchange, and that this interaction is favoured for higher vanadate anions, such as V(10).
Collapse
Affiliation(s)
- Teresa Tiago
- Departamento de Química e Bioquímica, Faculdade de Ciências e Tecnologia, Universidade do Algarve, FCT, UALG, Gambelas, 8005-139 Faro, Portugal.
| | | | | |
Collapse
|
29
|
Soares SS, Aureliano M, Joaquim N, Coucelo JM. Cadmium and vanadate oligomers effects on methaemoglobin reductase activity from Lusitanian toadfish: in vivo and in vitro studies. J Inorg Biochem 2003; 94:285-90. [PMID: 12628709 DOI: 10.1016/s0162-0134(03)00006-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cadmium and two vanadate solutions as 'metavanadate' (containing ortho and metavanadate species) and 'decavanadate' (containing decameric species) (5 mM) were injected intraperitoneously in Halobatrachus didactylus (Lusitanian toadfish), in order to evaluate the effects of cadmium and oligomeric vanadate species on methaemoglobin reductase activity from fish red blood cells. Following short-term exposure (1 and 7 days), different changes were observed on enzyme activity. After 7 days of exposure, 'metavanadate' increased methaemoglobin reductase activity by 67% (P < 0.05), whereas, minor effects were observed on enzymatic activity upon cadmium and 'decavanadate' administration. However, in vitro studies indicate that decameric vanadate, in concentrations as low as 50 microM, besides strongly inhibiting methaemoglobin reductase activity, promotes haemoglobin oxidation to methaemoglobin. Although decameric vanadate species showed to be unstable in the different media used in this work, the rate of decameric vanadate deoligomerization is in general slow enough, making it possible to study its effects. It is concluded that the increase in H. didactylus methaemoglobin reductase activity is more pronounced upon exposition to 'metavanadate' than to cadmium and decameric species. Moreover, only decameric vanadate species promoted haemoglobin oxidation, suggesting that vanadate speciation is important to evaluate in vivo and in vitro effects on methaemoglobin reductase activity.
Collapse
Affiliation(s)
- S S Soares
- Group of Comparative Cardiovascular Physiopathology, CCMar, Faculty of Marine and Environmental Sciences, University of Algarve, Campus de Gambelas, 8000-117 Faro, Portugal
| | | | | | | |
Collapse
|
30
|
Tiago T, Aureliano M, Duarte RO, Moura JJ. Vanadate oligomers interaction with phosphorylated myosin. Inorganica Chim Acta 2002. [DOI: 10.1016/s0020-1693(02)00948-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
31
|
Aureliano M, Joaquim N, Sousa A, Martins H, Coucelo JM. Oxidative stress in toadfish (Halobactrachus didactylus) cardiac muscle. Acute exposure to vanadate oligomers. J Inorg Biochem 2002; 90:159-65. [PMID: 12031809 DOI: 10.1016/s0162-0134(02)00414-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Vanadate solutions as "metavanadate" (containing ortho and metavanadate species) and "decavanadate" (containing mainly decameric species) (5 mM; 1 mg/kg) were injected intraperitoneously in Halobatrachus didactylus (toadfish), in order to evaluate the contribution of decameric vanadate species to vanadium (V) intoxication on the cardiac tissue. Following short-term exposure (1 and 7 days), different changes on antioxidant enzyme activities-superoxide dismutase (SOD), catalase (CAT), selenium-glutathione peroxidase (Se-GPx), total glutathione peroxidase (GPx), lipid peroxidation and subcellular vanadium distribution were observed in mitochondrial and cytosolic fractions of heart ventricle toadfish. After 1 day of vanadium intoxication, SOD, CAT and Se-GPx activities were decreased up to 25%, by both vanadate solutions, except mitochondrial CAT activity that increased (+23%) upon decavanadate administration. After 7 days of exposure, decavanadate versus metavanadate solutions promoted different effects mainly on cytosolic CAT activity (-56% versus -5%), mitochondrial CAT activity (-10% versus +10%) and total GPx activity (+1% versus -35%), whereas lipid peroxidation products were significantly increased (+82%) upon 500 microM decavanadate intoxication. Accumulation of vanadium in total (0.137+/-0.011 microg/g) and mitochondrial (0.022+/-0.001 microg/g) fractions was observed upon 7 days of metavanadate exposure, whereas for decavanadate, the concentration of vanadium increased in cytosolic (0.020+/-0.005 microg/g) and mitochondrial (0.021+/-0.009 microg/g) fractions. It is concluded that decameric vanadate species are responsible for a strong increase on lipid peroxidation and a decrease in cytosolic catalase activity thus contributing to oxidative stress responses upon vanadate intoxication, in the toadfish heart.
Collapse
Affiliation(s)
- M Aureliano
- CMQA, A.D. Química, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 8000-117 Faro, Portugal.
| | | | | | | | | |
Collapse
|
32
|
Danko S, Daiho T, Yamasaki K, Kamidochi M, Suzuki H, Toyoshima C. ADP-insensitive phosphoenzyme intermediate of sarcoplasmic reticulum Ca(2+)-ATPase has a compact conformation resistant to proteinase K, V8 protease and trypsin. FEBS Lett 2001; 489:277-82. [PMID: 11165264 DOI: 10.1016/s0014-5793(01)02111-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Sarcoplasmic reticulum Ca(2+)-ATPase was digested with proteinase K, V8 protease and trypsin in the absence of Ca(2+). Unphosphorylated enzyme was rapidly degraded. In contrast, ADP-insensitive phosphoenzyme formed with P(i) and phosphorylated state analogues produced by the binding of F(-) or orthovanadate, were almost completely resistant to the proteolysis except for tryptic cleavage at the T1 site (Arg(505)). The results indicate that the phosphoenzyme and its analogues have a very compact form in the cytoplasmic region, being consistent with large domain motions (gathering of three cytoplasmic domains). Results further show that the structure of the enzyme with bound decavanadate is very similar to ADP-insensitive phosphoenzyme. Thapsigargin did not affect the changes in digestion time course induced by the formation of the phosphorylated state analogues.
Collapse
Affiliation(s)
- S Danko
- Department of Biochemistry, Asahikawa Medical College, Midorigaokahigashi, Asahikawa, Japan
| | | | | | | | | | | |
Collapse
|
33
|
Hua S, Inesi G, Toyoshima C. Distinct topologies of mono- and decavanadate binding and photo-oxidative cleavage in the sarcoplasmic reticulum ATPase. J Biol Chem 2000; 275:30546-50. [PMID: 10906127 DOI: 10.1074/jbc.m003218200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
UV irradiation of the sarcoplasmic reticulum (SR) ATPase in the presence of vanadate cleaves the enzyme at either of two different sites. Under conditions favoring the presence of monovanadate, and in the presence of Ca(2+), ADP, and Mg(2+), cleavage results in two fragments of 71- and 38-kDa electrophoretic mobility. On the other hand, under conditions permitting formation of decavanadate, and in the absence of Ca(2+) and ADP, cleavage results in two fragments of 88- and 21-kDa electrophoretic mobility. The amino terminus resulting from cleavage is blocked and resistant to Edman degradation. However, the initial photo-oxidation product can be reduced with NaB(3)H(4,) resulting in incorporation of radioactive (3)H label. Extensive digestion of the labeled protein with trypsin then yields labeled peptides that are specific for the each of the photo-oxidation conditions, and can be sequenced after purification. Collection of the Edman reaction fractional products reveals the radioactive label and demonstrates that Thr(353) is the residue oxidized by monovanadate at the phosphorylation site (i.e. Asp(351)). Correct positioning of monovanadate at the phosphorylation site requires binding of Mg(2+) and ADP to the Ca(2+)-dependent conformation of the enzyme. Subsequent hydrolytic cleavage is likely assisted by the neighboring Asp(601), and yields the 71- and 38-kDa fragments. On the other hand, Ser(186) (and possibly the following three residues: Val(187), Ile(188), and Lys(189)) is the residue that is photo-oxidized by decavanadate in the absence of ADP. Hydrolytic cleavage of the oxidized product at this site is likely assisted by neighboring acidic residues, and yields the 88- and 21-kDa fragments. The bound decavanadate, which we find to produce steric interference with TNP-AMP binding, must therefore extend to the A domain (i.e. small cytosolic loop) in order to oxidize Ser(186). This protein conformation is only obtained in the absence of Ca(2+).
Collapse
Affiliation(s)
- S Hua
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | |
Collapse
|
34
|
Abstract
'Monovanadate' containing a mixture of at least four different vanadate species and 'decavanadate' containing apparently only two vanadate species, mainly decameric species, inhibit myosin and actomyosin ATPase activities. The addition of myosin to 'monovanadate' and 'decavanadate' solutions promotes differential increases on the 51V NMR spectral linewidths of vanadate oligomers. The relative order of line broadening upon myosin addition, reflecting the interaction of the vanadate oligomers with the protein, was V10 > V4 > V1 = 1, whereas no changes were observed for monomeric vanadate species. It is concluded that decameric and tetrameric vanadate species interact quite potently with the protein and affect myosin as well actomyosin ATPase activities.
Collapse
Affiliation(s)
- M Aureliano
- Chemistry-U.C.E.H., University of Algarve, Faro, Portugal.
| |
Collapse
|
35
|
Aureliano M. Vanadate oligomer inhibition of passive and active Ca2+ translocation by the Ca2+ pump of sarcoplasmic reticulum. J Inorg Biochem 2000; 80:145-7. [PMID: 10885476 DOI: 10.1016/s0162-0134(00)00022-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
'Monovanadate' containing mainly monomeric, dimeric and tetrameric vanadate species or 'decavanadate', containing mainly decameric vanadate species inhibits the passive and the active efflux of Ca2+ through the sarcoplasmic reticulum calcium pump. When the efflux of Ca2+ by sarcoplasmic reticulum vesicles is not associated with ATP synthesis both vanadate solutions inhibit the passive efflux of Ca2+. However, only 'decavanadate' exerts noticeable effects when the efflux of Ca2+ is associated with ATP synthesis being the active efflux of Ca2+ almost completely inhibited by decameric species concentration as low as 40 microM.
Collapse
Affiliation(s)
- M Aureliano
- Chemistry-U.C.E.H., University of Algarve, Faro, Portugal.
| |
Collapse
|
36
|
Abstract
MJ0968 has been proposed to be an ancestor of P-type ATPase, because its primary structure is highly homologous to that of the core catalytic domain of P-type ATPase. However it completely lacks amino acid sequences that possibly constitute transmembrane domains. To examine if MJ0968 is indeed a P-type ATPase, it was overexpressed in Escherichia coli and purified. It did show ATPase activity, autophosphorylation and inhibition by vanadate. All these properties support the idea that MJ0968 is indeed a soluble P-type ATPase.
Collapse
Affiliation(s)
- H Ogawa
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, Japan
| | | | | |
Collapse
|
37
|
Ribeiro-Claro PJA, Amado AM, Teixeira-Dias JJC. Structures and vibrational frequencies of vanadium (V) oligomers: Anab initiostudy using effective core potentials. J Comput Chem 1998. [DOI: 10.1002/(sici)1096-987x(19960730)17:10<1183::aid-jcc1>3.0.co;2-k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
38
|
Ogawa H, Stokes DL, Sasabe H, Toyoshima C. Structure of the Ca2+ pump of sarcoplasmic reticulum: a view along the lipid bilayer at 9-A resolution. Biophys J 1998; 75:41-52. [PMID: 9649366 PMCID: PMC1299678 DOI: 10.1016/s0006-3495(98)77493-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
We have used multilamellar crystals of the ATP-driven calcium pump from sarcoplasmic reticulum to address the structural effects of calcium binding to the enzyme. They are stacks of disk-shaped two-dimensional crystals. A density map projected along the lipid bilayer was obtained at 9-A resolution by frozen-hydrated electron microscopy. Although only in projection, much more details of the structure were revealed than previously available, especially in the transmembrane region. Quantitative comparison was made with the model obtained from the tubular crystals of this enzyme formed in the absence of calcium. Unexpectedly large differences in conformation were found, particularly in the cytoplasmic domain.
Collapse
Affiliation(s)
- H Ogawa
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Bunkyo-ku, Tokyo 113, Japan
| | | | | | | |
Collapse
|
39
|
Yonekura K, Stokes DL, Sasabe H, Toyoshima C. The ATP-binding site of Ca(2+)-ATPase revealed by electron image analysis. Biophys J 1997; 72:997-1005. [PMID: 9138598 PMCID: PMC1184488 DOI: 10.1016/s0006-3495(97)78752-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The location of the ATP-binding site of a P-type ion pump, Ca(2+)-ATPase from rabbit sarcoplasmic reticulum, was examined by cryoelectron microscopy. A nonhydrolyzable analog of ATP, beta, gamma-bidentate chromium (III) complex of ATP (CrATP), was used to stabilize the enzyme in the Ca(2+)-occluded state. Tubular crystals were then induced by vanadate in the presence of EGTA, keeping CrATP bound to the enzyme. The three-dimensional structures of the crystals were determined at 14 A resolution by cryoelectron microscopy and helical image analysis. Statistical comparison of the structures with and without CrATP showed clear and significant differences at the groove proposed previously as the ATP-binding pocket.
Collapse
Affiliation(s)
- K Yonekura
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Japan
| | | | | | | |
Collapse
|
40
|
Aureliano M, Pedroso MC, De Lima, Carvalho AP, Pires EM. Effect of myosin phosphorylation on actomyosin ATPase activity: a flow microcalorimetric study. THERMOCHIMICA ACTA 1995. [DOI: 10.1016/0040-6031(94)02192-q] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|