1
|
Gangliosides in Neurodegenerative Diseases. ADVANCES IN NEUROBIOLOGY 2023; 29:391-418. [DOI: 10.1007/978-3-031-12390-0_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
2
|
Abstract
This review begins by attempting to recount some of the pioneering discoveries that first identified the presence of gangliosides in the nervous system, their structures and topography. This is presented as prelude to the current emphasis on physiological function, about which much has been learned but still remains to be elucidated. These areas include ganglioside roles in nervous system development including stem cell biology, membranes and organelles within neurons and glia, ion transport mechanisms, receptor modulation including neurotrophic factor receptors, and importantly the pathophysiological role of ganglioside aberrations in neurodegenerative disorders. This relates to their potential as therapeutic agents, especially in those conditions characterized by deficiency of one or more specific gangliosides. Finally we attempt to speculate on future directions ganglioside research is likely to take so as to capitalize on the impressive progress to date.
Collapse
Affiliation(s)
- Robert Ledeen
- Division of Neurochemistry, Department of Pharmacology, Physiology & Neuroscience, Rutgers New Jersey Medical School, Newark, NJ, USA.
| | - Gusheng Wu
- Division of Neurochemistry, Department of Pharmacology, Physiology & Neuroscience, Rutgers New Jersey Medical School, Newark, NJ, USA
| |
Collapse
|
3
|
Ledeen RW, Wu G. The multi-tasked life of GM1 ganglioside, a true factotum of nature. Trends Biochem Sci 2015; 40:407-18. [PMID: 26024958 DOI: 10.1016/j.tibs.2015.04.005] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 04/22/2015] [Accepted: 04/27/2015] [Indexed: 11/19/2022]
Abstract
GM1 ganglioside occurs widely in vertebrate tissues, where it exhibits many essential functions, both in the plasma membrane and intracellular loci. Its essentiality is revealed in the dire consequences resulting from genetic deletion. This derives from its key roles in several signalosome systems, characteristically located in membrane rafts, where it associates with specific proteins that have glycolipid-binding domains. Thus, GM1 interacts with proteins that modulate mechanisms such as ion transport, neuronal differentiation, G protein-coupled receptors (GPCRs), immune system reactivities, and neuroprotective signaling. The latter occurs through intimate association with neurotrophin receptors, which has relevance to the etiopathogenesis of neurodegenerative diseases and potential therapies. Here, we review the current state of knowledge of these GM1-associated mechanisms.
Collapse
Affiliation(s)
- Robert W Ledeen
- Department of Neurology and Neurosciences, New Jersey Medical School, Rutgers, The State University of New Jersey, 185 South Orange Avenue, Newark, NJ 07103, USA.
| | - Gusheng Wu
- Department of Neurology and Neurosciences, New Jersey Medical School, Rutgers, The State University of New Jersey, 185 South Orange Avenue, Newark, NJ 07103, USA
| |
Collapse
|
4
|
Sf9 cells: a versatile model system to investigate the pharmacological properties of G protein-coupled receptors. Pharmacol Ther 2010; 128:387-418. [PMID: 20705094 DOI: 10.1016/j.pharmthera.2010.07.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 07/12/2010] [Indexed: 11/23/2022]
Abstract
The Sf9 cell/baculovirus expression system is widely used for high-level protein expression, often with the purpose of purification. However, proteins may also be functionally expressed in the defined Sf9 cell environment. According to the literature, the pharmacology of G-protein-coupled receptors (GPCRs) functionally reconstituted in Sf9 cells is similar to the receptor properties in mammalian cells. Sf9 cells express both recombinant GPCRs and G-proteins at much higher levels than mammalian cells. Sf9 cells can be grown in suspension culture, providing an inexpensive way of obtaining large protein amounts. Co-infection with various baculoviruses allows free combination of GPCRs with different G-proteins. The absence of constitutively active receptors in Sf9 cells provides an excellent signal-to background ratio in functional assays, allowing the detection of agonist-independent receptor activity and of small ligand-induced signals including partial agonistic and inverse agonistic effects. Insect cell Gα(i)-like proteins mostly do not couple productively to mammalian GPCRs. Thus, unlike in mammalian cells, Sf9 cells do not require pertussis toxin treatment to obtain a Gα(i)-free environment. Co-expression of GPCRs with Gα(i1), Gα(i2), Gα(i3) or Gα(o) in Sf9 cells allows the generation of a selectivity profile for these Gα(i/o)-isoforms. Additionally, GPCR-G-protein combinations can be compared with defined 1:1 stoichiometry by expressing GPCR-Gα fusion proteins. Sf9 cells can also be employed for ligand screening in medicinal chemistry programs, using radioligand binding assays or functional assays, like the steady-state GTPase- or [(35)S]GTPγS binding assay. This review shows that Sf9 cells are a versatile model system to investigate the pharmacological properties of GPCRs.
Collapse
|
5
|
Wu G, Lu ZH, Wang J, Wang Y, Xie X, Meyenhofer MF, Ledeen RW. Enhanced susceptibility to kainate-induced seizures, neuronal apoptosis, and death in mice lacking gangliotetraose gangliosides: protection with LIGA 20, a membrane-permeant analog of GM1. J Neurosci 2006; 25:11014-22. [PMID: 16306414 PMCID: PMC6725874 DOI: 10.1523/jneurosci.3635-05.2005] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Knock-out (KO) mice lacking gangliotetraose gangliosides attributable to disruption of the gene for GM2/GD2 synthase [GalNAcT (UDP-N-acetylgalactosamine:GM3/GD3 beta-1,4-N-acetylgalactosaminyltransferase; EC 2.4.1.92 [EC])] are revealing key neural functions for the complex gangliosides of brain. This study has found such animals to be highly susceptible to kainic acid (KA)-induced seizures in terms of both seizure severity and duration. Intraperitoneal injection of 25 mg/kg KA produced status epilepticus for approximately 200 min in normal mice or heterozygotes and more than four times longer in the KO mice. The latter group suffered approximately 30% mortality, which increased to approximately 75% at dosage of 30 mg/kg KA, compared with 10-14% for the other two genotypes at the latter dosage. Nissl staining and terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick end labeling assay revealed substantial deterioration of pyramidal neurons attributable to apoptosis in the KO hippocampus, especially the CA3 region. Seizure activity in the KO mouse was only moderately diminished by intraperitoneal injection of GM1 ganglioside, whereas LIGA 20, a semisynthetic analog of GM1, substantially reduced both seizure severity and cell damage. The potency of LIGA 20 was correlated with its enhanced membrane permeability (compared with GM1), as seen in the increased uptake of [3H]LIGA 20 into the subcellular fractions of brain including cell nuclei. The latter finding is consonant with LIGA 20-induced restoration of the Na+/Ca2+ exchanger located at the inner membrane of the nuclear envelope in KO mice, an exchanger dependent on tight association with GM1 or its analog for optimal activity. These results point to a neuroprotective role for GM1 and its associated exchanger in the nucleus, based on regulation of Ca2+ flux between nucleoplasm and nuclear envelope.
Collapse
Affiliation(s)
- Gusheng Wu
- Department of Neurology and Neurosciences, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, New Jersey 07103, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Xie X, Wu G, Ledeen RW. C6 cells express a sodium-calcium exchanger/GM1 complex in the nuclear envelope but have no exchanger in the plasma membrane: comparison to astrocytes. J Neurosci Res 2004; 76:363-75. [PMID: 15079865 DOI: 10.1002/jnr.20068] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Previous work demonstrated the presence of an isoform of Na(+)/Ca(2+) exchanger in the nuclear envelope of neurons and NG108-15 cells that is tightly associated with GM1 ganglioside and potentiated by the latter. This contrasted with the Na(+)/Ca(2+) exchanger(s) in the plasma membrane, which were suggested to associate more loosely with GM1. To study these aspects of Na(+)/Ca(2+) exchanger expression in nonneuronal neural cells, we have examined nuclear and plasma membrane exchanger patterns in astrocytes and C6 cells, a glia-derived line. We find both cell types contain the tightly associated exchanger/GM1 complex in the nuclear envelope but, surprisingly, only astrocytes possess Na(+)/Ca(2+) exchanger activity in the plasma membrane. This is the first reported example of a cell (C6) with Na(+)/Ca(2+) exchangers in the nuclear envelope but not in the plasma membrane. RT-PCR established the presence of the NCX1 subtype in C6 cells and both NCX1 and NCX2 in astrocytes. Comparison was made with NG108-15 cells, which have Na(+)/Ca(2+) exchangers in both nuclear and plasma membranes, and Jurkat cells, which have no Na(+)/Ca(2+) exchanger in either membrane. Culturing of C6 cells in the presence dibutyryl-cAMP caused upregulation of a high molecular weight isoform of the exchanger together with GM1 in the nuclear envelope, resulting in significant elevation of Na(+)/Ca(2+) exchanger activity in the latter. Application of exogenous GM1 to nuclei from non-treated cells also potentiated exchanger activity, although to a lesser degree. The Na(+)/Ca(2+) exchanger/GM1 complex occurs in the inner membrane of the nuclear envelope, suggesting a functional role in transferring Ca(2+) between nucleoplasm and the envelope lumen.
Collapse
Affiliation(s)
- Xin Xie
- Department of Neurology and Neurosciences, New Jersey Medical School, UMDNJ, Newark, NJ 07103, USA
| | | | | |
Collapse
|
7
|
Xie X, Wu G, Lu ZH, Ledeen RW. Potentiation of a sodium-calcium exchanger in the nuclear envelope by nuclear GM1 ganglioside. J Neurochem 2002; 81:1185-95. [PMID: 12068067 DOI: 10.1046/j.1471-4159.2002.00917.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Calcium is recognized as an important intracellular messenger with a pivotal role in the regulation of many cytosolic and nuclear processes. Gangliosides of various types, especially GM1, are known to have a role in some aspects of Ca2+ regulation, operating through a variety of mechanisms that are gradually coming to light. The present study provides evidence for a sodium-calcium exchanger in the nuclear envelope of NG108-15 neuroblastoma cells that is potently and specifically activated by GM1. Immunoblot analysis revealed an unusually tight association of GM1 with the exchanger in the nuclear envelope but not with that in the plasma membrane. Exchanger and associated GM1 were located in the inner membrane of the nuclear envelope, suggesting this system could function to transfer Ca2+ between nucleoplasm and the envelope lumen. The GM1-enhanced exchange was blocked by cholera toxin B subunit while C2-ceramide, a recently discovered inhibitor of the exchanger, blocked all transfer. Exchanger activity was significantly elevated in nuclei isolated from cells that were induced to differentiate by KCl + dibutyryl-cAMP, a treatment previously shown to promote up-regulation of nuclear GM1 in conjunction with axonogenesis. Similar enhancement was achieved by addition of exogenous GM1 to nuclei from undifferentiated cells. These results suggest a prominent role for nuclear GM1 in regulation of nuclear Ca2+ homeostasis.
Collapse
Affiliation(s)
- Xin Xie
- Department of Neurosciences, New Jersey Medical School, UMDNJ, Newark, New Jersey 07103, USA
| | | | | | | |
Collapse
|
8
|
Kanda N, Nakai K, Watanabe S. Gangliosides GD1b, GT1b, and GQ1b suppress the growth of human melanoma by inhibiting interleukin-8 production: the inhibition of adenylate cyclase. J Invest Dermatol 2001; 117:284-93. [PMID: 11511306 DOI: 10.1046/j.0022-202x.2001.01423.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We studied the effects of various gangliosides on in vitro growth of human metastatic melanoma WM266-4. GD1b, GT1b, and GQ1b inhibited 3H-thymidine uptake and growth rate of WM266-4 whereas the other gangliosides were ineffective. The growth inhibition by GD1b, GT1b, and GQ1b was counteracted by interleukin-8 but not by the other growth factors. The growth inhibition by gangliosides was not detected in the presence of anti-interleukin-8 antibody. GD1b, GT1b, and GQ1b reduced the constitutive interleukin-8 secretion and mRNA levels in WM266-4. Transient transfection showed that GD1b, GT1b, and GQ1b inhibited the constitutive chloramphenicol acetyltransferase expression driven by interleukin-8 promoter in WM266-4. Transfection with a series of 5'-deleted mutants demonstrated that the sequences between -98 and -62 bp on interleukin-8 promoter may be involved in the transcriptional repression by these gangliosides. Cyclic AMP analog dibutyryl cAMP counteracted GD1b, GT1b, and GQ1b-induced inhibition of interleukin-8 production at the levels of protein secretion, mRNA expression, and promoter activity. GD1b, GT1b, and GQ1b reduced cAMP level and protein kinase A activity in WM266-4. These gangliosides suppressed adenylate cyclase activity without altering that of cyclic nucleotide phosphodiesterase in WM266-4. The data indicate that GD1b, GT1b, and GQ1b may suppress the growth of melanoma by inhibiting interleukin-8 production via the inhibition of adenylate cyclase.
Collapse
Affiliation(s)
- N Kanda
- Department of Dermatology, Teikyo University, School of Medicine, Tokyo, Japan.
| | | | | |
Collapse
|
9
|
Kanda N, Watanabe S. Gangliosides GD1b, GT1b, and GQ1b enhance IL-2 and IFN-gamma production and suppress IL-4 and IL-5 production in phytohemagglutinin-stimulated human T cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:72-80. [PMID: 11123278 DOI: 10.4049/jimmunol.166.1.72] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Gangliosides are sialic acid-containing glycolipids. We studied the in vitro effects of gangliosides on Th1 and Th2 cytokine production in PHA-stimulated human T cells. Gangliosides GD1b, GT1b, and GQ1b (each 100 nM) enhanced PHA-induced IL-2 secretion of peripheral blood T cells approximately 4-fold and enhanced that of IFN-gamma 3- to 4-fold compared with controls. These gangliosides decreased PHA-induced IL-4 secretion by 50-53% and that of IL-5 by 53-63% compared with controls, respectively. The other gangliosides did not alter the secretion of Th1 or Th2 cytokines. RT-PCR showed that GD1b, GT1b, and GQ1b enhanced PHA-induced IL-2 and IFN-gamma transcription and suppressed that of IL-4 and IL-5. Transient transfection assays of Jurkat T cells showed that GD1b, GT1b, and GQ1b enhanced PHA-induced IL-2 and IFN-gamma promoter activities but suppressed those of IL-4 and IL-5. The cAMP analogue dibutyryl cAMP and the cAMP-elevating agents forskolin and 3-isobutyl-1-methylxanthine each reversed GD1b-, GT1b-, and GQ1b-induced stimulation of IL-2 and IFN-gamma production and inhibition of IL-4 and IL-5 production at the levels of proteins, transcription, and promoter activities. GD1b, GT1b, and GQ1b suppressed PHA-induced increase in cAMP level in T cells. These gangliosides suppressed PHA-stimulated adenylate cyclase activity in T cells. These results suggest that GD1b, GT1b, and GQ1b may enhance Th1 cytokine production while suppressing Th2 production by inhibiting adenylate cyclase activity.
Collapse
Affiliation(s)
- N Kanda
- Department of Dermatology, School of Medicine, Teikyo University, Tokyo, Japan.
| | | |
Collapse
|
10
|
Kasahara K, Sanai Y. Functional roles of glycosphingolipids in signal transduction via lipid rafts. Glycoconj J 2000; 17:153-62. [PMID: 11201786 DOI: 10.1023/a:1026576804247] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The formation of glycosphingolipid (GSL)-cholesterol microdomains in cell membranes has been proposed to function as platforms for the attachment of lipid-modified proteins, such as glycosylphosphatidylinositol (GPI)-anchored proteins and src-family tyrosine kinases. The microdomains are postulated to be involved in GPI-anchored protein signaling via src-family kinase. Here, the functional roles of GSLs in signal transduction mediated by the microdomains are discussed. Antibodies against GSLs co-precipitate GPI-anchored proteins, src-family kinases and several components of the microdomains. Antibody-mediated crosslinking of GSLs, as well as that of GPI-anchored proteins, induces a rapid activation of src-family kinases and a transient increase in the tyrosine phosphorylation of several substrates. Enzymatic degradation of GSLs reduces the activation of src-family kinase and tyrosine phosphorylation by antibody-mediated crosslinking of GPI-anchored protein. Furthermore, GSLs can also modulate signal transduction of immunoreceptors and growth factor receptors in the microdomains. Thus, GSLs have important roles in signal transduction mediated by the microdomains.
Collapse
Affiliation(s)
- K Kasahara
- The Tokyo Metropolitan Institute of Medical Science, Tokyo Metropolitan Organization for Medical Research, Japan.
| | | |
Collapse
|
11
|
Wu G, Lu ZH, Wei TJ, Howells RD, Christoffers K, Ledeen RW. The role of GM1 ganglioside in regulating excitatory opioid effects. Ann N Y Acad Sci 1998; 845:126-38. [PMID: 9668347 DOI: 10.1111/j.1749-6632.1998.tb09666.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Our studies with cultured cells have provided new insight into the particular role of GM1 in regulating excitatory opioid responses. GM1 is significantly elevated in chronic opioid-treated cells via Gs/adenylyl cyclase activation. Such GM1 elevation promotes coupling of opioid receptor with Gs, resulting in attenuation of inhibitory opioid effects and induction of a sustained excitatory response. Application of exogenous GM1, but not other gangliosides, induces excitatory opioid responses not only in neurons and neuroblastoma cells that bear intrinsic opioid receptors but also in nonneuronal cells that are transfected with delta-opioid receptor. The latter system provides evidence that allosteric binding of GM1 changes receptor conformation from a Gi-coupled to a Gs-coupled mode. This is supported by preliminary experiments with a mutated delta-opioid receptor.
Collapse
Affiliation(s)
- G Wu
- Department of Neurosciences, UMDNJ-New Jersey Medical School, Newark 07103, USA.
| | | | | | | | | | | |
Collapse
|
12
|
Yokoyama D, Saito-Ito A, Asao N, Tanabe K, Yamamoto M, Matsumura T. Modulation of the growth of Plasmodium falciparum in vitro by protein serine/threonine phosphatase inhibitors. Biochem Biophys Res Commun 1998; 247:18-23. [PMID: 9636646 DOI: 10.1006/bbrc.1998.8730] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To elucidate the physiological roles of the protein serine/threonine phosphatases of P. falciparum, first we identified and characterized phosphatase activities of Plasmodium falciparum enzymologically and pharmacologically. We have demonstrated that P. falciparum possesses phosphatase-1-like activities predominantly over phosphatase-2A-like activities, while erythrocytes possess mainly phosphatase-2A-like activities. Then, we examined the effects of okadaic acid and calyculin A, potent inhibitors of protein phosphatase 1 and 2A, on the growth of P. falciparum in vitro. Both of the drugs inhibited parasite growth dose dependently. The manner of growth inhibition by calyculin A and okadaic acid suggested that these drugs inhibit parasite growth mainly by inhibiting parasite phosphatase-1-like activities. Both drugs were shown to inhibit the growth of three different developmental stages of parasites--ring forms, trophozoites, and schizonts--and inhibit trophozoites the most. This is the first report on P. falciparum protein serine/threonine phosphatase activities, which are essential to regulate the erythrocytic stage of parasite growth.
Collapse
Affiliation(s)
- D Yokoyama
- Department of Medical Zoology, Kobe University School of Medicine, Japan
| | | | | | | | | | | |
Collapse
|
13
|
Delahaye R, Manna PR, Bérault A, Berreur-Bonnenfant J, Berreur P, Counis R. Rat gonadotropin-releasing hormone receptor expressed in insect cells induces activation of adenylyl cyclase. Mol Cell Endocrinol 1997; 135:119-27. [PMID: 9484907 DOI: 10.1016/s0303-7207(97)00194-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Increasing evidence exist that multiple G proteins mediate the effects of gonadotropin-releasing hormone (GnRH) on the synthesis and release of pituitary gonadotropins. In the present study, we have expressed the rat GnRH receptor (GnRH-R) in insect cells, by infection with a recombinant baculovirus. Under the conditions used, insect cells expressed, 48 h post-infection, a maximum of 7800 +/- 650 receptors/cell which bound GnRH agonist [D-Trp6]GnRH with a Kd = 0.52 +/- 0.06 nM indicating characteristics similar to those of the natural receptor. No binding was observed in non-infected cells or cells infected with wild-type baculovirus. In presence of GnRH, GnRH-R expressing cells elicited a time- and dose-dependent production of inositol trisphosphate, with a maximum level reached within 30 min and an EC50 = 5 nM. These recombinant insect cells also produced cAMP in response to GnRH. However, in contrast to other heterologous systems, or rat pituitary gonadotropes wherein GnRH induced a weak and delayed elevation of cAMP, in insect cells the rise of cAMP was comparatively rapid, attaining a maximum level after 2 h, and the EC50 was 5 nM. Finally, a clear activation of adenylyl cyclase (AC) in response to GnRH was shown for the first time by measuring the conversion of [alpha-32P]ATP into labeled cAMP, using membrane preparations from GnRH-R expressing insect cells. These data demonstrate that rat GnRH-R has the potential for dual coupling to both phosphoinositidase C and AC and suggest a major influence of the host cell for this coupling and/or its expression, probably in relation with the G protein repertoire and preference. This notion could be extended to several target cells other than pituitary gonadotropes that normally express the GnRH-R in mammals, including hippocampal, Leydig, granulosa, placental and GnRH-secreting hypothalamic cells.
Collapse
Affiliation(s)
- R Delahaye
- Endocrinologie Cellulaire et Moléculaire de la Reproduction, Université P. & M. Curie, URA CNRS 1449, Paris, France
| | | | | | | | | | | |
Collapse
|
14
|
Wu G, Lu ZH, Alfinito P, Ledeen RW. Opioid receptor and calcium channel regulation of adenylyl cyclase, modulated by GM1, in NG108-15 cells: competitive interactions. Neurochem Res 1997; 22:1281-9. [PMID: 9342733 DOI: 10.1023/a:1021993232148] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
GM1 ganglioside was previously shown to function as a specific regulator of excitatory opioid activity in dorsal root ganglion neurons and F11 hybrid cells, as seen in its facilitation of opioid-induced activation of adenylyl cyclase and its ability to dramatically reduce the threshold opioid concentration required to prolong the action potential duration. The elevated levels of GM1 resulting from chronic opioid exposure of F11 cells were postulated to cause the ensuing opioid excitatory supersensitivity. We now show that GM1 promotes opioid (DADLE)-induced activation of adenylyl cyclase in NG108-15 cells which possess the delta-type of receptor. In keeping with previous studies of other systems, this can be envisioned as conformational interaction of GM1 with the receptor that results in uncoupling of the receptor from Gi and facilitated coupling to Gs. This would also account for the observation that DADLE-induced attenuation of forskolin-stimulated adenylyl cyclase was reversed by GM1, provided the cells were not pretreated with pertussis toxin. When the cells were so pretreated, GM1 evoked an unexpected attenuation of forskolin-stimulated adenylyl cyclase attributed to GM1-promoted influx of calcium which was postulated to inhibit a calcium-sensitive form of adenylyl cyclase. This is concordant with several studies showing GM1 to be a potent modulator of calcium flux. Pertussis toxin in these experiments exerted dual effects, one being to promote interaction of the delta-opioid receptor with Gs through inactivation of Gi, and the other to enhance the GM1-promoted influx of calcium by inactivation of Go; the latter is postulated to function as constitutive inhibitor of the relevant calcium channel. NG108-15 cells thus provide an interesting example of competitive interaction between two GM1-regulated systems involving enhancement of both opioid receptor excitatory activity and calcium influx.
Collapse
Affiliation(s)
- G Wu
- Dept of Neurosciences, New Jersey Medical School, UMDNJ, Newark 07103, USA
| | | | | | | |
Collapse
|
15
|
Rigat B, Wang W, Leung A, Mahuran DJ. Two mechanisms for the recapture of extracellular GM2 activator protein: evidence for a major secretory form of the protein. Biochemistry 1997; 36:8325-31. [PMID: 9204879 DOI: 10.1021/bi970571c] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The GM2 activator protein is a small monomeric protein containing a single site for Asn-linked glycosylation. Its only proven in vivo function is to act as a substrate specific cofactor for the hydrolysis of GM2 ganglioside by lysosomal beta-hexosaminidase A. However, we and others have shown it can act as a general glycolipid transporter at neutral pH in vitro. Any other possible in vivo functions would require that some of the newly synthesized activator molecules not be targeted to the lysosome. The lysosomal targeting mechanism for the activator has not been conclusively identified. While earlier reports suggested that it is likely through the mannose-6-phosphate receptor, another more recent report demonstrated that deficient human cells could recapture nonglycosylated, bacterially produced activator, suggesting its use of an alternate targeting pathway. Here, we demonstrate that the mannose-6-phosphate pathway is likely the major intracellular, biosynthetic route to the lysosome, as well as a high affinity recapture pathway for the endocytosis of activator protein from extracellular fluids. Additionally, we show that there exists a second lower affinity recapture pathway that requires its native protein structure, is carbohydrate independent, and likely does not involve its ability to bind glycosphingolipids in the plasma membrane. Finally, we document that the pool of newly synthesized precursor activator protein contains a majority of molecules with a complex-type oligosaccharide, which cannot contain a functional mannose-6-phosphate targeting signal. These molecules makeup the secreted forms of the protein in normal human fibroblasts.
Collapse
Affiliation(s)
- B Rigat
- Research Institute, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | | | | | | |
Collapse
|
16
|
Wu G, Lu ZH, Ledeen RW. Interaction of the delta-opioid receptor with GM1 ganglioside: conversion from inhibitory to excitatory mode. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1997; 44:341-6. [PMID: 9073176 DOI: 10.1016/s0169-328x(96)00281-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Previous studies have shown GM1 ganglioside to play a crucial role in regulating excitatory opioid receptor function, which may underlie some aspects of opioid dependence, tolerance, and supersensitivity. To study the mechanism of this receptor modulation we have employed CHO cells containing a single, transfected opioid receptor of the delta-type. When forskolin was employed to elevate cAMP the reduction affected by 10 microM DADLE was counteracted by preincubation of the cells with GM1. No effect was observed with GD1a, GD1b, GT1b GM3, or the GM1 derivative, GM1-OH. In pertussis toxin-treated cells 10 nM DADLE increased basal levels of cAMP after preincubation with as little as 10 nM GM1. The results suggest conformational alteration of the opioid receptor from a form coupled primarily to G(i)/G(o) to one also capable of interacting with G(s).
Collapse
Affiliation(s)
- G Wu
- Dept. of Neurosciences, New Jersey Medical School, UMDNJ, Newark 07103, USA
| | | | | |
Collapse
|
17
|
Wu G, Lu ZH, Ledeen RW. GM1 ganglioside modulates prostaglandin E1 stimulated adenylyl cyclase in neuro-2A cells. Glycoconj J 1996; 13:235-9. [PMID: 8737248 DOI: 10.1007/bf00731498] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
This study demonstrates modulation by GM1 ganglioside of prostaglandin E1 (PGE1)-induced cAMP formation in Neuro-2a neuroblastoma cells. Pretreatment of the cells with neuraminidase, an enzyme that increases cell surface GM1, resulted in significant elevation of PGE1-induced cAMP formation, as did preincubation of the cells with nmolar concentrations of GM1. Pretreatment with brain ganglioside mixture lacking GM1 had no effect. Cholera toxin B subunit, a specific GM1-binding ligand, inhibited adenylyl cyclase. When the concentration of exogenous GM1 in which the cells were preincubated was increased from nmolar to mu molar levels there was a dose-responsive fall off in cAMP elevation, attributed to progressive inhibition of adenylyl cyclase by increasing GM1. These results are interpreted as indicating modulation of this PGE1 receptor in Neuro-2a cells by plasma membrane-localized GM1 in a structure-specific manner.
Collapse
Affiliation(s)
- G Wu
- New Jersey Medical School, UMDNJ, Department of Neurosciences, Newark 07103, USA
| | | | | |
Collapse
|
18
|
Wu G, Fan SF, Lu ZH, Ledeen RW, Crain SM. Chronic opioid treatment of neuroblastoma x dorsal root ganglion neuron hybrid F11 cells results in elevated GM1 ganglioside and cyclic adenosine monophosphate levels and onset of naloxone-evoked decreases in membrane K+ currents. J Neurosci Res 1995; 42:493-503. [PMID: 8568936 DOI: 10.1002/jnr.490420408] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Prolongation of the action potential duration of dorsal root ganglion (DRG) neurons by low (nM) concentrations of opioids occurs through activation of excitatory opioid receptors that are positively coupled via Gs regulatory protein to adenylate cyclase. Previous results suggested GM1 ganglioside to have an essential role in regulating this excitatory response, but not the inhibitory (APD-shortening) response to higher (microM) opioid concentrations. Furthermore, it was proposed that synthesis of GM1 is upregulated by prolonged activation of excitatory opioid receptor functions. To explore this possibility we have utilized cultures of hybrid F11 cells to carry out closely correlated electrophysiological and biochemical analyses of the effects of chronic opioid treatment on a homogeneous population of clonal cells which express many functions characteristic of DRG neurons. We show that chronic opioid exposure of F11 cells does, in fact, result in elevated levels of GM1 as well as cyclic adenosine monophosphate (AMP), concomitant with the onset of opioid excitatory supersensitivity as manifested by naloxone-evoked decreases in voltage-dependent membrane K+ currents. Such elevation of GM1 would be expected to enhance the efficacy of excitatory opioid receptor activation of the Gs/adenylate cyclase/cyclic AMP system, thereby providing a positive feedback mechanism that may account for the remarkable supersensitivity of chronic opioid-treated neurons to the excitatory effects of opioid agonists as well as antagonists. These in vitro findings may provide novel insights into the mechanisms underlying naloxone-precipitated withdrawal syndromes and opioid-induced hyperalgesia after chronic opiate addiction in vivo.
Collapse
Affiliation(s)
- G Wu
- Department of Neuroscience, University of Medicine and Dentistry of New Jersey, Newark, USA
| | | | | | | | | |
Collapse
|