1
|
Joswig JS, Wirth C, Schuman MC, Kattge J, Reu B, Wright IJ, Sippel SD, Rüger N, Richter R, Schaepman ME, van Bodegom PM, Cornelissen JHC, Díaz S, Hattingh WN, Kramer K, Lens F, Niinemets Ü, Reich PB, Reichstein M, Römermann C, Schrodt F, Anand M, Bahn M, Byun C, Campetella G, Cerabolini BEL, Craine JM, Gonzalez-Melo A, Gutiérrez AG, He T, Higuchi P, Jactel H, Kraft NJB, Minden V, Onipchenko V, Peñuelas J, Pillar VD, Sosinski Ê, Soudzilovskaia NA, Weiher E, Mahecha MD. Climatic and soil factors explain the two-dimensional spectrum of global plant trait variation. Nat Ecol Evol 2022; 6:36-50. [PMID: 34949824 PMCID: PMC8752441 DOI: 10.1038/s41559-021-01616-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 11/10/2021] [Indexed: 11/09/2022]
Abstract
Plant functional traits can predict community assembly and ecosystem functioning and are thus widely used in global models of vegetation dynamics and land-climate feedbacks. Still, we lack a global understanding of how land and climate affect plant traits. A previous global analysis of six traits observed two main axes of variation: (1) size variation at the organ and plant level and (2) leaf economics balancing leaf persistence against plant growth potential. The orthogonality of these two axes suggests they are differently influenced by environmental drivers. We find that these axes persist in a global dataset of 17 traits across more than 20,000 species. We find a dominant joint effect of climate and soil on trait variation. Additional independent climate effects are also observed across most traits, whereas independent soil effects are almost exclusively observed for economics traits. Variation in size traits correlates well with a latitudinal gradient related to water or energy limitation. In contrast, variation in economics traits is better explained by interactions of climate with soil fertility. These findings have the potential to improve our understanding of biodiversity patterns and our predictions of climate change impacts on biogeochemical cycles.
Collapse
Affiliation(s)
- Julia S. Joswig
- grid.419500.90000 0004 0491 7318Max-Planck-Institute for Biogeochemistry, Jena, Germany ,grid.7400.30000 0004 1937 0650Remote Sensing Laboratories, Department of Geography, University of Zurich, Zurich, Switzerland
| | - Christian Wirth
- grid.419500.90000 0004 0491 7318Max-Planck-Institute for Biogeochemistry, Jena, Germany ,grid.9647.c0000 0004 7669 9786German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany ,grid.9647.c0000 0004 7669 9786Institute of Systematic Botany and Functional Biodiversity, University of Leipzig, Leipzig, Germany
| | - Meredith C. Schuman
- grid.7400.30000 0004 1937 0650Remote Sensing Laboratories, Department of Geography, University of Zurich, Zurich, Switzerland ,grid.7400.30000 0004 1937 0650Department of Chemistry, University of Zurich, Zurich, Switzerland
| | - Jens Kattge
- grid.419500.90000 0004 0491 7318Max-Planck-Institute for Biogeochemistry, Jena, Germany ,grid.9647.c0000 0004 7669 9786German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany
| | - Björn Reu
- grid.411595.d0000 0001 2105 7207Escuela de Biología, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Ian J. Wright
- grid.1004.50000 0001 2158 5405Department of Biological Sciences, Macquarie University, Sydney, New South Wales Australia
| | - Sebastian D. Sippel
- grid.5801.c0000 0001 2156 2780Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland ,grid.454322.60000 0004 4910 9859Norwegian Institute of Bioeconomy Research, Oslo, Norway
| | - Nadja Rüger
- grid.9647.c0000 0004 7669 9786German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany ,grid.9647.c0000 0004 7669 9786Department of Economics, University of Leipzig, Leipzig, Germany ,grid.438006.90000 0001 2296 9689Smithsonian Tropical Research Institute, Ancón, Panama
| | - Ronny Richter
- grid.9647.c0000 0004 7669 9786German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany ,grid.9647.c0000 0004 7669 9786Institute of Systematic Botany and Functional Biodiversity, University of Leipzig, Leipzig, Germany ,grid.9647.c0000 0004 7669 9786Geoinformatics and Remote Sensing, Institute for Geography, University of Leipzig, Leipzig, Germany
| | - Michael E. Schaepman
- grid.7400.30000 0004 1937 0650Remote Sensing Laboratories, Department of Geography, University of Zurich, Zurich, Switzerland
| | - Peter M. van Bodegom
- grid.5132.50000 0001 2312 1970Environmental Biology Department, Institute of Environmental Sciences, CML, Leiden University, Leiden, the Netherlands
| | - J. H. C. Cornelissen
- grid.12380.380000 0004 1754 9227Systems Ecology, Department of Ecological Science, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Sandra Díaz
- grid.10692.3c0000 0001 0115 2557Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET and FCEFyN, Universidad Nacional de Córdoba, Córdoba, Argentina
| | | | - Koen Kramer
- grid.4818.50000 0001 0791 5666Chairgroup Forest Ecology and Forest Management, Wageningen University, Wageningen, the Netherlands ,Land Life Company, Amsterdam, the Netherlands
| | - Frederic Lens
- grid.425948.60000 0001 2159 802XResearch Group Functional Traits, Naturalis Biodiversity Center, Leiden, the Netherlands ,grid.5132.50000 0001 2312 1970Plant Sciences, Institute of Biology Leiden, Leiden University, Leiden, the Netherlands
| | - Ülo Niinemets
- grid.16697.3f0000 0001 0671 1127Estonian University of Life Sciences, Tartu, Estonia
| | - Peter B. Reich
- grid.17635.360000000419368657Department of Forest Resources, University of Minnesota, St Paul, MN USA ,grid.1029.a0000 0000 9939 5719Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales Australia ,grid.214458.e0000000086837370Institute for Global Change Biology and School for Environment and Sustainability, University of Michigan, Ann Arbor, MI USA
| | - Markus Reichstein
- grid.419500.90000 0004 0491 7318Max-Planck-Institute for Biogeochemistry, Jena, Germany ,grid.9647.c0000 0004 7669 9786German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany
| | - Christine Römermann
- grid.9647.c0000 0004 7669 9786German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany ,grid.9613.d0000 0001 1939 2794Department of Plant Biodiversity, Institute of Ecology and Evolution, Friedrich-Schiller University, Jena, Germany
| | - Franziska Schrodt
- grid.4563.40000 0004 1936 8868School of Geography, University of Nottingham, Nottingham, UK
| | - Madhur Anand
- grid.34429.380000 0004 1936 8198School of Environmental Sciences, University of Guelph, Guelph, Canada
| | - Michael Bahn
- grid.5771.40000 0001 2151 8122Department of Ecology, University of Innsbruck, Innsbruck, Austria
| | - Chaeho Byun
- grid.252211.70000 0001 2299 2686Department of Biological Sciences and Biotechnology, Andong National University, Andong, Korea
| | - Giandiego Campetella
- grid.5602.10000 0000 9745 6549Plant Diversity and Ecosystems Management Unit, School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Bruno E. L. Cerabolini
- grid.18147.3b0000000121724807Department of Biotechnologies and Life Sciences (DBSV), University of Insubria, Varese, Italy
| | | | - Andres Gonzalez-Melo
- grid.412191.e0000 0001 2205 5940Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá, Colombia
| | - Alvaro G. Gutiérrez
- grid.443909.30000 0004 0385 4466Departamento de Ciencias Ambientales y Recursos Naturales Renovables, Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago, Chile
| | - Tianhua He
- grid.1032.00000 0004 0375 4078School of Molecular and Life Sciences, Curtin University, Perth, Western Australia Australia ,grid.1025.60000 0004 0436 6763College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia Australia
| | - Pedro Higuchi
- grid.412287.a0000 0001 2150 7271Department of Forestry, Universidade do Estado de Santa, Catarina, Lages, Brazil
| | - Hervé Jactel
- grid.508391.60000 0004 0622 9359INRAE University Bordeaux, BIOGECO, Cestas, France
| | - Nathan J. B. Kraft
- grid.19006.3e0000 0000 9632 6718Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA USA
| | - Vanessa Minden
- grid.8767.e0000 0001 2290 8069Department of Biology, Vrije Universiteit Brussel, Brussels, Belgium ,grid.5560.60000 0001 1009 3608Landscape Ecology Group, Institute of Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany
| | - Vladimir Onipchenko
- grid.14476.300000 0001 2342 9668Department of Ecology and Plant Geography, Moscow State Lomonosov University, Moscow, Russia
| | - Josep Peñuelas
- grid.4711.30000 0001 2183 4846CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Spain ,grid.452388.00000 0001 0722 403XCREAF, Cerdanyola del Vallés, Spain
| | - Valério D. Pillar
- grid.8532.c0000 0001 2200 7498Department of Ecology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Ênio Sosinski
- grid.460200.00000 0004 0541 873XEmbrapa Recursos Genéticos e Biotecnologia, Brasília, Brazil
| | - Nadejda A. Soudzilovskaia
- grid.12155.320000 0001 0604 5662Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium ,grid.5132.50000 0001 2312 1970Institute of Environmental Sciences, Leiden University, Leiden, the Netherlands
| | - Evan Weiher
- grid.267460.10000 0001 2227 2494Department of Biology, University of Wisconsin, Eau Claire, WI USA
| | - Miguel D. Mahecha
- grid.9647.c0000 0004 7669 9786German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany ,grid.9647.c0000 0004 7669 9786Remote Sensing Centre for Earth System Research, University of Leipzig, Leipzig, Germany ,grid.7492.80000 0004 0492 3830Helmholtz Centre for Environmental Research, Leipzig, Germany
| |
Collapse
|
2
|
Yang X, Gao LY, Qin S, Ma KH, Luo SX, Qin CC. Alcohol consumption may not affect the diameter of the coronary arteries in men with chest pain. J Int Med Res 2021; 48:300060520913781. [PMID: 32316821 PMCID: PMC7177991 DOI: 10.1177/0300060520913781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Objective The effect of alcohol consumption on the risk of coronary heart disease is
controversial. Several studies have assessed the effects of alcohol on the
formation of atherosclerotic plaques, but few studies have evaluated the
chronic effects of alcohol consumption on the coronary artery diameter. We
investigated whether alcohol consumption affects the coronary artery
diameter. Methods This prospective study enrolled men who were undergoing coronary angiography
at the First Affiliated Hospital of Chongqing Medical University from
November 2016 to December 2017. The participants were categorized into three
groups based on their drinking behavior: heavy drinking (>175 g/week in
the last 2 years, n = 70), moderate drinking (>42 to ≤175 g/week in the
last 2 years, n = 53), and nondrinking (lifetime alcohol consumption of
<98 g, n = 79). The diameters of the left and right coronary arteries
were compared among the three groups. Results No significant differences in the diameters of the left and right coronary
arteries were observed among the three groups. Conclusions Alcohol consumption may not affect the diameter of the coronary arteries.
Collapse
Affiliation(s)
- Xin Yang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Cardiology, the People's Hospital of Rongchang District, Chongqing, China
| | - Ling-Yun Gao
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shu Qin
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kang-Hua Ma
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Su-Xin Luo
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chun-Chang Qin
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Kaewphaleuk T, Watanapa WB, Panich U. Ethanol enhances endothelial ionic currents and nitric oxide release via intermediate-conductance calcium-activated potassium channel. Life Sci 2019; 228:21-29. [PMID: 31026455 DOI: 10.1016/j.lfs.2019.04.052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/17/2019] [Accepted: 04/22/2019] [Indexed: 12/29/2022]
Abstract
AIMS Ethanol is known to induce NO release and coronary vasorelaxation. Evidence suggests that K+ channels, especially a Ca2+-activated K+ channel (KCa), may regulate endothelial NO production. We aimed to investigate the ethanol effect on K+ currents in human coronary artery endothelial cells (HCAECs), identify the K+ channel type/subtype and signaling pathway involved, and demonstrate the relevance to ethanol-induced NO release. MAIN METHODS Ionic currents of cultured HCAECs were studied using whole-cell patch clamp technique. NO production were measured using the fluorescent probe, 2,3-diaminonaphthalene. KEY FINDINGS We found that ethanol significantly potentiated HCAEC current (maximal increase to 155.68 ± 18.93%, 20 mM ethanol, +80 mV; mean ± SEM, n = 9). Ethanol-induced current was significantly inhibited by blockers of IKCa or SKCa (intermediate- or small-conductance KCa), but not by blocking other K+ channels. When other known HCAEC channels were inhibited except IKCa, 20 mM ethanol significantly increased IKCa current to 198 ± 25.11% (n = 6), but it could not enhance SKCa current that was similarly isolated. Moreover, ethanol-induced NO release was prevented by blocking IKCa channel, adenosine A2A receptor (A2AR), Gs protein, or protein kinase A (PKA). SIGNIFICANCE This study was the first to demonstrate that acute ethanol exposure could activate endothelial IKCa channel, via A2AR-Gs-PKA signaling, leading to increased whole-cell current and NO release, which could be an important mechanism underlying ethanol-induced NO release and vasodilation.
Collapse
Affiliation(s)
- Thanaporn Kaewphaleuk
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Wattana B Watanapa
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| | - Uraiwan Panich
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|