1
|
Lomphithak T, Fadeel B. Die hard: cell death mechanisms and their implications in nanotoxicology. Toxicol Sci 2023; 192:kfad008. [PMID: 36752525 PMCID: PMC10109533 DOI: 10.1093/toxsci/kfad008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Cell death is a fundamental biological process, and its fine-tuned regulation is required for life. However, the complexity of regulated cell death is often reduced to a matter of live-dead discrimination. Here, we provide a perspective on programmed or regulated cell death, focusing on apoptosis, pyroptosis, necroptosis, and ferroptosis (the latter three cell death modalities are examples of regulated necrosis). We also touch on other, recently described manifestations of (pathological) cell death including cuproptosis. Furthermore, we address how engineered nanomaterials impact on regulated cell death. We posit that an improved understanding of nanomaterial-induced perturbations of cell death may allow for a better prediction of the consequences of human exposure and could also yield novel approaches by which to mitigate these effects. Finally, we provide examples of the harnessing of nanomaterials to achieve cancer cell killing through the induction of regulated cell death.
Collapse
Affiliation(s)
- Thanpisit Lomphithak
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Bengt Fadeel
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|
2
|
Chromatin compaction precedes apoptosis in developing neurons. Commun Biol 2022; 5:797. [PMID: 35941180 PMCID: PMC9359995 DOI: 10.1038/s42003-022-03704-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 07/11/2022] [Indexed: 11/19/2022] Open
Abstract
While major changes in cellular morphology during apoptosis have been well described, the subcellular changes in nuclear architecture involved in this process remain poorly understood. Imaging of nucleosomes in cortical neurons in vitro before and during apoptosis revealed that chromatin compaction precedes the activation of caspase-3 and nucleus shrinkage. While this early chromatin compaction remained unaffected by pharmacological blockade of the final execution of apoptosis through caspase-3 inhibition, interfering with the chromatin dynamics by modulation of actomyosin activity prevented apoptosis, but resulted in necrotic-like cell death instead. With super-resolution imaging at different phases of apoptosis in vitro and in vivo, we demonstrate that chromatin compaction occurs progressively and can be classified into five stages. In conclusion, we show that compaction of chromatin in the neuronal nucleus precedes apoptosis execution. These early changes in chromatin structure critically affect apoptotic cell death and are not part of the final execution of the apoptotic process in developing cortical neurons. Single-molecule imaging in developing cortical neurons shows that chromatin compaction precedes apoptosis and is an essential part of it, but can be uncoupled from the following apoptotic process.
Collapse
|
3
|
Garbincius JF, Elrod JW. Mitochondrial calcium exchange in physiology and disease. Physiol Rev 2022; 102:893-992. [PMID: 34698550 PMCID: PMC8816638 DOI: 10.1152/physrev.00041.2020] [Citation(s) in RCA: 152] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 08/16/2021] [Accepted: 10/19/2021] [Indexed: 12/13/2022] Open
Abstract
The uptake of calcium into and extrusion of calcium from the mitochondrial matrix is a fundamental biological process that has critical effects on cellular metabolism, signaling, and survival. Disruption of mitochondrial calcium (mCa2+) cycling is implicated in numerous acquired diseases such as heart failure, stroke, neurodegeneration, diabetes, and cancer and is genetically linked to several inherited neuromuscular disorders. Understanding the mechanisms responsible for mCa2+ exchange therefore holds great promise for the treatment of these diseases. The past decade has seen the genetic identification of many of the key proteins that mediate mitochondrial calcium uptake and efflux. Here, we present an overview of the phenomenon of mCa2+ transport and a comprehensive examination of the molecular machinery that mediates calcium flux across the inner mitochondrial membrane: the mitochondrial uniporter complex (consisting of MCU, EMRE, MICU1, MICU2, MICU3, MCUB, and MCUR1), NCLX, LETM1, the mitochondrial ryanodine receptor, and the mitochondrial permeability transition pore. We then consider the physiological implications of mCa2+ flux and evaluate how alterations in mCa2+ homeostasis contribute to human disease. This review concludes by highlighting opportunities and challenges for therapeutic intervention in pathologies characterized by aberrant mCa2+ handling and by summarizing critical unanswered questions regarding the biology of mCa2+ flux.
Collapse
Affiliation(s)
- Joanne F Garbincius
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - John W Elrod
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
4
|
Abstract
Evidence for the importance of zinc for all immune cells and for mounting an efficient and balanced immune response to various environmental stressors has been accumulating in recent years. This article describes the role of zinc in fundamental biological processes and summarizes our current knowledge of zinc's effect on hematopoiesis, including differentiation into immune cell subtypes. In addition, the important role of zinc during activation and function of immune cells is detailed and associated with the specific immune responses to bacteria, parasites, and viruses. The association of zinc with autoimmune reactions and cancers as diseases with increased or decreased immune responses is also discussed. This article provides a broad overview of the manifold roles that zinc, or its deficiency, plays in physiology and during various diseases. Consequently, we discuss why zinc supplementation should be considered, especially for people at risk of deficiency. Expected final online publication date for the Annual Review of Nutrition, Volume 41 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Inga Wessels
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany;
| | | | - Lothar Rink
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany;
| |
Collapse
|
5
|
Latifah SY, Gopalsamy B, Abdul Rahim R, Manaf Ali A, Haji Lajis N. Anticancer Potential of Damnacanthal and Nordamnacanthal from Morinda elliptica Roots on T-lymphoblastic Leukemia Cells. Molecules 2021; 26:molecules26061554. [PMID: 33808969 PMCID: PMC7998966 DOI: 10.3390/molecules26061554] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/24/2022] Open
Abstract
Background: This study reports on the cytotoxic properties of nordamnacanthal and damnacanthal, isolated from roots of Morinda elliptica on T-lymphoblastic leukaemia (CEM-SS) cell lines. Methods: MTT assay, DNA fragmentation, ELISA and cell cycle analysis were carried out. Results: Nordamnacanthal and damnacanthal at IC50 values of 1.7 μg/mL and10 μg/mL, respectively. At the molecular level, these compounds caused internucleosomal DNA cleavage producing multiple 180–200 bp fragments that are visible as a “ladder” on the agarose gel. This was due to the activation of the Mg2+/Ca2+-dependent endonuclease. The induction of apoptosis by nordamnacanthal was different from the one induced by damnacanthal, in a way that it occurs independently of ongoing transcription process. Nevertheless, in both cases, the process of dephosphorylation of protein phosphates 1 and 2A, the ongoing protein synthesis and the elevations of the cytosolic Ca2+ concentration were not needed for apoptosis to take place. Nordamnacanthal was found to have a cytotoxic effect by inducing apoptosis, while damnacanthal caused arrest at the G0/G1 phase of the cell cycle. Conclusion: Damnacanthal and nordamnacanthal have anticancer properties, and could act as potential treatment for T-lymphoblastic leukemia.
Collapse
Affiliation(s)
- Saiful Yazan Latifah
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia;
- Correspondence: ; Tel.: +603-89472308
| | - Banulata Gopalsamy
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia;
| | - Raha Abdul Rahim
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia;
| | - Abdul Manaf Ali
- Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin (UniSZA), Kuala 20300, Terengganu, Malaysia;
| | - Nordin Haji Lajis
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia;
| |
Collapse
|
6
|
Quadros APOD, Almeida LM, Petreanu M, Niero R, Rosa PCP, Sawaya ACHF, Mantovani MS, Gaivão IODM, Maistro EL. Risk assessment via genotoxicity, metabolism, apoptosis, and cell growth effects in a HepG2/C3A cell line upon treatment with Rubus rosifolius (Rosaceae) leaves extract. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2020; 83:495-508. [PMID: 32568621 DOI: 10.1080/15287394.2020.1779888] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Sm. (Rosaceae) is a plant traditionally used in Brazil and some other countries to treat diarrhea, stomach diseases, and as an analgesic, antimicrobial, antihypertensive, and as well as other pharmacological properties. The aim of this study was to examine cytotoxic and genotoxic effects of R. rosifolius leaves extract on HepG2/C3A cells and correlate these findings with the expression of mRNA to underlying mechanisms of action. At concentrations between 0.01 and 100 µg/ml, cytotoxic effects were not detected by the MTT assay. This was confirmed by mRNA induction of the CYP3A4 gene (by RT-qPCR assay). However, genotoxic effects occurred at treatments from 1 µg/ml extract (comet and micronucleus test). An increase in the number of cells in S phase was observed at 100 µg/ml, and an elevation in apoptotic cell number was found for all tested concentrations (10, 20, or 100 µg/ml) (cell cycle and apoptosis analysis by flow cytometry). The genotoxicity induced by the extract was the main cause of the rise in the number of cells undergoing apoptosis, as indicated by rise in mRNA of CASP7 gene, and elevation of cells in the S phase of the cell cycle at the higher tested concentrations, as an attempt to repair genetic damage that occurred. These observations suggest that, despite its pharmacological potential, the use of R. rosifolius leaves extract may pose a risk to the integrity of the genetic material of human cells.
Collapse
Affiliation(s)
- Ana Paula Oliveira De Quadros
- Post-Graduate Program on General and Applied Biology, São Paulo State University - UNESP - Biosciences Institute , Botucatu, SP, Brazil
- Departamento de Biomedicina, Centro Universitário De Rio Preto - UNIRP - São José Do Rio Preto , SP, Brasil
| | - Laíza Moura Almeida
- Marilia Medical School , Marilia, SP, Brazil
- Speech and Hearing Therapy Department, São Paulo State University - UNESP - Faculty of Philosophy and Sciences Marília, SP, Brazil
| | - Marcel Petreanu
- Department of Biological Sciences, Vale Do Itajaí University (UNIVALI) , Itajaí, SC, Brazil
| | - Rivaldo Niero
- Department of Biological Sciences, Vale Do Itajaí University (UNIVALI) , Itajaí, SC, Brazil
| | - Paulo Cesar Pires Rosa
- Faculty of Pharmaceutical Sciences, University of Campinas , Campinas, São Paulo, Brazil
| | | | | | | | - Edson Luis Maistro
- Post-Graduate Program on General and Applied Biology, São Paulo State University - UNESP - Biosciences Institute , Botucatu, SP, Brazil
- Marilia Medical School , Marilia, SP, Brazil
- Speech and Hearing Therapy Department, São Paulo State University - UNESP - Faculty of Philosophy and Sciences Marília, SP, Brazil
| |
Collapse
|
7
|
Allen KN, Vázquez-Medina JP, Lawler JM, Mellish JAE, Horning M, Hindle AG. Muscular apoptosis but not oxidative stress increases with old age in a long-lived diver, the Weddell seal. ACTA ACUST UNITED AC 2019; 222:jeb.200246. [PMID: 31171605 DOI: 10.1242/jeb.200246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 05/30/2019] [Indexed: 01/07/2023]
Abstract
Seals experience repeated bouts of ischemia-reperfusion while diving, potentially exposing their tissues to increased oxidant generation and thus oxidative damage and accelerated aging. We contrasted markers of oxidative damage with antioxidant profiles across age and sex for propulsive (longissismus dorsi) and maneuvering (pectoralis) muscles of Weddell seals to determine whether previously observed morphological senescence is associated with oxidative stress. In longissismus dorsi, old (age 17-26 years) seals exhibited a nearly 2-fold increase in apoptosis over young (age 9-16 years) seals. There was no evidence of age-associated changes in lipid peroxidation or enzymatic antioxidant profiles. In pectoralis, 4-hydroxynonenal-Lys (4-HNE-Lys) levels increased 1.5-fold in old versus young seals, but lipid hydroperoxide levels and apoptotic index did not vary with age. Glutathione peroxidase activity was 1.5-fold higher in pectoralis of old versus young animals, but no other antioxidants changed with age in this muscle. With respect to sex, no differences in lipid hydroperoxides or apoptosis were observed in either muscle. Males had higher HSP70 expression (1.4-fold) and glutathione peroxidase activity (1.3-fold) than females in longissismus dorsi, although glutathione reductase activity was 1.4-fold higher in females. No antioxidants varied with sex in pectoralis. These results show that apoptosis is not associated with oxidative stress in aged Weddell seal muscles. Additionally, the data suggest that adult seals utilize sex-specific antioxidant strategies in longissismus dorsi but not pectoralis to protect skeletal muscles from oxidative damage.
Collapse
Affiliation(s)
- Kaitlin N Allen
- Department of Integrative Biology, University of California Berkeley, 3040 Valley Life Sciences Building #3140, Berkeley, CA 94720, USA
| | - José Pablo Vázquez-Medina
- Department of Integrative Biology, University of California Berkeley, 3040 Valley Life Sciences Building #3140, Berkeley, CA 94720, USA
| | - John M Lawler
- Department of Health and Kinesiology, Texas A&M University, College Station, TX 77840, USA
| | - Jo-Ann E Mellish
- School of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Markus Horning
- Alaska SeaLife Center, 301 Railway Avenue, Seward, AK 99664, USA.,Department of Fisheries & Wildlife, Marine Mammal Institute, Oregon State University, 2030 Marine Science Drive, Newport, OR 97365, USA
| | - Allyson G Hindle
- School of Life Sciences, University of Nevada Las Vegas, 4505 S. Maryland Pkwy, Las Vegas, NV 89154, USA
| |
Collapse
|
8
|
Roles of volume-regulatory anion channels, VSOR and Maxi-Cl, in apoptosis, cisplatin resistance, necrosis, ischemic cell death, stroke and myocardial infarction. CURRENT TOPICS IN MEMBRANES 2019; 83:205-283. [PMID: 31196606 DOI: 10.1016/bs.ctm.2019.03.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
9
|
Jana A, Bhowmick S, Kumar S, Singh K, Garg P, Das N. Self-assembly of Pt(II) based nanoscalar ionic hexagons and their anticancer potencies. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2018.09.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
10
|
Garg P, Pandey S, Hoon S, Jang KJ, Lee MC, Choung YH, Choung PH, Chung JH. JNK2 silencing and caspase-9 activation by hyperosmotic polymer inhibits tumor progression. Int J Biol Macromol 2018; 120:2215-2224. [PMID: 30003914 DOI: 10.1016/j.ijbiomac.2018.07.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/04/2018] [Accepted: 07/06/2018] [Indexed: 11/17/2022]
Abstract
c-Jun N-terminal kinase 2 (JNK2) is primarily responsible for the oncogenic transformation of the transcription factor c-Jun. Expression of the proto-oncogene c-Jun progresses the cell cycle from G1 to S phase, but when its expression becomes awry it leads to uncontrolled proliferation and angiogenesis. Delivering a JNK2 siRNA (siJNK2) in tumor tissue was anticipated to reverse the condition with subsequent onset of apoptosis which predominantly requires an efficient delivering system capable of penetrating through the compact tumor mass. In the present study, it was demonstrated that polymannitol-based vector (PMGT) with inherent hyperosmotic properties was able to penetrate through and deliver the siJNK2 in the subcutaneous tumor of xenograft mice. Hyperosmotic activity of polymannitol was shown to account for the enhanced therapeutic delivery both in vitro and in vivo because of the induction of cyclooxygenase-2 (COX-2) which stimulates caveolin-1 for caveolae-mediated endocytosis of the polyplexes. Further suppression of JNK2 and hence c-Jun expression led to the activation of caspase-9 to induce apoptosis and inhibition of tumor growth in xenograft mice model. The study exemplifies PMGT as an efficient vector for delivering therapeutic molecules in compact tumor tissue and suppression of JNK2 introduces a strategy to inhibit tumor progression.
Collapse
Affiliation(s)
- Pankaj Garg
- Department of Biosystems & Biomaterials Science and Engineering, Seoul National University, Seoul 151-921, Republic of Korea
| | - Shambhavi Pandey
- Department of Biosystems & Biomaterials Science and Engineering, Seoul National University, Seoul 151-921, Republic of Korea
| | - Seonwoo Hoon
- Department of Biosystems & Biomaterials Science and Engineering, Seoul National University, Seoul 151-921, Republic of Korea
| | - Kyoung-Je Jang
- Department of Biosystems & Biomaterials Science and Engineering, Seoul National University, Seoul 151-921, Republic of Korea
| | - Myung Chul Lee
- Department of Biosystems & Biomaterials Science and Engineering, Seoul National University, Seoul 151-921, Republic of Korea
| | - Yun-Hoon Choung
- Department of Otalaryngology, Ajou University School of Medicine, Suwon 443-749, Republic of Korea
| | - Pill-Hoon Choung
- Department of Oral and Maxillofacial Surgery and Dental Research Institute, School of Dentistry, Seoul National University, Seoul 110-774, Republic of Korea.
| | - Jong Hoon Chung
- Department of Biosystems & Biomaterials Science and Engineering, Seoul National University, Seoul 151-921, Republic of Korea; Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea.
| |
Collapse
|
11
|
Anti-Inflammatory Effect of Feiyangchangweiyan Capsule on Rat Pelvic Inflammatory Disease through JNK/NF- κB Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:8476147. [PMID: 29681986 PMCID: PMC5851019 DOI: 10.1155/2018/8476147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/22/2018] [Accepted: 01/24/2018] [Indexed: 11/18/2022]
Abstract
Objectives In this study, we aimed to illustrate the preventive effect and possible mechanisms of Feiyangchangweiyan capsule (FYCWYC) on rat pelvic inflammatory disease (PID) model. Methods To construct the rat PID model, upper genital tract was infected by multipathogen, and then drugs were orally administered for 8 days. The histological examination, immunohistochemical analysis, and ELISA were carried out. Furthermore, Western blotting was used to analyze the expression of Akt, MAPKs, NF-κB p65, and IκB-α in uterus. Results As the results showed, infiltrations of neutrophils and lymphocytes in uterus were significantly suppressed, and IL-1β, IL-6, CXCL-1, and TNF-α were also reduced in a dose-dependent manner. We also found that FYCWYC inhibited apoptosis induced by infection. Furthermore, FYCWYC could block the infection-induced nuclear translocation of NF-κB. We found that FYCWYC treatment only decreased the phosphorylation of JNK induced by infection and had no effects on Akt and P38. Additional, the effects of SP600125, an inhibitor of phospho-JNK, were similar to the results of FYCWYC. Conclusions Taken together, our results demonstrated that FYCWYC had anti-inflammatory effect in pathogen-induced PID model, and the mechanism might be through inhibiting NF-κB nuclear translocation which is mediated by JNK.
Collapse
|
12
|
Jiang L, Zhang L, Nie C, Pei H. Lipid productivity in limnetic Chlorella is doubled by seawater added with anaerobically digested effluent from kitchen waste. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:68. [PMID: 29563971 PMCID: PMC5851330 DOI: 10.1186/s13068-018-1064-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 03/02/2018] [Indexed: 05/24/2023]
Abstract
BACKGROUND An economical strategy for producing microalgae as biofuel feedstock is driven by the freshwater and nutrients input. In this study, seawater was applied to limnetic algal cultivation and the behavior of algae in seawater media was observed including growth, lipid synthesis, and ultrastructure. To make seawater cater algae, a kind of wastewater, anaerobically digested effluent from kitchen waste (ADE-KW), was used as nutrient sources. RESULTS Pure seawater cannot support the growth demand of freshwater microalga, due to high salinity and lack of nutrients. However, it is the conditions triggered the algae to synthesize lipids of 60%, double of lipid content in standard medium BG11. Introducing 3 or 5% ADE-KW (volume percentage) into seawater made algal growth reach the level attained in BG11, while lipid content compared favourably with the level (60%) in pure seawater. This method achieved the goal of fast growth and lipid accumulation simultaneously with the highest lipid productivity (19 mg/L day) at the exponential stage, while BG11 obtained 10.55 mg/L day at the stationary stage as the highest lipid productivity, almost half of that in seawater media. Moreover, the condition for highest lipid productivity enlarged algal cells compared to BG11. Under the condition for highest lipid productivity, Chlorella sorokiniana SDEC-18 had enlarged cells and increased settling efficiency compared to BG11, which facilitated harvest in an energy saving way. CONCLUSIONS The results suggested that combining seawater with ADE-KW to cultivate microalgae had a double function: nutrients and water for algal growth, and high salinity for stimulating lipid accumulation. If this technology was operated in practice, freshwater and non-waste nutrient consumption would be completely obviated.
Collapse
Affiliation(s)
- Liqun Jiang
- School of Environmental Science and Engineering, Shandong University, No. 27 Shanda Nan Road, Jinan, 250100 China
| | - Lijie Zhang
- School of Environmental Science and Engineering, Shandong University, No. 27 Shanda Nan Road, Jinan, 250100 China
| | - Changliang Nie
- School of Environmental Science and Engineering, Shandong University, No. 27 Shanda Nan Road, Jinan, 250100 China
| | - Haiyan Pei
- School of Environmental Science and Engineering, Shandong University, No. 27 Shanda Nan Road, Jinan, 250100 China
- Shandong Provincial Engineering Centre on Environmental Science and Technology, No. 17923 Jingshi Road, Jinan, 250061 China
| |
Collapse
|
13
|
Nagesh R, Kiran Kumar KM, Naveen Kumar M, Patil RH, Kavya K, Babu RL, Ramesh GT, Chidananda Sharma S. Aqueous areca nut extract induces oxidative stress in human lung epithelial A549 cells: Probable role of p21 in inducing cell death. GENE REPORTS 2017. [DOI: 10.1016/j.genrep.2016.12.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
Abstract
This study was conducted to investigate how far dietary zinc (Zn) modifies the histomorphological alterations induced by diabetes in rat kidneys. The animals were divided into negative control group (10 rats). Diabetes was induced in thirty animals by streptozotocin. After confirming diabetes, the animals were divided into three groups (n = 10). Group II served as the positive control group (fed on standard diet), group III was fed on Zn deficient diet, and group IV was fed on Zn supplemented diet. Caspase-3 immune staining was used to estimate the caspase activity. Stereological procedures were used to measure the quantity of the immune stain and the surface area of the Bowman’s space. The renal cortices of group II rats revealed apparent widening of Bowman’s spaces with few apoptotic figures. The filtration barrier showed thickening of the basement membrane. The proximal convoluted tubules showed patchy loss of the apical microvilli with swollen mitochondria. The distal convoluted tubules revealed area of irregular basal enfolding. The picture was aggravated by Zn deficiency in group III besides areas of cortical interstitial fibrosis. The histopathological alterations were minimal in the cortices of group IV. A significant increase of the Bowman’s space surface area in group II and IV while decrease in group III compared with group I. The expression of Caspase-3 density was significantly increased in group II and III compared with group I while in group IV was non significant. In conclusion, dietary Zn modulated renal cortical changes caused by diabetes in rats.
Collapse
Affiliation(s)
- Wael M Elsaed
- a Anatomy & Embryology Department , Faculty of Medicine, Taibah University , Madinah , Saudi Arabia.,b Anatomy & Embryology Department , Faculty of Medicine, Mansoura University , Mansoura , Egypt
| | - Hazem Abdelhamid Mohamed
- a Anatomy & Embryology Department , Faculty of Medicine, Taibah University , Madinah , Saudi Arabia.,c Anatomy &Embryology Department , Faculty of Medicine, Assiut University , Assiut , Egypt
| |
Collapse
|
15
|
O’Keefe SJ, Feltis BN, Piva TJ, Turney TW, Wright PFA. ZnO nanoparticles and organic chemical UV-filters are equally well tolerated by human immune cells. Nanotoxicology 2016; 10:1287-96. [DOI: 10.1080/17435390.2016.1206148] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Sean J. O’Keefe
- School of Medical Sciences, and Nanosafe Australia, RMIT University, Bundoora, Victoria, Australia and
| | - Bryce N. Feltis
- School of Medical Sciences, and Nanosafe Australia, RMIT University, Bundoora, Victoria, Australia and
- Department of Materials Engineering, Monash University, Clayton, Victoria, Australia
| | - Terrence J. Piva
- School of Medical Sciences, and Nanosafe Australia, RMIT University, Bundoora, Victoria, Australia and
| | - Terence W. Turney
- Department of Materials Engineering, Monash University, Clayton, Victoria, Australia
| | - Paul F. A. Wright
- School of Medical Sciences, and Nanosafe Australia, RMIT University, Bundoora, Victoria, Australia and
| |
Collapse
|
16
|
Chen XY, Wen CM, Wu JL, Su YC, Hong JR. Giant seaperch iridovirus (GSIV) induces mitochondria-mediated cell death that is suppressed by bongkrekic acid and cycloheximide in a fish cell line. Virus Res 2015; 213:37-45. [PMID: 26548846 DOI: 10.1016/j.virusres.2015.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 10/30/2015] [Accepted: 11/02/2015] [Indexed: 12/20/2022]
Abstract
Giant seaperch iridovirus (GSIV) induces cell death by an unknown mechanism. We postulated that this mechanism involves mitochondria-mediated cell death. Cell viability assays revealed a steady increase in dead grouper fin cells (GF-1) after GSIV infection, from 11% at 2 days post-infection (dpi) to 67% at 5 dpi. Annexin V/PI staining revealed GSIV infection induced apoptosis in a steadily increasing fraction of cells, from 4% at 1 dpi to 29% at 5 dpi. Furthermore, post-apoptotic necrosis was apparent at 4 and 5 dpi in the late replication stage. In the early replication stage, JC-1 dye revealed mitochondrial membrane potential (ΔΨm) loss in 42% of infected cells at 1 dpi, increasing to 98% at 3 dpi. Phosphatidylserine (PS) exposure and loss of ΔΨm from apoptosis/necrosis was attenuated by treatment with the adenine nucleotide translocase inhibitor bongkrekic acid (BKA) and the protein synthesis inhibitor cyclohexamide (CHX). These data suggest GSIV induces GF-1 apoptotic/necrotic cell death through pathways that require newly synthesized protein and involve the mitochondrial function.
Collapse
Affiliation(s)
- Xin-Yu Chen
- Laboratory of Molecular Virology and Biotechnology, Institute of Biotechnology, National Cheng-Kung University, Tainan 701, Taiwan
| | - Chiu-Ming Wen
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung 811, Taiwan
| | - Jen-Leih Wu
- Laboratory of Marine Molecular Biology and Biotechnology, Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - Yu-Chin Su
- Laboratory of Molecular Virology and Biotechnology, Institute of Biotechnology, National Cheng-Kung University, Tainan 701, Taiwan
| | - Jiann-Ruey Hong
- Laboratory of Molecular Virology and Biotechnology, Institute of Biotechnology, National Cheng-Kung University, Tainan 701, Taiwan.
| |
Collapse
|
17
|
Pedruzzi G, Das PN, Rao KV, Chatterjee S. Understanding PGE2, LXA4 and LTB4 balance during Mycobacterium tuberculosis infection through mathematical model. J Theor Biol 2015; 389:159-70. [PMID: 26551160 DOI: 10.1016/j.jtbi.2015.10.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 09/11/2015] [Accepted: 10/12/2015] [Indexed: 11/24/2022]
Abstract
Infection of humans with Mycobacterium tuberculosis (Mtb) results in diverse outcomes that range from acute disease to establishment of persistence and to even clearance of the pathogen. These different outcomes represent the combined result of host heterogeneity on the one hand, and virulence properties of the infecting strain of pathogen on the other. From the standpoint of the host, the balance between PGE2, LXA4 and LTB4 represents at least one of the factors that dictates the eventual pathophysiology. We therefore built an ODE model to describe the host-pathogen interaction and studied the local stability properties of the system, to obtain the parametric conditions that lead to different disease outcomes. We then modulated levels of the pro- and anti-inflammatory lipid mediators to better understand the convergence between host phenotype and factors that relate to virulence properties of the pathogen. Global sensitivity analysis, using the variance-based method of extended Fourier Amplitude Sensitivity Test (eFAST), revealed that disease severity was indeed defined by combined effects of phenotypic variability at the level of both host and pathogen. Interestingly here, [PGE2] was found to act as a switch between bacterial clearance and acute disease. Our mathematical model suggests that development of more effective treatments for tuberculosis will be contingent upon a better understanding of how the intrinsic variability at the level of both host and pathogen contribute to influence the nature of interactions between these two entities.
Collapse
Affiliation(s)
- Gabriele Pedruzzi
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg 110067, New Delhi, India.
| | - Phonindra Nath Das
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg 110067, New Delhi, India.
| | - Kanury Vs Rao
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg 110067, New Delhi, India.
| | - Samrat Chatterjee
- Translational Health Science and Technology Institute, Drug Discovery Research Centre, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Express Way, Faridabad 121001, Haryana, India.
| |
Collapse
|
18
|
Kao WP, Yang CY, Su TW, Wang YT, Lo YC, Lin SC. The versatile roles of CARDs in regulating apoptosis, inflammation, and NF-κB signaling. Apoptosis 2015; 20:174-95. [PMID: 25420757 DOI: 10.1007/s10495-014-1062-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
CARD subfamily is the second largest subfamily in the DD superfamily that plays important roles in regulating various signaling pathways, including but not limited to NF-kB activation signaling, apoptosis signaling and inflammatory signaling. The CARD subfamily contains 33 human CARD-containing proteins, regulating the assembly of many signaling complexes, including apoptosome, inflammsome, nodosome, the CBM complex, PIDDosome, the TRAF2 complex, and the MAVS signalosome, by homotypic CARD-CARD interactions. The mechanism of how CARDs find the right binding partner to form a specific complex remains unclear. This review uses different classification schemes to update the classification of CARD-containing proteins. Combining the classification based on domain structures, functions, associated signaling complexes, and roles would help better understand the structural and function diversity of CARD-containing proteins. This review also summarizes recent structural studies on CARDs. Especially, the CARD-containing complexes can be divided into the homodimeric, heterodimeric, oligomeric, filamentous CARD complexes and the CARD-ubiquitin complex. This review will give an overview of the versatile roles of CARDs in regulating signaling transduction, as well as the therapeutic drugs targeting CARD-containing proteins.
Collapse
Affiliation(s)
- Wen-Pin Kao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
19
|
Tang S, Huang L, Shi Z, He W. Water-based synthesis of cationic hydrogel particles: effect of the reaction parameters and in vitro cytotoxicity study. J Mater Chem B 2015; 3:2842-2852. [DOI: 10.1039/c4tb01664e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Simple variation of reaction parameters can provide a library of cationic epoxy–amine hydrogel particles with a diverse collection of physical and chemical characteristics, temperature responsiveness, and cytocompatibility.
Collapse
Affiliation(s)
- Shuangcheng Tang
- Department of Materials Science and Engineering
- University of Tennessee
- Knoxville
- USA
| | - Lu Huang
- Department of Materials Science and Engineering
- University of Tennessee
- Knoxville
- USA
| | - Zengqian Shi
- Center for Renewable Carbon
- Department of Forestry
- Wildlife & Fisheries
- University of Tennessee
- Knoxville
| | - Wei He
- Department of Materials Science and Engineering
- University of Tennessee
- Knoxville
- USA
- Department of Mechanical
| |
Collapse
|
20
|
Pandey S, Garg P, Lee S, Choung HW, Choung YH, Choung PH, Chung JH. Nucleotide biosynthesis arrest by silencing SHMT1 function via vitamin B6-coupled vector and effects on tumor growth inhibition. Biomaterials 2014; 35:9332-42. [PMID: 25132602 DOI: 10.1016/j.biomaterials.2014.07.045] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 07/23/2014] [Indexed: 01/15/2023]
Abstract
Serine hydroxymethyltransferase isoforms (SHMT1 & SHMT2α), which serve as scaffold protein for the formation of a multi-enzyme complex and generate one-carbon unit for the de novo thymidylate biosynthesis pathway during DNA synthesis, are vitamin B6 (VB6)-dependent enzyme. Cancer cells with high proliferation intensity need increased SHMT activation which enforces the facilitated-diffusion of VB6 for the continuous functioning of thymidylate synthase cycle. Therefore, SHMT knockdown presents an alternative approach to prevent DNA synthesis in cancer cells; however, its potential to inhibit cancer growth remains unknown so far. Here we demonstrated that VB6 coupled to poly(ester amine) (VBPEA) enforces a high level of VTC (VB6-transporting membrane carriers)-mediated endocytosis of the complexed SHMT1 siRNA (siSHMT1) to interrupt the thymidylate biosynthesis pathway of cancer cells. The detrimental effect of SHMT1 knockdown on the disintegration of multi-enzyme complex resulted in cell cycle arrest and a decrease in cell's genomic DNA content, leading to enhanced apoptotic events in cancer cells. A reduction in tumor size was observed with constant SHMT1 suppression in xenograft mice. This study illustrates how silencing the SHMT1 expression inhibits cancer growth and the increased VB6 channeling for sustenance of cancer cells promotes VB6-coupled vector to elicit enhanced delivery of siSHMT1.
Collapse
Affiliation(s)
- Shambhavi Pandey
- Department of Biosystems & Biomaterials Science and Engineering, Seoul National University, Seoul 151-921, Republic of Korea
| | - Pankaj Garg
- Department of Biosystems & Biomaterials Science and Engineering, Seoul National University, Seoul 151-921, Republic of Korea
| | - Somin Lee
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Republic of Korea
| | - Han-Wool Choung
- Department of Oral and Maxillofacial Surgery and Dental Research Institute, School of Dentistry, Seoul National University, Seoul 110-774, Republic of Korea
| | - Yun-Hoon Choung
- Department of Otalaryngology, Ajou University School of Medicine, Suwon 443-749, Republic of Korea
| | - Pill-Hoon Choung
- Department of Oral and Maxillofacial Surgery and Dental Research Institute, School of Dentistry, Seoul National University, Seoul 110-774, Republic of Korea.
| | - Jong Hoon Chung
- Department of Biosystems & Biomaterials Science and Engineering, Seoul National University, Seoul 151-921, Republic of Korea; Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea.
| |
Collapse
|
21
|
Orlov SN, Platonova AA, Hamet P, Grygorczyk R. Cell volume and monovalent ion transporters: their role in cell death machinery triggering and progression. Am J Physiol Cell Physiol 2013; 305:C361-72. [PMID: 23615964 DOI: 10.1152/ajpcell.00040.2013] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cell death is accompanied by the dissipation of electrochemical gradients of monovalent ions across the plasma membrane that, in turn, affects cell volume via modulation of intracellular osmolyte content. In numerous cell types, apoptotic and necrotic stimuli caused cell shrinkage and swelling, respectively. Thermodynamics predicts a cell type-specific rather than an ubiquitous impact of monovalent ion transporters on volume perturbations in dying cells, suggesting their diverse roles in the cell death machinery. Indeed, recent data showed that apoptotic collapse may occur in the absence of cell volume changes and even follow cell swelling rather than shrinkage. Moreover, side-by-side with cell volume adjustment, monovalent ion transporters contribute to cell death machinery engagement independently of volume regulation via cell type-specific signaling pathways. Thus, inhibition of Na(+)-K(+)-ATPase by cardiotonic steroids (CTS) rescues rat vascular smooth muscle cells from apoptosis via a novel Na(+)i-K(+)i-mediated, Ca(2+)i-independent mechanism of excitation-transcription coupling. In contrast, CTS kill renal epithelial cells independently of Na(+)-K(+)-ATPase inhibition and increased [Na(+)]i/[K(+)]i ratio. The molecular origin of [Na(+)]i/[K(+)]i sensors involved in the inhibition of apoptosis as well as upstream intermediates of Na(+)i/K(+)i-independent death signaling triggered by CTS remain unknown.
Collapse
Affiliation(s)
- Sergei N Orlov
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada.
| | | | | | | |
Collapse
|
22
|
Bhowmik A, Das N, Pal U, Mandal M, Bhattacharya S, Sarkar M, Jaisankar P, Maiti NC, Ghosh MK. 2,2'-diphenyl-3,3'-diindolylmethane: a potent compound induces apoptosis in breast cancer cells by inhibiting EGFR pathway. PLoS One 2013; 8:e59798. [PMID: 23555785 PMCID: PMC3610887 DOI: 10.1371/journal.pone.0059798] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 02/19/2013] [Indexed: 11/18/2022] Open
Abstract
Despite recent advances in medicine, 30-40% of patients with breast cancer show recurrence underscoring the need for improved effective therapy. In this study, by in vitro screening we have selected a novel synthetic indole derivative 2,2'-diphenyl-3,3'-diindolylmethane (DPDIM) as a potential anti- breast cancer agent. DPDIM induces apoptosis both in vitro in breast cancer cells MCF7, MDA-MB 231 and MDA-MB 468 and in vivo in 7,12-dimethylbenz[α]anthracene (DMBA) induced Sprague-Dawley (SD) rat mammary tumor. Our in vitro studies show that DPDIM exerts apoptotic effect by negatively regulating the activity of EGFR and its downstream molecules like STAT3, AKT and ERK1/2 which are involved in the proliferation and survival of these cancer cells. In silico predictions also suggest that DPDIM may bind to EGFR at its ATP binding site. DPDIM furthermore inhibits EGF induced increased cell viability. We have also shown decreased expression of pro-survival factor Bcl-XL as well as increase in the level of pro-apoptotic proteins like Bax, Bad, Bim in DPDIM treated cells in vitro and in vivo. Our results further indicate that the DPDIM induced apoptosis is mediated through mitochondrial apoptotic pathway involving the caspase-cascade. To the best of our knowledge this is the first report of DPDIM for its anticancer activity. Altogether this report suggests that DPDIM could be an effective therapeutic agent for breast cancer.
Collapse
Affiliation(s)
- Arijit Bhowmik
- Signal Transduction in Cancer and Stem Cells laboratory, Division of Cancer Biology and Inflammatory Disorder, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Kolkata, West Bengal, India
| | - Nilanjana Das
- Signal Transduction in Cancer and Stem Cells laboratory, Division of Cancer Biology and Inflammatory Disorder, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Kolkata, West Bengal, India
| | - Uttam Pal
- Structural Biology and Bioinformatics Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Kolkata, West Bengal, India
| | - Madhumita Mandal
- Chemistry Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Kolkata, West Bengal, India
| | - Seemana Bhattacharya
- Signal Transduction in Cancer and Stem Cells laboratory, Division of Cancer Biology and Inflammatory Disorder, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Kolkata, West Bengal, India
| | - Moumita Sarkar
- Signal Transduction in Cancer and Stem Cells laboratory, Division of Cancer Biology and Inflammatory Disorder, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Kolkata, West Bengal, India
| | - Parasuraman Jaisankar
- Chemistry Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Kolkata, West Bengal, India
| | - Nakul C. Maiti
- Structural Biology and Bioinformatics Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Kolkata, West Bengal, India
| | - Mrinal K. Ghosh
- Signal Transduction in Cancer and Stem Cells laboratory, Division of Cancer Biology and Inflammatory Disorder, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Kolkata, West Bengal, India
| |
Collapse
|
23
|
Synthesis and evaluation of a series of novel imidazolidinone analogues of 6-aminoflavone as anticancer and anti-inflammatory agents. Med Chem Res 2013. [DOI: 10.1007/s00044-013-0486-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
24
|
Fasciola hepatica: Histological demonstration of apoptosis in the reproductive organs of flukes of triclabendazole-sensitive and triclabendazole-resistant isolates, and in field-derived flukes from triclabendazole-treated hosts, using in situ hybridisation to visualise endonuclease-generated DNA strand breaks. Vet Parasitol 2013; 191:240-51. [DOI: 10.1016/j.vetpar.2012.09.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 09/05/2012] [Accepted: 09/06/2012] [Indexed: 11/17/2022]
|
25
|
Yin QQ, Dong CF, Dong SQ, Dong XL, Hong Y, Hou XY, Luo DZ, Pei JJ, Liu XP. AGEs induce cell death via oxidative and endoplasmic reticulum stresses in both human SH-SY5Y neuroblastoma cells and rat cortical neurons. Cell Mol Neurobiol 2012; 32:1299-309. [PMID: 22717618 DOI: 10.1007/s10571-012-9856-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Accepted: 05/31/2012] [Indexed: 11/26/2022]
Abstract
Advanced glycation endproducts (AGEs) are elevated in aging and neurodegenerative diseases such as Alzheimer's disease (AD), and they can stimulate the generation of reactive oxygen species (ROSs) via NADPH oxidase, induce oxidative stress that lead to cell death. In the current study, we investigated the molecular events underlying the process that AGEs induce cell death in SH-SY5Y cells and rat cortical neurons. We found: (1) AGEs increase intracellular ROSs; (2) AGEs cause cell death after ROSs increase; (3) oxidative stress-induced cell death is inhibited via the blockage of AGEs receptor (RAGE), the down-regulation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, and the increase of scavenging by anti-oxidant alpha-lipoic acid (ALA); (4) endoplasmic reticulum (ER) stress was triggered by AGE-induced oxidative stress, resulting in the activation of C/EBP homologous protein (CHOP) and caspase-12 that consequently initiates cell death, taurine-conjugated ursodeoxycholic acid (TUDCA) inhibited AGE-induced ER stress and cell death. Blocking RAGE-NADPH oxidase, and RAGE-NADPH oxidase-ROSs and ER stress scavenging pathways could efficiently prevent the oxidative and ER stresses, and consequently inhibited cell death. Our results suggest a new prevention and or therapeutic approach in AGE-induced cell death.
Collapse
Affiliation(s)
- Qing-Qing Yin
- Department of Senile Neurology, Provincial Hospital Affiliated to Shandong University, Jinan, 250021, Shandong, China
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Mashima T, Seimiya H, Chen Z, Kataoka S, Tsuruo T. Apoptosis resistance in tumor cells. Cytotechnology 2012; 27:293-308. [PMID: 19002800 DOI: 10.1023/a:1008058031511] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Various antitumor agents induce apoptotic cell death in tumor cells. Since the apoptosis program in tumor cells plays a critical role in the chemotherapy-induced tumor cell killing, it is suggested that the defect in the signaling pathway of apoptosis could cause a new form of multidrug resistance in tumor cells. This article describes the recent findings concerning the mechanisms of chemotherapy-induced apoptosis and discusses the implication of apoptosis resistance in cancer chemotherapy.
Collapse
Affiliation(s)
- T Mashima
- Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113, Japan
| | | | | | | | | |
Collapse
|
27
|
Juszczak K, Kaszuba-Zwoińska J, Chorobik P, Ziomber A, Thor PJ. The effect of hyperosmolar stimuli and cyclophosphamide on the culture of normal rat urothelial cells in vitro. Cell Mol Biol Lett 2012; 17:196-205. [PMID: 22287017 PMCID: PMC6275770 DOI: 10.2478/s11658-012-0002-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 01/17/2012] [Indexed: 11/20/2022] Open
Abstract
Highly concentrated urine may induce a harmful effect on the urinary bladder. Therefore, we considered osmolarity of the urine as a basic pathomechanism of mucosal damage. The influence of both cyclophosphamide (CYP) and hyperosmolar stimuli (HS) on the urothelium are not well described. The purpose was to evaluate the effect of CYP and HS on rat urothelial cultured cells (RUCC). 15 Wistar rats were used for RUCC preparation. RUCC were exposed to HS (2080 and 3222 mOsm/l NaCl) for 15 min and CYP (1 mg/ml) for 4 hrs. APC-labelled annexin V was used to quantitatively determine the percentage of apoptotic cells and propidium iodide (PI) as a standard flow cytometric viability probe to distinguish necrotic cells from viable ones. Annexin V-APC (+), annexin V-APC and PI (+), and PI (+) cells were analysed as apoptotic, dead, and necrotic cells, respectively. The results were presented in percentage values. The flow cytometric analysis was done on a FACSCalibur Flow Cytometer using Cell-Quest software. Treatment with 2080 and 3222 mOsm/l HS resulted in 23.7 ± 3.9% and 26.0 ± 1.5% apoptotic cells, respectively, 14.3 ± 1.4% and 19.4 ± 2.7% necrotic cells, respectively and 60.5 ± 1.4% and 48.6 ± 5.3% dead cells, respectively. The effect of CYP on RUCC was similar to the effect of HS. After CYP the apoptotic and necrotic cells were 23.1 ± 0.3% and 17.9 ± 7.4%, respectively. The percentage of dead cells was 57.7 ± 10.8%. CYP and HS induced apoptosis and necrosis in RUCC. 3222 mOsm/l HS had the most harmful effect based on the percentage of necrotic and apoptotic cells.
Collapse
Affiliation(s)
- Kajetan Juszczak
- Department of Pathophysiology, Jagiellonian University, Medical College, Czysta 18, 31-121 Cracow, Poland.
| | | | | | | | | |
Collapse
|
28
|
Structural features of caspase-activating complexes. Int J Mol Sci 2012; 13:4807-4818. [PMID: 22606010 PMCID: PMC3344246 DOI: 10.3390/ijms13044807] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 03/28/2012] [Accepted: 04/10/2012] [Indexed: 12/19/2022] Open
Abstract
Apoptosis, also called programmed cell death, is an orderly cellular suicide program that is critical for the development, immune regulation and homeostasis of a multi-cellular organism. Failure to control this process can lead to serious human diseases, including many types of cancer, neurodegenerative diseases, and autoimmununity. The process of apoptosis is mediated by the sequential activation of caspases, which are cysteine proteases. Initiator caspases, such as caspase-2, -8, -9, and -10, are activated by formation of caspase-activating complexes, which function as a platform to recruit caspases, providing proximity for self-activation. Well-known initiator caspase-activating complexes include (1) DISC (Death Inducing Signaling Complex), which activates caspases-8 and 10; (2) Apoptosome, which activates caspase-9; and (3) PIDDosome, which activates caspase-2. Because of the fundamental biological importance of capases, many structural and biochemical studies to understand the molecular basis of assembly mechanism of caspase-activating complexes have been performed. In this review, we summarize previous studies that have examined the structural and biochemical features of caspase-activating complexes. By analyzing the structural basis for the assembly mechanism of the caspase-activating complex, we hope to provide a comprehensive understanding of caspase activation by these important oligomeric complexes.
Collapse
|
29
|
Ramasamy S, Abdul Wahab N, Zainal Abidin N, Manickam S. Effect of extracts from Phyllanthus watsonii Airy Shaw on cell apoptosis in cultured human breast cancer MCF-7 cells. ACTA ACUST UNITED AC 2012; 65:341-9. [PMID: 22217449 DOI: 10.1016/j.etp.2011.11.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 11/06/2011] [Accepted: 11/29/2011] [Indexed: 11/16/2022]
Abstract
Species of Phyllanthus have traditionally been used for hundreds of years for treating many ailments including diabetes, anemia, bronchitis and hepatitis. The present study aims to investigate the cytotoxic and apoptotic effects of methanol (PWM), hexane (PWH) and ethyl acetate (PWE) extracts from the leaves of the endemic plant Phyllanthus watsonii Airy Shaw (Phyllanthaceae) on MCF-7 human breast cancer cells. We observed that the PWM, PWH and PWE extracts were cytotoxic and selectively inhibited the growth and proliferation of MCF-7 cells compared to untreated control in a dose dependent manner with an IC(50) of 12.7 ± 4.65, 7.9 ± 0.60 and 7.7 ± 0.29 μg/ml, respectively. However, the extracts were not toxic at these concentrations to normal human lung fibroblast MRC-5 cells. Cell death induced by PWM, PWH and PWE extracts were mainly due to apoptosis which was characterized by apoptotic morphological changes and a nuclear DNA fragmentation. Caspase-3 activation following P. watsonii extracts treatment was also evident for apoptotic cell death which was preceded by an S phase cell cycle perturbation. The results suggested that the cytotoxic activity of P. watsonii extracts was related to an early event of cell cycle perturbation and a later event of apoptosis. Hence, P. watsonii displays potential to be further exploited in the discovery and development of new anticancer agents.
Collapse
Affiliation(s)
- Sujatha Ramasamy
- Institute of Biological Sciences, Faculty of Science, University Malaya, 50603 Kuala Lumpur, Malaysia.
| | | | | | | |
Collapse
|
30
|
Modulatory profiling identifies mechanisms of small molecule-induced cell death. Proc Natl Acad Sci U S A 2011; 108:E771-80. [PMID: 21896738 DOI: 10.1073/pnas.1106149108] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cell death is a complex process that plays a vital role in development, homeostasis, and disease. Our understanding of and ability to control cell death is impeded by an incomplete characterization of the full range of cell death processes that occur in mammalian systems, especially in response to exogenous perturbations. We present here a general approach to address this problem, which we call modulatory profiling. Modulatory profiles are composed of the changes in potency and efficacy of lethal compounds produced by a second cell death-modulating agent in human cell lines. We show that compounds with the same characterized mechanism of action have similar modulatory profiles. Furthermore, clustering of modulatory profiles revealed relationships not evident when clustering lethal compounds based on gene expression profiles alone. Finally, modulatory profiling of compounds correctly predicted three previously uncharacterized compounds to be microtubule-destabilizing agents, classified numerous compounds that act nonspecifically, and identified compounds that cause cell death through a mechanism that is morphologically and biochemically distinct from previously established ones.
Collapse
|
31
|
Platonova A, Koltsova S, Maksimov GV, Grygorczyk R, Orlov SN. The death of ouabain-treated renal epithelial C11-MDCK cells is not mediated by swelling-induced plasma membrane rupture. J Membr Biol 2011; 241:145-54. [PMID: 21584679 DOI: 10.1007/s00232-011-9371-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 05/05/2011] [Indexed: 10/18/2022]
Abstract
This study examined the role of cell volume modulation in plasma membrane rupture and death documented in ouabain-treated renal epithelial cells. Long-term exposure to ouabain caused massive death of C11-MDCK (Madin-Darby canine kidney) epithelial cells, documented by their detachment, chromatin cleavage and complete loss of lactate dehydrogenase (LDH), but did not affect the survival of vascular smooth muscle cells (VSMCs) from the rat aorta. Unlike the distinct impact on cell survival, 2-h exposure to ouabain led to sharp elevation of the [Na⁺](i)/[K⁺](i) ratio in both cell types. A similar increment of Na⁺(i) content was evoked by sustained inhibition of Na⁺,K⁺-ATPase in K⁺-free medium. However, in contrast to ouabain, C11-MDCK cells survived perfectly during 24-h exposure to K⁺-free medium. At 3 h, the volume of ouabain-treated C11-MDCK cells and VSMCs, measured by the recently developed dual-image surface reconstruction technique, was increased by 16 and 12%, respectively, whereas 5-10 min before the detachment of ouabain-treated C11-MDCK cells, their volume was augmented by ~30-40%. To examine the role of modest swelling in the plasma membrane rupture of ouabain-treated cells, we compared actions of hypotonic medium on volume and LDH release. We observed that LDH release from hypoosmotically swollen C11-MDCK cells was triggered when their volume was increased by approximately fivefold. Thus, our results showed that the rupture of plasma membranes in ouabain-treated C11-MDCK cells was not directly caused by cell volume modulation evoked by Na⁺,K⁺-ATPase inhibition and inversion of the [Na⁺](i)/[K⁺](i) ratio.
Collapse
Affiliation(s)
- Alexandra Platonova
- Research Centre, Centre Hospitalier de l'Université de Montréal (CRCHUM)-Technopôle Angus, 2901 Rachel Est, Montreal, QC H1W4A4, Canada
| | | | | | | | | |
Collapse
|
32
|
Yu X, Zhou J, Wang Z, Cai W. Preparation of visible light-responsive AgBiO3 bactericide and its control effect on the Microcystis aeruginosa. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2010; 101:265-70. [DOI: 10.1016/j.jphotobiol.2010.07.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 07/14/2010] [Accepted: 07/19/2010] [Indexed: 10/19/2022]
|
33
|
John E, Laskow TC, Buchser WJ, Pitt BR, Basse PH, Butterfield LH, Kalinski P, Lotze MT. Zinc in innate and adaptive tumor immunity. J Transl Med 2010; 8:118. [PMID: 21087493 PMCID: PMC3002329 DOI: 10.1186/1479-5876-8-118] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Accepted: 11/18/2010] [Indexed: 12/19/2022] Open
Abstract
Zinc is important. It is the second most abundant trace metal with 2-4 grams in humans. It is an essential trace element, critical for cell growth, development and differentiation, DNA synthesis, RNA transcription, cell division, and cell activation. Zinc deficiency has adverse consequences during embryogenesis and early childhood development, particularly on immune functioning. It is essential in members of all enzyme classes, including over 300 signaling molecules and transcription factors. Free zinc in immune and tumor cells is regulated by 14 distinct zinc importers (ZIP) and transporters (ZNT1-8). Zinc depletion induces cell death via apoptosis (or necrosis if apoptotic pathways are blocked) while sufficient zinc levels allows maintenance of autophagy. Cancer cells have upregulated zinc importers, and frequently increased zinc levels, which allow them to survive. Based on this novel synthesis, approaches which locally regulate zinc levels to promote survival of immune cells and/or induce tumor apoptosis are in order.
Collapse
Affiliation(s)
- Erica John
- Department of Surgery, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | - Thomas C Laskow
- Department of Surgery, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | - William J Buchser
- Department of Surgery, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | - Bruce R Pitt
- Department of Occupational Health, University of Pittsburgh, 100 Technology Drive, Pittsburgh, PA 15219, USA
| | - Per H Basse
- Department of Immunology, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | - Lisa H Butterfield
- Department of Medicine, University of Pittsburgh, 3550 Terrace Street, Pittsburgh, PA 15261, USA
| | - Pawel Kalinski
- Department of Surgery, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | - Michael T Lotze
- Department of Surgery, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| |
Collapse
|
34
|
Rodrigues GC, Oliveira LJ, Monteiro JM, Lima ARD, Gonçalez PO, Hernandez-Blazquez FJ, Leiser R, Kfoury Jr JR. Ultrastructural characterization of bovine umbilical cord blood cells. PESQUISA VETERINARIA BRASILEIRA 2010. [DOI: 10.1590/s0100-736x2010001000015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The umbilical cord blood (UCB) is an important source of pluripotent stem cells, which motivated researches on ontogeny and transplantation. The morphological characterization of umbilical cord cells is the first step to establish subsequent experiments on these areas. Although some information on humans can be found, no data on UCB is available for bovines. Therefore, this work is the first attempt to conduct an ultrastructural characterization of bovine umbilical cord blood. Blood was collected from the umbilical cord of twenty fetuses by punction of the umbilical vein. Samples were processed for whole leucocytes observation by centrifugation and the buffy coat was collected. Cells were washed and pelleted and prepared according to the standard protocol of the transmission electron microscopy. The presence of cells with morphologic characteristics compatible with the precursors from the erythrocytic, neutrophilic, eosinophilic, basophilic, and lymphocytic lineages was observed. Atypical cells with peculiar morphological features, strongly similar to apoptotic cells, were seen. Bovine neutrophils with three types of cytoplasmic granules were also found in the blood. The ultrastructural characteristics of observed bovine UCB cells where similar to those found in other species, suggesting that bovines could possibly constitute an experimental model for approaches on UCB cells research.
Collapse
|
35
|
Specific antibodies induce apoptosis in Trypanosoma cruzi epimastigotes. Parasitol Res 2010; 106:1327-37. [PMID: 20237802 DOI: 10.1007/s00436-010-1803-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 02/16/2010] [Indexed: 01/11/2023]
Abstract
The susceptibility of Trypanosoma cruzi epimastigotes to lysis by normal or immune sera in a complement-dependent reaction has been reported. Mouse immune sera depleted complement-induced damage in epimastigotes characterized by morphological changes and death. The purpose of this work was to study the mechanism of death in epimastigotes exposed to decomplemented mouse immune serum. Epimastigotes were maintained in RPMI medium. Immune sera were prepared in mice by immunization with whole crude epimastigote extracts. Viable epimastigotes were incubated with decomplemented normal or immune sera at 37 degrees C. By electron microscopy, agglutinated parasites showed characteristic patterns of membrane fusion between two or more parasites; this fusion also produced interdigitation of the subpellicular microtubules. Apoptosis was determined by flow cytometry using terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and annexin V assays. Nuclear features were examined by 4'-,6-diamidino-2'-phenylindole diHCI cytochemistry that demonstrated apoptotic nuclear condensation. Caspase activity was also measured. TUNEL results showed that parasites incubated with decomplemented immune sera took up 26% of specific fluorescence as compared to 1.3% in parasites incubated with decomplemented normal sera. The Annexin-V-Fluos staining kit revealed that epimastigotes incubated with decomplemented immune sera exposed phosphatidylserine on the external leaflet of the plasma membrane. The incubation of parasites with immune sera showed caspase 3 activity. We conclude that specific antibodies are able to induce agglutination and apoptosis in epimastigotes, although the pathway is not elucidated.
Collapse
|
36
|
Powe DG, Keightley A, Chester M, Sisson M, Jones NS. Mucosal thickening in allergic and idiopathic rhinitis mucosa and its probable mechanism. Ann Allergy Asthma Immunol 2009; 103:14-9. [PMID: 19663121 DOI: 10.1016/s1081-1206(10)60137-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND Rhinitis is a prevalent condition characterized by nasal mucosal irritation. Conflicting studies suggest that the mucosa of patients with allergic and nonallergic rhinitis undergoes thickening. OBJECTIVES To investigate mucosal epithelial thickening in allergic and idiopathic rhinitis and to determine if the mechanism is a consequence of altered proliferation or apoptosis. METHODS Interactive image analysis was performed on histologic sections of inferior nasal turbinate tissue to measure epithelial thickness in 3 patient groups. Patients with allergic rhinitis (n = 15), patients with idiopathic rhinitis (n = 15), and a healthy control group (n = 10) were compared. Immunohistochemical and morphometric analyses were used to quantify cell proliferation (Mib-1), apoptosis (terminal uridine nick end labeling technique), and the antiapoptotic factor Bcl-2. RESULTS Idiopathic epithelium was found to be significantly thickened compared with healthy epithelium (P = .04). Epithelial thickening occurred in some allergic patients, but the findings did not reach statistical significance (P = .22). No statistically significant difference in proliferation as evidenced by Mib-1 staining was seen among the 3 patient groups. Allergic mucosa differed statistically significantly to that of patients with idiopathic rhinitis (P = .01) and healthy controls (P = .005) in showing increased Bcl-2 staining, suggesting reduced apoptosis. CONCLUSIONS Allergic epithelium shows significantly decreased apoptosis, which might explain the increased epithelial thickening seen in some study participants. This mechanism does not, however, appear to explain the significantly increased thickening seen in the idiopathic epithelium. Furthermore, both allergic and nonallergic epithelium showed regional thinning and thickening possibly involving an inflammatory infiltrate.
Collapse
Affiliation(s)
- Desmond G Powe
- Department of Histopathology and Surgical Science, Queen's Medical Centre, Nottingham University Hospitals Trust, Nottingham, England.
| | | | | | | | | |
Collapse
|
37
|
Guejes L, Zurgil N, Stambler I, Deutsch M, Gilburd B, Shoenfeld Y. The Influence of Different Cultivating Conditions on Polymorphonuclear Leukocyte Apoptotic Process In Vitro, II: Ultrastructural Characteristics of PMN Populations Incubated with Proteinase 3 Anti-neutrophil Autoantibodies. Ultrastruct Pathol 2009; 29:37-51. [PMID: 15931779 DOI: 10.1080/01913120490897547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The present study shows the effects of proteinase 3 anti-neutrophil cytoplasmic autoantibodies (PR3 ANCA) on polymorphonuclear leukocytes (PMN) apoptotic processes in vitro. The results are part of a generalized morphological analysis of 3 identical experiments on the influence of different cultivating conditions on the apoptotic processes. As controls, the authors use the results on spontaneous PMN apoptosis (Guejes L, Zurgil N, Deutsch M, Gilburd B, Shoenfeld Y. Ultrastruct Pathol. 2003;27: 23-32) and PMN populations incubated with normal human IgG. Interaction of PR3 ANCA with the target antigen proteinase 3 (PR3) is one of the crucial pathogenic factors in Wegener granulomatosis (systemic autoimmune vasculitis). Following 40min and 12h incubation, PMN populations were evaluated by light microscopy, transmission electron microscopy, and immunogold electron microscopy. Twelve-hour cultures, either control or incubated with PR3 ANCA, contained different cell forms ranging from normal cells to cells at the final stages of apoptosis. Neutrophils at the state of complete manifestation of apoptotic phenotype were analyzed and compared. Three morphologically distinct apoptotic cell lines were characteristic for all PMN populations studied, regardless of cultivating conditions. As in spontaneous apoptosis, these cell lines are code-named "first," "second," and "third." The present study has shown, firstly, that in the presence of PR3 ANCA, all 3 apoptotic lines were modified or altered. Secondly, the modifications or alterations of apoptotic cell lines effected by PR3 ANCA are specific for each cell line: the "first" line is characterized by intensification and modification of activation; the "second" by vacuolized cell forms; and the "third" by pronounced lytic alterations of the nuclei, while the cytoplasm is fully identical to that of control cell lines.
Collapse
Affiliation(s)
- L Guejes
- The Biophysical Interdisciplinary Jerome Scottenstein Center for the Research and Technology of the Cellome, Physics Department, Bar-Ilan University, Ramat Gan, Israel
| | | | | | | | | | | |
Collapse
|
38
|
Story MD, Stephens LC, Tomasovic SP, Meyn RE. A Role for Calcium in Regulating Apoptosis in Rat Thymocytes Irradiatedin Vitro. Int J Radiat Biol 2009; 61:243-51. [PMID: 1351912 DOI: 10.1080/09553009214550871] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Thymus-derived lymphocytes undergo death after gamma-irradiation via a pathway termed apoptosis, or programmed cell death. An early step in this pathway is the production of nucleosome-sized fragments of DNA. DNA fragmentation was used as the endpoint in these investigations to examine apoptosis in lymphocytes extracted from the rat thymus and irradiated in vitro. In unirradiated thymocytes the level of DNA fragmentation rose to 15% by the first hour of culture, where it remained approximately constant until the fifth hour. In contrast, thymocytes irradiated with a dose of 2.5 Gy exhibited a large and dramatic increase in DNA fragmentation beginning 2 h postirradiation. DNA fragmentation measured 6 h after irradiation was detected after as little as 0.25 Gy and reached a maximum of 90% with 10 Gy. Metabolic control of DNA fragmentation after irradiation was evidenced by the suppression of DNA fragmentation when thymocytes were incubated with cyclohexamide or actinomycin D. When gamma-irradiated thymocytes were incubated with the Ca2+ chelator EGTA, DNA fragmentation was reduced significantly. BAPTA-AM, a highly specific intracellular Ca2+ chelator, essentially eliminated DNA fragmentation in cells irradiated with 2.5 Gy and, unlike EGTA, eliminated the background level of fragmentation in unirradiated samples. Therefore, our data are consistent with the possibility that Ca2+ serves as a second messenger to induce DNA fragmentation in irradiated thymocytes, suggesting a common pathway for cells prompted to enter apoptosis from seemingly dissimilar interval events.
Collapse
Affiliation(s)
- M D Story
- Department of Experimental Radiotherapy, University of Texas M.D. Anderson Cancer Center, Houston 77030
| | | | | | | |
Collapse
|
39
|
Ffrench M, Souchier C, Magaud JP, Berger F, Devaux Y, Bryon PA. Cell Proliferation in B Malignant Lymphomas: Comparison with Other Biological Characteristics and Prognostic Significance. Leuk Lymphoma 2009. [DOI: 10.3109/10428199209064900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
40
|
Cell population, viability, and some key immunomodulatory molecules in different milk somatic cell samples in dairy cows. J DAIRY RES 2009; 76:356-64. [DOI: 10.1017/s0022029909004129] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Immune cells in the milk are most important in combating pathogens that invade the mammary gland. This study investigated the immune competence and viability of somatic milk cells that are already resident in milk and udders free of infection. Cells were studied in freshly removed milk to simulate conditions in the udder. Effects of incubation, cell preparation, and immunological stimulation with 0·5 μg/ml lipopolysaccharide (LPS) fromEscherichia coliwere analysed. Viability and differential counts of milk cells between high and low somatic cell count (SCC) quarters, and cisternal and alveolar milk with and without LPS stimulation were compared. Incubation and preparation of cells caused a cell loss which further increased with time independently of SCC and milk fraction. The viability of these cells was stable until 3 h post incubation and decreased until 6 h. Cell populations differed between both investigations, but did not change during the course of the experiment. mRNA expression of immune and apoptosis factors of the cells, measured by qPCR, did not change substantially: mRNA expression of caspase 3, Toll like receptor 4, and GM-CSF did not change, whereas the expression of the death receptor Fas/APO-1 (CD95), lactoferrin and lysozyme was decreased at 6 h. Cyclooxygenase-2 and TNF-α mRNA expression were decreased after 6 h of LPS treatment. In comparison with other studies in vivo or in vitro (in cell culture), in this study where cells are studied ex vivo (removed from the udder but kept in their natural environment, the milk) resident milk cells seem to be more vulnerable, less viable, less able to respond to stimulation, and thus less immune competent compared with cells that have freshly migrated from blood into milk after pathogen stimulation. The cell viability and differential cell count differed between high- and low-SCC milk and between cisternal and alveolar milk depending on the individual cow. In conclusion, the results support the view that for a most effective defence against invading pathogens the mammary gland is reliant on the recruitment of fresh immune cells from the blood.
Collapse
|
41
|
Chen M, Divangahi M, Gan H, Shin DSJ, Hong S, Lee DM, Serhan CN, Behar SM, Remold HG. Lipid mediators in innate immunity against tuberculosis: opposing roles of PGE2 and LXA4 in the induction of macrophage death. ACTA ACUST UNITED AC 2008; 205:2791-801. [PMID: 18955568 PMCID: PMC2585850 DOI: 10.1084/jem.20080767] [Citation(s) in RCA: 270] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Virulent Mycobacterium tuberculosis (Mtb) induces a maladaptive cytolytic death modality, necrosis, which is advantageous for the pathogen. We report that necrosis of macrophages infected with the virulent Mtb strains H37Rv and Erdmann depends on predominant LXA(4) production that is part of the antiinflammatory and inflammation-resolving action induced by Mtb. Infection of macrophages with the avirulent H37Ra triggers production of high levels of the prostanoid PGE(2), which promotes protection against mitochondrial inner membrane perturbation and necrosis. In contrast to H37Ra infection, PGE(2) production is significantly reduced in H37Rv-infected macrophages. PGE(2) acts by engaging the PGE(2) receptor EP2, which induces cyclic AMP production and protein kinase A activation. To verify a role for PGE(2) in control of bacterial growth, we show that infection of prostaglandin E synthase (PGES)(-/-) macrophages in vitro with H37Rv resulted in significantly higher bacterial burden compared with wild-type macrophages. More importantly, PGES(-/-) mice harbor significantly higher Mtb lung burden 5 wk after low-dose aerosol infection with virulent Mtb. These in vitro and in vivo data indicate that PGE(2) plays a critical role in inhibition of Mtb replication.
Collapse
Affiliation(s)
- Minjian Chen
- Department of Medicine, Division of Rheumatology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Martin D, Lenardo M. Morphological, biochemical, and flow cytometric assays of apoptosis. ACTA ACUST UNITED AC 2008; Chapter 14:Unit 14.13. [PMID: 18265108 DOI: 10.1002/0471142727.mb1413s49] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
As programmed cell death (PCD), or apoptosis, has emerged as an important regulator of development and homeostasis in multicellular organisms, methods to quantify apoptosis and to distinguish it from necrosis have been developed. Necrosis refers to the morphology usually associated with accidental cell death, while apoptosis is seen when cell death is programmed or physiologically regulated. This unit presents a set of assays for these purposes, many of which are technically very simple. Featured in this unit is the TUNEL method of detecting cells that exhibit DNA fragmentation, which can also be performed on tissue sections to locate apoptotic cells in situ.
Collapse
Affiliation(s)
- D Martin
- National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | | |
Collapse
|
43
|
Trinkaus K, Wenisch S, Leiser R, Gravendyck M, Kaleta EF. Psittacine beak and feather disease infected cells show a pattern of apoptosis in psittacine skin. Avian Pathol 2007; 27:555-61. [DOI: 10.1080/03079459808419383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
44
|
M. Noteborn MH, Koch G. Chicken anaemia virus infection: Molecular basis of pathogenicity. Avian Pathol 2007; 24:11-31. [DOI: 10.1080/03079459508419046] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
45
|
Chen SP, Wu JL, Su YC, Hong JR. Anti-Bcl-2 family members, zfBcl-x(L) and zfMcl-1a, prevent cytochrome c release from cells undergoing betanodavirus-induced secondary necrotic cell death. Apoptosis 2007; 12:1043-60. [PMID: 17245642 DOI: 10.1007/s10495-006-0032-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Nervous necrosis virus (NNV)-induced, host cell apoptosis mediates secondary necrosis by an ill-understood process. In this study, redspotted grouper nervous necrosis virus (RGNNV) is shown to induce mitochondria-mediated necrotic cell death in GL-av cells (fish cells) via cytochrome c release, and anti-apoptotic proteins are shown to protect these cells from death. Western blots revealed that cytochrome c release coincided with disruption of mitochondrial ultrastructure and preceded necrosis, but did not correlate with caspases activation. To identify the mediator(s) of this necrotic process, a protein synthesis inhibitor (cycloheximide; CHX; 0.33 microg/ml) was used to block cytochrome c release as well as PS exposure and mitochondrial membrane permeability transition pore (MMP) loss. CHX (0.33 microg/ml) completely blocked viral protein B2 expression, and partly blocked protein A, protein alpha, and a pro-apoptotic death protein (Bad) expression. Overexpression of B2 gene increased necrotic-like cell death up to 30% at 48 h post-transfection, suggesting that newly synthesized protein (B2) may be involved in this necrotic process. Finally, necrotic death was prevented by overexpression of Bcl-2 family proteins, zfBcl-x(L) and xfMcl-1a. Thus, new protein synthesis and release of cytochrome c are required for RGNNV-induced necrotic cell death, which can be blocked by anti-apoptotic Bcl-2 members.
Collapse
Affiliation(s)
- Shi-Ping Chen
- Laboratory of Molecular Virology and Biotechnology, Institute of Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| | | | | | | |
Collapse
|
46
|
Park HH, Lo YC, Lin SC, Wang L, Yang JK, Wu H. The death domain superfamily in intracellular signaling of apoptosis and inflammation. Annu Rev Immunol 2007; 25:561-86. [PMID: 17201679 PMCID: PMC2904440 DOI: 10.1146/annurev.immunol.25.022106.141656] [Citation(s) in RCA: 408] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The death domain (DD) superfamily comprising the death domain (DD) subfamily, the death effector domain (DED) subfamily, the caspase recruitment domain (CARD) subfamily, and the pyrin domain (PYD) subfamily is one of the largest domain superfamilies. By mediating homotypic interactions within each domain subfamily, these proteins play important roles in the assembly and activation of apoptotic and inflammatory complexes. In this chapter, we review the molecular complexes assembled by these proteins, the structural and biochemical features of these domains, and the molecular interactions mediated by them. By analyzing the potential molecular basis for the function of these domains, we hope to provide a comprehensive understanding of the function, structure, interaction, and evolution of this important family of domains.
Collapse
Affiliation(s)
- Hyun Ho Park
- Department of Biochemistry, Weill Medical College and Graduate School of Medical Sciences of Cornell University, New York, New York 10021, USA
| | | | | | | | | | | |
Collapse
|
47
|
Krieg RC, Messmann H, Schlottmann K, Endlicher E, Seeger S, Schölmerich J, Knuechel R. Intracellular Localization is a Cofactor for the Phototoxicity of Protoporphyrin IX in the Gastrointestinal Tract: In Vitro Study¶†. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2003)0780393iliacf2.0.co2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
48
|
Feng WG, Sui HS, Han ZB, Chang ZL, Zhou P, Liu DJ, Bao S, Tan JH. Effects of follicular atresia and size on the developmental competence of bovine oocytes: A study using the well-in-drop culture system. Theriogenology 2007; 67:1339-50. [PMID: 17420040 DOI: 10.1016/j.theriogenology.2007.01.017] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Accepted: 01/09/2007] [Indexed: 11/24/2022]
Abstract
The effect of granulosa cell (GC) apoptosis and follicle size on the competence of bovine oocytes were studied using a well-in-drop (WID) oocyte/embryo culture system, which allows identification of follicular origin. Hatching rates of blastocysts did not differ (P>0.05) between oocytes cultured in the WID system (13%) and those cultured in the conventional group system (16%). Hatching rates of blastocysts were higher (P<0.05) in early atretic (17%) than in non-atretic (8%) and late atretic follicles (10%) of the same size (4-8mm), and in 6-8mm (22%) than in 4-5mm follicles (15%) at the early atretic stage. More oocytes (P<0.05) from late atretic (17%) than from non-atreteic (7%) or early atretic follicles (9%) of the same size (4-8mm) were arrested at Grade 1 cumulus expansion (only cells in the peripheral two layers began to expand). Similarly, more oocytes from 2 to 3mm follicles (30%) than from 6 to 8mm follicles (21%) at the same (late) atretic stage had Grade 1 cumulus expansion (P<0.05). Hatching blastocyst percentages of oocytes with Grade 3 (all layers of the cumulus except corona radiate cells expanded) or Grade 4 (full) cumulus expansion were higher in early atretic (20%) than in non-atretic (13%) or late atretic follicles (12%). Hatching blastocyst percentages of oocytes from follicles at the early atretic stage increased as cumulus expanded from Grade 2 (9%) to Grade 4 (27%). Regardless of the degree of follicle atresia, 72-76% of the floating cells in the follicular fluid (FF) were undergoing apoptosis. The floating cell density in FF was highly (r=0.6-0.7) correlated with oocyte developmental potency. In conclusion, the WID culture system was as efficient as group culture and allowed identification of follicular origin. Furthermore, the developmental potential of oocytes was affected by GC apoptosis, follicle size and cumulus expansion, and the floating cell density in FF could be used as a simple and non-invasive marker of oocyte quality.
Collapse
Affiliation(s)
- W-G Feng
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City 271018, PR China
| | | | | | | | | | | | | | | |
Collapse
|
49
|
|
50
|
Abstract
The development of atherosclerosis is influenced by genetic, lifestyle and nutritional risk factors. Zn and metallothionein deficiency can enhance oxidative-stress-related signalling processes in endothelial cells, and since changes in available plasma Zn may affect the Zn status of the endothelium, Zn deficiency could be a risk factor for IHD. Although the association of Zn with many proteins is essential for their function, three key signalling processes are highlighted as being principal targets for the effect of Zn deficiency: the activation of NF-κB, the activation of caspase enzymes and the signalling of NO. The need to develop a reliable indicator of Zn status is critical to any epidemiological approach for studying the relationship between Zn status and disease incidence. Studies using appropriate animal models and investigating how the plasma Zn pool influences endothelial intracellular labile Zn would be helpful in appreciating the importance of Zn deficiency in atherogenesis.
Collapse
Affiliation(s)
- John H Beattie
- Division of Cellular Integrity, Rowett Research Institute, Greenburn Road, Bucksburn, Aberdeen AB21 9SB, Scotland, UK.
| | | |
Collapse
|