1
|
Bai S, Luo H, Tong H, Wu Y, Yuan Y. Advances on transfer and maintenance of large DNA in bacteria, fungi, and mammalian cells. Biotechnol Adv 2024; 76:108421. [PMID: 39127411 DOI: 10.1016/j.biotechadv.2024.108421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/07/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
Advances in synthetic biology allow the design and manipulation of DNA from the scale of genes to genomes, enabling the engineering of complex genetic information for application in biomanufacturing, biomedicine and other areas. The transfer and subsequent maintenance of large DNA are two core steps in large scale genome rewriting. Compared to small DNA, the high molecular weight and fragility of large DNA make its transfer and maintenance a challenging process. This review outlines the methods currently available for transferring and maintaining large DNA in bacteria, fungi, and mammalian cells. It highlights their mechanisms, capabilities and applications. The transfer methods are categorized into general methods (e.g., electroporation, conjugative transfer, induced cell fusion-mediated transfer, and chemical transformation) and specialized methods (e.g., natural transformation, mating-based transfer, virus-mediated transfection) based on their applicability to recipient cells. The maintenance methods are classified into genomic integration (e.g., CRISPR/Cas-assisted insertion) and episomal maintenance (e.g., artificial chromosomes). Additionally, this review identifies the major technological advantages and disadvantages of each method and discusses the development for large DNA transfer and maintenance technologies.
Collapse
Affiliation(s)
- Song Bai
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, 300072 Tianjin, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Han Luo
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, 300072 Tianjin, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Hanze Tong
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, 300072 Tianjin, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Yi Wu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, 300072 Tianjin, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China. @tju.edu.cn
| | - Yingjin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, 300072 Tianjin, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
2
|
Meyer A, Hinman V. The arm of the starfish: The far-reaching applications of Patiria miniata as a model system in evolutionary, developmental, and regenerative biology. Curr Top Dev Biol 2022; 147:523-543. [PMID: 35337461 DOI: 10.1016/bs.ctdb.2022.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Many species of echinoderms have long been considered model research organisms in biology. Historically, much of this research has focused on the embryology of sea urchins and the use of their extensive gene regulatory networks as a tool to understand how the genome controls cell state specification and patterning. The establishment of Patiria miniata, the bat sea star, as a research organism has allowed us to expand on the concepts explored with sea urchins, viewing these genetic networks through a comparative lens, gaining great insight into the evolutionary mechanisms that shape developmental diversity. Extensive molecular tools have been developed in P. miniata, designed to explore gene expression dynamics and build gene regulatory networks. Echinoderms also have a robust set of bioinformatic and computational resources, centered around echinobase.org, an extensive database containing multiomic, developmental, and experimental resources for researchers. In addition to comparative evolutionary development, P. miniata is a promising system in its own right for studying whole body regeneration, metamorphosis and body plan development, as well as marine disease.
Collapse
Affiliation(s)
- Anne Meyer
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Veronica Hinman
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States.
| |
Collapse
|
3
|
Wang W, Zheng G, Lu Y. Recent Advances in Strategies for the Cloning of Natural Product Biosynthetic Gene Clusters. Front Bioeng Biotechnol 2021; 9:692797. [PMID: 34327194 PMCID: PMC8314000 DOI: 10.3389/fbioe.2021.692797] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/18/2021] [Indexed: 11/13/2022] Open
Abstract
Microbial natural products (NPs) are a major source of pharmacological agents. Most NPs are synthesized from specific biosynthetic gene clusters (BGCs). With the rapid increase of sequenced microbial genomes, large numbers of NP BGCs have been discovered, regarded as a treasure trove of novel bioactive compounds. However, many NP BGCs are silent in native hosts under laboratory conditions. In order to explore their therapeutic potential, a main route is to activate these silent NP BGCs in heterologous hosts. To this end, the first step is to accurately and efficiently capture these BGCs. In the past decades, a large number of effective technologies for cloning NP BGCs have been established, which has greatly promoted drug discovery research. Herein, we describe recent advances in strategies for BGC cloning, with a focus on the preparation of high-molecular-weight DNA fragment, selection and optimization of vectors used for carrying large-size DNA, and methods for assembling targeted DNA fragment and appropriate vector. The future direction into novel, universal, and high-efficiency methods for cloning NP BGCs is also prospected.
Collapse
Affiliation(s)
- Wenfang Wang
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Guosong Zheng
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Yinhua Lu
- College of Life Sciences, Shanghai Normal University, Shanghai, China.,Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, China
| |
Collapse
|
4
|
Grazioli S, Petris G. Synthetic genomics for curing genetic diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 182:477-520. [PMID: 34175051 DOI: 10.1016/bs.pmbts.2021.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
From the beginning of the genome sequencing era, it has become increasingly evident that genetics plays a role in all diseases, of which only a minority are single-gene disorders, the most common target of current gene therapies. However, the majority of people have some kind of health problems resulting from congenital genetic mutations (over 6000 diseases have been associated to genes, https://www.omim.org/statistics/geneMap) and most genetic disorders are rare and only incompletely understood. The vision and techniques applied to the synthesis of genomes may help to address unmet medical needs from a chromosome and genome-scale perspective. In this chapter, we address the potential therapy of genetic diseases from a different outlook, in which we no longer focus on small gene corrections but on higher-order tools for genome manipulation. These will play a crucial role in the next years, as they prelude to a much deeper understanding of the architecture of the human genome and a more accurate modeling of human diseases, offering new therapeutic opportunities.
Collapse
Affiliation(s)
| | - Gianluca Petris
- Medical Research Council Laboratory of Molecular Biology (MRC LMB), Cambridge, United Kingdom.
| |
Collapse
|
5
|
Heterologous biosynthesis as a platform for producing new generation natural products. Curr Opin Biotechnol 2020; 66:123-130. [DOI: 10.1016/j.copbio.2020.06.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/27/2020] [Accepted: 06/30/2020] [Indexed: 12/18/2022]
|
6
|
Qi R, Swayambhu G, Bruno M, Zhang G, Pfeifer BA. Consolidated plasmid Design for Stabilized Heterologous Production of the complex natural product Siderophore Yersiniabactin. Biotechnol Prog 2020; 37:e3103. [PMID: 33190425 DOI: 10.1002/btpr.3103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 10/24/2020] [Accepted: 11/11/2020] [Indexed: 11/09/2022]
Abstract
Yersiniabactin (Ybt) is a hybrid polyketide-nonribosomal complex natural product also known as a siderophore for its iron chelation properties. The native producer of Ybt, Yersinia pestis, is a priority pathogen responsible for the plague in which the siderophore properties of Ybt are used to sequester iron and other metal species upon host infection. Alternatively, the high metal binding properties of Ybt enable a plethora of potentially valuable applications benefiting from metal remediation and/or recovery. For these applications, a surrogate production source is highly preferred relative to the pathogenic native host. In this work, we present a modification to the heterologous Escherichia coli production system established for Ybt biosynthesis. In particular, the multiple plasmids originally used to express the genetic pathway required for Ybt biosynthesis were consolidated to a single, copy-amplifiable plasmid. In so doing, plasmid stability was improved from ~30% to ≥80% while production values maintained at 20-30% of the original system, which resulted in titers of 0.5-3 mg/L from shake flask vessels.
Collapse
Affiliation(s)
- Ruiquan Qi
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, New York, USA
| | - Girish Swayambhu
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, New York, USA
| | - Michael Bruno
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, New York, USA
| | - Guojian Zhang
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, New York, USA.,Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, People's Republic of China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, People's Republic of China
| | - Blaine A Pfeifer
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, New York, USA.,Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, People's Republic of China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, People's Republic of China
| |
Collapse
|
7
|
Üstüntanır Dede AF, Arslanyolu M. Construction and dynamic characterization of a Tetrahymena thermophila macronuclear artificial chromosome. Gene 2020; 748:144697. [PMID: 32325092 DOI: 10.1016/j.gene.2020.144697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 11/18/2022]
Abstract
Artificial chromosomes were previously generated for use in bacteria, protists, yeast and human cells. A Tetrahymena thermophila artificial chromosome could serve as a versatile platform to study diverse aspects of Tetrahymena biology and beyond. Here, we placed a C3-type rDNA replication origin and telomere sequences from T. thermophila into a pNeo4 vector, producing the first T. thermophila macronuclear artificial chromosome (TtAC1). Circular or linear forms of TtAC1 can be stably transformed into both vegetative and conjugative T. thermophila cells. Linear TtAC1 was stably double in copy number under antibiotic selection, but its copy number was dropping without antibiotic selection pressure. Southern blot, Real-Time PCR and E. coli retransformation analyses together showed that TtAC1 vector did not integrate into the macronuclear genome, and was maintained as a linear or a circular chromosome in T. thermophila macronucleus under antibiotic selection. The use of TtAC1 for recombinant protein production was demonstrated by western blot analysis of a secreted 27 kDa TtsfGFP-12XHis protein. We present the first macronuclear artificial chromosome with species-specific chromosomal elements for use in T. thermophila studies and to aid broad recombinant biotechnology applications.
Collapse
Affiliation(s)
- Ayça Fulya Üstüntanır Dede
- Department of Biology, Institute of Graduate Programs, Eskisehir Technical University, Yunusemre Campus, Eskisehir 26470, Turkey
| | - Muhittin Arslanyolu
- Department of Biology, Faculty of Sciences, Eskisehir Technical University, Yunusemre Campus, Eskisehir 26470, Turkey.
| |
Collapse
|
8
|
Moralli D, Monaco ZL. Gene expressing human artificial chromosome vectors: Advantages and challenges for gene therapy. Exp Cell Res 2020; 390:111931. [PMID: 32126238 PMCID: PMC7166075 DOI: 10.1016/j.yexcr.2020.111931] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 02/27/2020] [Indexed: 02/01/2023]
Abstract
After the construction of genomic libraries with yeast artificial chromosomes in the late 1980's for gene isolation and expression studies in cells, human artificial chromosomes were then a natural development in the 1990's, based on the same principles of formation requiring centromeric sequences for generating functional artificial chromosomes. Over the past twenty years, they became a useful research tool for understanding human chromosome structure and organization, and important vectors for expression of large genes and gene loci and the regulatory regions for full expression. Now they are being modified and developed for gene therapy both ex vivo and in vivo. The advantages of using HAC vectors are that they remain autonomous and behave as a normal chromosome. They are attractive for therapy studies without the harmful consequences of integration of exogenous DNA into host chromosomes. HAC vectors are also the only autonomous stable vectors that accommodate large sequences (>100 kb) compared to other vectors. The challenges of manipulating these vectors for efficient delivery of genes into human cells is still ongoing, but we have made advances in transfer of gene expressing HAC vectors using the helper free (HF) amplicon vector technology for generating de novo HAC in human cells. Efficient multigene delivery was successfully achieved following simultaneous infection with two HF amplicons in a single treatment and the input DNA recombined to form a de novo HAC. Potentially several amplicons containing gene expressing HAC vectors could be transduced simultaneously which would increase the gene loading capacity of the vectors for delivery and studying full expression in human cells.
Collapse
Affiliation(s)
- Daniela Moralli
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Zoia L Monaco
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA.
| |
Collapse
|
9
|
Musiol-Kroll EM, Tocchetti A, Sosio M, Stegmann E. Challenges and advances in genetic manipulation of filamentous actinomycetes - the remarkable producers of specialized metabolites. Nat Prod Rep 2019; 36:1351-1369. [PMID: 31517370 DOI: 10.1039/c9np00029a] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Covering: up to February 2019Actinomycetes are Gram positive bacteria of the phylum Actinobacteria. These organisms are one of the most important sources of structurally diverse, clinically used antibiotics and other valuable bioactive products, as well as biotechnologically relevant enzymes. Most strains were discovered by their ability to produce a given molecule and were often poorly characterized, physiologically and genetically. The development of genetic methods for Streptomyces and related filamentous actinomycetes has led to the successful manipulation of antibiotic biosynthesis to attain structural modification of microbial metabolites that would have been inaccessible by chemical means and improved production yields. Moreover, genome mining reveals that actinomycete genomes contain multiple biosynthetic gene clusters (BGCs), however only a few of them are expressed under standard laboratory conditions, leading to the production of the respective compound(s). Thus, to access and activate the so-called "silent" BGCs, to improve their biosynthetic potential and to discover novel natural products methodologies for genetic manipulation are required. Although different methods have been applied for many actinomycete strains, genetic engineering is still remaining very challenging for some "underexplored" and poorly characterized actinomycetes. This review summarizes the strategies developed to overcome the obstacles to genetic manipulation of actinomycetes and allowing thereby rational genetic engineering of this industrially relevant group of microorganisms. At the end of this review we give some tips to researchers with limited or no previous experience in genetic manipulation of actinomycetes. The article covers the most relevant literature published until February 2019.
Collapse
Affiliation(s)
- Ewa M Musiol-Kroll
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Microbiology/Biotechnology, Auf der Morgenstelle 28, Tübingen, 72076, Germany.
| | | | | | - Evi Stegmann
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Microbiology/Biotechnology, Auf der Morgenstelle 28, Tübingen, 72076, Germany.
| |
Collapse
|
10
|
Buckley KM, Dong P, Cameron RA, Rast JP. Bacterial artificial chromosomes as recombinant reporter constructs to investigate gene expression and regulation in echinoderms. Brief Funct Genomics 2019; 17:362-371. [PMID: 29045542 DOI: 10.1093/bfgp/elx031] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Genome sequences contain all the necessary information-both coding and regulatory sequences-to construct an organism. The developmental process translates this genomic information into a three-dimensional form. One interpretation of this translation process can be described using gene regulatory network (GRN) models, which are maps of interactions among regulatory gene products in time and space. As high throughput investigations reveal increasing complexity within these GRNs, it becomes apparent that efficient methods are required to test the necessity and sufficiency of regulatory interactions. One of the most complete GRNs for early development has been described in the purple sea urchin, Strongylocentrotus purpuratus. This work has been facilitated by two resources: a well-annotated genome sequence and transgenes generated in bacterial artificial chromosome (BAC) constructs. BAC libraries played a central role in assembling the S. purpuratus genome sequence and continue to serve as platforms for generating reporter constructs for use in expression and regulatory analyses. Optically transparent echinoderm larvae are highly amenable to transgenic approaches and are therefore particularly well suited for experiments that rely on BAC-based reporter transgenes. Here, we discuss the experimental utility of BAC constructs in the context of understanding developmental processes in echinoderm embryos and larvae.
Collapse
Affiliation(s)
- Katherine M Buckley
- Department of Biological Sciences, George Washington University, Washington, DC, USA
| | - Ping Dong
- California Institute of Technology, California, USA
| | - R Andrew Cameron
- Beckman Institute Center for Computational Regulatory Genomics, California Institute for Technology, California, USA
| | | |
Collapse
|
11
|
Buckley KM, Ettensohn CA. Techniques for analyzing gene expression using BAC-based reporter constructs. Methods Cell Biol 2019; 151:197-218. [PMID: 30948008 PMCID: PMC7215881 DOI: 10.1016/bs.mcb.2019.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
To characterize the complex regulatory control of gene expression using fluorescent protein reporters, it is often necessary to analyze large genomic regions. Bacteria artificial chromosome (BAC) vectors, which are able to support DNA fragments of up to 300kb, provide stable platforms for experimental manipulation. Using phage-based systems of homologous recombination, BACs can be efficiently engineered for a variety of aims. These include expressing fluorescent proteins to delineate gene expression boundaries using high-resolution, in vivo microscopy, tracing cell lineages using stable fluorescent proteins, perturbing endogenous protein function by expressing dominant negative forms, interfering with development by mis-expressing transcription factors, and identifying regulatory regions through deletion analysis. Here, we present a series of protocols for identifying BAC clones that contain genes of interest, modifying BACs for use as reporter constructs, and preparing BAC DNA for microinjection into fertilized eggs. Although the protocols here are tailored for use in echinoderm embryonic and larval stages, these methods are easily adaptable for use in other transgenic systems. As fluorescent protein technology continues to expand, so do the potential applications for recombinant BACs.
Collapse
Affiliation(s)
- Katherine M Buckley
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States.
| | - Charles A Ettensohn
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
| |
Collapse
|
12
|
Maxson Jones K, Ankeny RA, Cook-Deegan R. The Bermuda Triangle: The Pragmatics, Policies, and Principles for Data Sharing in the History of the Human Genome Project. JOURNAL OF THE HISTORY OF BIOLOGY 2018; 51:693-805. [PMID: 30390178 PMCID: PMC7307446 DOI: 10.1007/s10739-018-9538-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The Bermuda Principles for DNA sequence data sharing are an enduring legacy of the Human Genome Project (HGP). They were adopted by the HGP at a strategy meeting in Bermuda in February of 1996 and implemented in formal policies by early 1998, mandating daily release of HGP-funded DNA sequences into the public domain. The idea of daily sharing, we argue, emanated directly from strategies for large, goal-directed molecular biology projects first tested within the "community" of C. elegans researchers, and were introduced and defended for the HGP by the nematode biologists John Sulston and Robert Waterston. In the C. elegans community, and subsequently in the HGP, daily sharing served the pragmatic goals of quality control and project coordination. Yet in the HGP human genome, we also argue, the Bermuda Principles addressed concerns about gene patents impeding scientific advancement, and were aspirational and flexible in implementation and justification. They endured as an archetype for how rapid data sharing could be realized and rationalized, and permitted adaptation to the needs of various scientific communities. Yet in addition to the support of Sulston and Waterston, their adoption also depended on the clout of administrators at the US National Institutes of Health (NIH) and the UK nonprofit charity the Wellcome Trust, which together funded 90% of the HGP human sequencing effort. The other nations wishing to remain in the HGP consortium had to accommodate to the Bermuda Principles, requiring exceptions from incompatible existing or pending data access policies for publicly funded research in Germany, Japan, and France. We begin this story in 1963, with the biologist Sydney Brenner's proposal for a nematode research program at the Laboratory of Molecular Biology (LMB) at the University of Cambridge. We continue through 2003, with the completion of the HGP human reference genome, and conclude with observations about policy and the historiography of molecular biology.
Collapse
Affiliation(s)
- Kathryn Maxson Jones
- Department of History, Princeton University, Princeton, NJ, USA.
- MBL McDonnell Foundation Scholar, Marine Biological Laboratory, Woods Hole, MA, USA.
| | - Rachel A Ankeny
- School of Humanities, The University of Adelaide, Adelaide, Australia
| | - Robert Cook-Deegan
- School for the Future of Innovation in Society, Consortium for Science, Policy & Outcomes, Arizona State University, Barrett & O'Connor Washington Center, Washington, D.C., USA
| |
Collapse
|
13
|
Qi R, Pfeifer BA, Zhang G. Engineering Heterologous Production of Salicylate Glucoside and Glycosylated Variants. Front Microbiol 2018; 9:2241. [PMID: 30294315 PMCID: PMC6158457 DOI: 10.3389/fmicb.2018.02241] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 09/03/2018] [Indexed: 11/24/2022] Open
Abstract
Salicylate 2-O-β-D-glucoside (SAG) is a plant-derived natural product with potential utility as both an anti-inflammatory and as a plant protectant compound. Heterologous biosynthesis of SAG has been established in Escherichia coli through metabolic engineering of the shikimate pathways and introduction of a heterologous biosynthetic step to allow a more directed route to the salicylate precursor. The final SAG compound resulted from the separate introduction of an Arabidopsis thaliana glucosyltransferase enzyme. In this study, a range of heterologous engineering parameters were varied (including biosynthetic pathway construction, expression plasmid, and E. coli strain) for the improvement of SAG specific production in conjunction with a system demonstrating improved plasmid stability. In addition, the glucoside moiety of SAG was systematically varied through the introduction of the heterologous oliose and olivose deoxysugar pathways. Production of analogs was observed for each newly constructed pathway, demonstrating biosynthetic diversification potential; however, production titers were reduced relative to the original SAG compound.
Collapse
Affiliation(s)
- Ruiquan Qi
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Blaine A Pfeifer
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, United States.,Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Guojian Zhang
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, United States.,Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
14
|
Tocchetti A, Donadio S, Sosio M. Large inserts for big data: artificial chromosomes in the genomic era. FEMS Microbiol Lett 2018; 365:4935161. [DOI: 10.1093/femsle/fny064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/13/2018] [Indexed: 02/07/2023] Open
Affiliation(s)
| | - Stefano Donadio
- Naicons Srl, 20139 Milano, Italy
- Ktedogen Srl, Via Ortles 22/4, 20139 Milano, Italy
| | - Margherita Sosio
- Naicons Srl, 20139 Milano, Italy
- Ktedogen Srl, Via Ortles 22/4, 20139 Milano, Italy
| |
Collapse
|
15
|
Dan L, Liu S, Shang S, Zhang H, Zhang R, Li N. Expression of recombinant human lysozyme in bacterial artificial chromosome transgenic mice promotes the growth of Bifidobacterium and inhibits the growth of Salmonella in the intestine. J Biotechnol 2018; 272-273:33-39. [PMID: 29549001 DOI: 10.1016/j.jbiotec.2018.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 02/20/2018] [Accepted: 03/06/2018] [Indexed: 10/17/2022]
Abstract
Targeted gene modification is a novel intervention strategy to increase disease resistance more quickly than traditional animal breeding. Human lysozyme, a natural, non-specific immune factor, participates in innate immunity, exerts a wide range of antimicrobial activities against pathogens, and has immuneregulatory effects. Therefore, it is a candidate gene for improved disease resistance in animals. In this study, we successfully generated a transgenic mouse model by microinjecting a modified bacterial artificial chromosome containing a recombinant human lysozyme (rhLZ) gene into the pronuclei of fertilized mouse embryos. rhLZ was expressed in serum, liver, spleen, lung, kidney, stomach, small intestine, and large intestine but not in milk. rhLZ protein concentrations in the serum of transgenic mice ranged from 2.09 to 2.60 mg/l. To examine the effect of rhLZ on intestinal microbiota, total aerobes, total anaerobes, Clostridium, Enterococcus, Streptococcus, Salmonella, Escherichia coli, Staphylococcus, Bifidobacterium, and Lactobacillus were measured in the intestines of transgenic and wild type mice. Results showed that Bifidobacteria were significantly increased (p < 0.001), whereas Salmonella were significantly decreased (p < 0.001) in transgenic mice compared to wild type mice. Our study suggests that rhLZ expression is a potential strategy to increase animal disease resistance.
Collapse
Affiliation(s)
- Lu Dan
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China; Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200040, China.
| | - Shen Liu
- School of Life Science and Engineering, Foshan University, Foshan 528000, China
| | - Shengzhe Shang
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China
| | - Huihua Zhang
- School of Life Science and Engineering, Foshan University, Foshan 528000, China
| | - Ran Zhang
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China
| | - Ning Li
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
16
|
Nguyen HH, Park J, Hwang S, Kwon OS, Lee CS, Shin YB, Ha TH, Kim M. On-Chip Fluorescence Switching System for Constructing a Rewritable Random Access Data Storage Device. Sci Rep 2018; 8:337. [PMID: 29321500 PMCID: PMC5762669 DOI: 10.1038/s41598-017-16535-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/09/2017] [Indexed: 01/21/2023] Open
Abstract
We report the development of on-chip fluorescence switching system based on DNA strand displacement and DNA hybridization for the construction of a rewritable and randomly accessible data storage device. In this study, the feasibility and potential effectiveness of our proposed system was evaluated with a series of wet experiments involving 40 bits (5 bytes) of data encoding a 5-charactered text (KRIBB). Also, a flexible data rewriting function was achieved by converting fluorescence signals between "ON" and "OFF" through DNA strand displacement and hybridization events. In addition, the proposed system was successfully validated on a microfluidic chip which could further facilitate the encoding and decoding process of data. To the best of our knowledge, this is the first report on the use of DNA hybridization and DNA strand displacement in the field of data storage devices. Taken together, our results demonstrated that DNA-based fluorescence switching could be applicable to construct a rewritable and randomly accessible data storage device through controllable DNA manipulations.
Collapse
Affiliation(s)
- Hoang Hiep Nguyen
- Hazards Monitoring Bionano Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahangno, Yuseong-Gu, Daejeon, 34141, Korea
- Department of Nanobiotechnology, Korea University of Science and Technology (UST), 217 Gajeongno, Yuseong-Gu, Daejeon, 34113, Korea
| | - Jeho Park
- Hazards Monitoring Bionano Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahangno, Yuseong-Gu, Daejeon, 34141, Korea
- Department of Nanobiotechnology, Korea University of Science and Technology (UST), 217 Gajeongno, Yuseong-Gu, Daejeon, 34113, Korea
| | - Seungwoo Hwang
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahangno, Yuseong-Gu, Daejeon, 34141, Korea
| | - Oh Seok Kwon
- Hazards Monitoring Bionano Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahangno, Yuseong-Gu, Daejeon, 34141, Korea
- Department of Nanobiotechnology, Korea University of Science and Technology (UST), 217 Gajeongno, Yuseong-Gu, Daejeon, 34113, Korea
| | - Chang-Soo Lee
- Hazards Monitoring Bionano Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahangno, Yuseong-Gu, Daejeon, 34141, Korea
- Department of Nanobiotechnology, Korea University of Science and Technology (UST), 217 Gajeongno, Yuseong-Gu, Daejeon, 34113, Korea
| | - Yong-Beom Shin
- Hazards Monitoring Bionano Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahangno, Yuseong-Gu, Daejeon, 34141, Korea
- Department of Nanobiotechnology, Korea University of Science and Technology (UST), 217 Gajeongno, Yuseong-Gu, Daejeon, 34113, Korea
| | - Tai Hwan Ha
- Hazards Monitoring Bionano Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahangno, Yuseong-Gu, Daejeon, 34141, Korea.
- Department of Nanobiotechnology, Korea University of Science and Technology (UST), 217 Gajeongno, Yuseong-Gu, Daejeon, 34113, Korea.
| | - Moonil Kim
- Hazards Monitoring Bionano Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahangno, Yuseong-Gu, Daejeon, 34141, Korea.
- Department of Nanobiotechnology, Korea University of Science and Technology (UST), 217 Gajeongno, Yuseong-Gu, Daejeon, 34113, Korea.
- Department of Pathobiology, College of Veterinary Medicine Nursing & Allied Health (CVMNAH), Tuskegee University, Tuskegee, AL, 36088, USA.
| |
Collapse
|
17
|
Close WL, Bhandari A, Hojeij M, Pellett PE. Generation of a novel human cytomegalovirus bacterial artificial chromosome tailored for transduction of exogenous sequences. Virus Res 2017; 242:66-78. [DOI: 10.1016/j.virusres.2017.09.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/11/2017] [Accepted: 09/11/2017] [Indexed: 11/25/2022]
|
18
|
Partier A, Gay G, Tassy C, Beckert M, Feuillet C, Barret P. Molecular and FISH analyses of a 53-kbp intact DNA fragment inserted by biolistics in wheat (Triticum aestivum L.) genome. PLANT CELL REPORTS 2017; 36:1547-1559. [PMID: 28667403 DOI: 10.1007/s00299-017-2173-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 06/26/2017] [Indexed: 06/07/2023]
Abstract
A large, 53-kbp, intact DNA fragment was inserted into the wheat ( Triticum aestivum L.) genome. FISH analyses of individual transgenic events revealed multiple insertions of intact fragments. Transferring large intact DNA fragments containing clusters of resistance genes or complete metabolic pathways into the wheat genome remains a challenge. In a previous work, we showed that the use of dephosphorylated cassettes for wheat transformation enabled the production of simple integration patterns. Here, we used the same technology to produce a cassette containing a 44-kb Arabidopsis thaliana BAC, flanked by one selection gene and one reporter gene. This 53-kb linear cassette was integrated in the bread wheat (Triticum aestivum L.) genome by biolistic transformation. Our results showed that transgenic plants harboring the entire cassette were generated. The inheritability of the cassette was demonstrated in the T1 and T2 generation. Surprisingly, FISH analysis performed on T1 progeny of independent events identified double genomic insertions of intact fragments in non-homoeologous positions. Inheritability of these double insertions was demonstrated by FISH analysis of the T1 generation. Relative conclusions that can be drawn from molecular or FISH analysis are discussed along with future prospects of the engineering of large fragments for wheat transformation or genome editing.
Collapse
Affiliation(s)
- A Partier
- Unité Mixte de Recherche 1095-Institut National de la Recherche Agronomique-Génétique, Diversité et Écophysiologie des Céréales, Domaine de Crouël, 63039, Clermont-Ferrand Cedex 2, France
| | - G Gay
- Unité Mixte de Recherche 1095-Institut National de la Recherche Agronomique-Génétique, Diversité et Écophysiologie des Céréales, Domaine de Crouël, 63039, Clermont-Ferrand Cedex 2, France
| | - C Tassy
- Unité Mixte de Recherche 1095-Institut National de la Recherche Agronomique-Génétique, Diversité et Écophysiologie des Céréales, Domaine de Crouël, 63039, Clermont-Ferrand Cedex 2, France
| | - M Beckert
- Unité Mixte de Recherche 1095-Institut National de la Recherche Agronomique-Génétique, Diversité et Écophysiologie des Céréales, Domaine de Crouël, 63039, Clermont-Ferrand Cedex 2, France
| | - C Feuillet
- Unité Mixte de Recherche 1095-Institut National de la Recherche Agronomique-Génétique, Diversité et Écophysiologie des Céréales, Domaine de Crouël, 63039, Clermont-Ferrand Cedex 2, France
| | - P Barret
- Unité Mixte de Recherche 1095-Institut National de la Recherche Agronomique-Génétique, Diversité et Écophysiologie des Céréales, Domaine de Crouël, 63039, Clermont-Ferrand Cedex 2, France.
| |
Collapse
|
19
|
Abstract
Centromeres are essential for cell division and growth in all eukaryotes, and knowledge of their sequence and structure guides the development of artificial chromosomes for functional cellular biology studies. Centromeric proteins are conserved among eukaryotes; however, centromeric DNA sequences are highly variable. We combined forward and reverse genetic approaches with chromatin immunoprecipitation to identify centromeres of the model diatom Phaeodactylum tricornutum We observed 25 unique centromere sequences typically occurring once per chromosome, a finding that helps to resolve nuclear genome organization and indicates monocentric regional centromeres. Diatom centromere sequences contain low-GC content regions but lack repeats or other conserved sequence features. Native and foreign sequences with similar GC content to P. tricornutum centromeres can maintain episomes and recruit the diatom centromeric histone protein CENH3, suggesting nonnative sequences can also function as diatom centromeres. Thus, simple sequence requirements may enable DNA from foreign sources to persist in the nucleus as extrachromosomal episomes, revealing a potential mechanism for organellar and foreign DNA acquisition.
Collapse
|
20
|
Yun SI, Song BH, Kim JK, Lee YM. Bacterial Artificial Chromosomes: A Functional Genomics Tool for the Study of Positive-strand RNA Viruses. J Vis Exp 2015:e53164. [PMID: 26780115 PMCID: PMC4780872 DOI: 10.3791/53164] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Reverse genetics, an approach to rescue infectious virus entirely from a cloned cDNA, has revolutionized the field of positive-strand RNA viruses, whose genomes have the same polarity as cellular mRNA. The cDNA-based reverse genetics system is a seminal method that enables direct manipulation of the viral genomic RNA, thereby generating recombinant viruses for molecular and genetic studies of both viral RNA elements and gene products in viral replication and pathogenesis. It also provides a valuable platform that allows the development of genetically defined vaccines and viral vectors for the delivery of foreign genes. For many positive-strand RNA viruses such as Japanese encephalitis virus (JEV), however, the cloned cDNAs are unstable, posing a major obstacle to the construction and propagation of the functional cDNA. Here, the present report describes the strategic considerations in creating and amplifying a genetically stable full-length infectious JEV cDNA as a bacterial artificial chromosome (BAC) using the following general experimental procedures: viral RNA isolation, cDNA synthesis, cDNA subcloning and modification, assembly of a full-length cDNA, cDNA linearization, in vitro RNA synthesis, and virus recovery. This protocol provides a general methodology applicable to cloning full-length cDNA for a range of positive-strand RNA viruses, particularly those with a genome of >10 kb in length, into a BAC vector, from which infectious RNAs can be transcribed in vitro with a bacteriophage RNA polymerase.
Collapse
Affiliation(s)
- Sang-Im Yun
- Department of Animal, Dairy, and Veterinary Sciences, Utah Science Technology and Research, College of Agriculture and Applied Sciences, Utah State University
| | - Byung-Hak Song
- Department of Animal, Dairy, and Veterinary Sciences, Utah Science Technology and Research, College of Agriculture and Applied Sciences, Utah State University
| | - Jin-Kyoung Kim
- Department of Animal, Dairy, and Veterinary Sciences, Utah Science Technology and Research, College of Agriculture and Applied Sciences, Utah State University
| | - Young-Min Lee
- Department of Animal, Dairy, and Veterinary Sciences, Utah Science Technology and Research, College of Agriculture and Applied Sciences, Utah State University;
| |
Collapse
|
21
|
Hagedorn C, Lipps HJ, Rupprecht S. The epigenetic regulation of autonomous replicons. Biomol Concepts 2015; 1:17-30. [PMID: 25961982 DOI: 10.1515/bmc.2010.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The discovery of autonomous replicating sequences (ARSs) in Saccharomyces cerevisiae in 1979 was considered a milestone in unraveling the regulation of replication in eukaryotic cells. However, shortly afterwards it became obvious that in Saccharomyces pombe and all other higher organisms ARSs were not sufficient to initiate independent replication. Understanding the mechanisms of replication is a major challenge in modern cell biology and is also a prerequisite to developing application-oriented autonomous replicons for gene therapeutic treatments. This review will focus on the development of non-viral episomal vectors, their use in gene therapeutic applications and our current knowledge about their epigenetic regulation.
Collapse
|
22
|
Flavivirus reverse genetic systems, construction techniques and applications: a historical perspective. Antiviral Res 2014; 114:67-85. [PMID: 25512228 PMCID: PMC7173292 DOI: 10.1016/j.antiviral.2014.12.007] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 11/26/2014] [Accepted: 12/03/2014] [Indexed: 12/20/2022]
Abstract
The study of flaviviruses, which cause some of the most important emerging tropical and sub-tropical human arbovirus diseases, has greatly benefited from the use of reverse genetic systems since its first development for yellow fever virus in 1989. Reverse genetics technology has completely revolutionized the study of these viruses, making it possible to manipulate their genomes and evaluate the direct effects of these changes on their biology and pathogenesis. The most commonly used reverse genetics system is the infectious clone technology. Whilst flavivirus infectious clones provide a powerful tool, their construction as full-length cDNA molecules in bacterial vectors can be problematic, laborious and time consuming, because they are often unstable, contain unwanted induced substitutions and may be toxic for bacteria due to viral protein expression. The incredible technological advances that have been made during the past 30years, such as the use of PCR or new sequencing methods, have allowed the development of new approaches to improve preexisting systems or elaborate new strategies that overcome these problems. This review summarizes the evolution and major technical breakthroughs in the development of flavivirus reverse genetics technologies and their application to the further understanding and control of these viruses and their diseases.
Collapse
|
23
|
Engineering complex biological systems in bacteria through recombinase-assisted genome engineering. Nat Protoc 2014; 9:1320-36. [DOI: 10.1038/nprot.2014.084] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
24
|
Consolidation of the genetic and cytogenetic maps of turbot (Scophthalmus maximus) using FISH with BAC clones. Chromosoma 2014; 123:281-91. [PMID: 24473579 DOI: 10.1007/s00412-014-0452-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 01/09/2014] [Accepted: 01/10/2014] [Indexed: 10/25/2022]
Abstract
Bacterial artificial chromosomes (BAC) have been widely used for fluorescence in situ hybridization (FISH) mapping of chromosome landmarks in different organisms, including a few in teleosts. In this study, we used BAC-FISH to consolidate the previous genetic and cytogenetic maps of the turbot (Scophthalmus maximus), a commercially important pleuronectiform. The maps consisted of 24 linkage groups (LGs) but only 22 chromosomes. All turbot LGs were assigned to specific chromosomes using BAC probes obtained from a turbot 5× genomic BAC library. It consisted of 46,080 clones with inserts of at least 100 kb and <5 % empty vectors. These BAC probes contained gene-derived or anonymous markers, most of them linked to quantitative trait loci (QTL) related to productive traits. BAC clones were mapped by FISH to unique marker-specific chromosomal positions, which showed a notable concordance with previous genetic mapping data. The two metacentric pairs were cytogenetically assigned to LG2 and LG16, and the nucleolar organizer region (NOR)-bearing pair was assigned to LG15. Double-color FISH assays enabled the consolidation of the turbot genetic map into 22 linkage groups by merging LG8 with LG18 and LG21 with LG24. In this work, a first-generation probe panel of BAC clones anchored to the turbot linkage and cytogenetical map was developed. It is a useful tool for chromosome traceability in turbot, but also relevant in the context of pleuronectiform karyotypes, which often show small hardly identifiable chromosomes. This panel will also be valuable for further integrative genomics of turbot within Pleuronectiformes and teleosts, especially for fine QTL mapping for aquaculture traits, comparative genomics, and whole-genome assembly.
Collapse
|
25
|
Mizuno CM, Rodriguez-Valera F, Kimes NE, Ghai R. Expanding the marine virosphere using metagenomics. PLoS Genet 2013; 9:e1003987. [PMID: 24348267 PMCID: PMC3861242 DOI: 10.1371/journal.pgen.1003987] [Citation(s) in RCA: 183] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 10/15/2013] [Indexed: 11/19/2022] Open
Abstract
Viruses infecting prokaryotic cells (phages) are the most abundant entities of the biosphere and contain a largely uncharted wealth of genomic diversity. They play a critical role in the biology of their hosts and in ecosystem functioning at large. The classical approaches studying phages require isolation from a pure culture of the host. Direct sequencing approaches have been hampered by the small amounts of phage DNA present in most natural habitats and the difficulty in applying meta-omic approaches, such as annotation of small reads and assembly. Serendipitously, it has been discovered that cellular metagenomes of highly productive ocean waters (the deep chlorophyll maximum) contain significant amounts of viral DNA derived from cells undergoing the lytic cycle. We have taken advantage of this phenomenon to retrieve metagenomic fosmids containing viral DNA from a Mediterranean deep chlorophyll maximum sample. This method allowed description of complete genomes of 208 new marine phages. The diversity of these genomes was remarkable, contributing 21 genomic groups of tailed bacteriophages of which 10 are completely new. Sequence based methods have allowed host assignment to many of them. These predicted hosts represent a wide variety of important marine prokaryotic microbes like members of SAR11 and SAR116 clades, Cyanobacteria and also the newly described low GC Actinobacteria. A metavirome constructed from the same habitat showed that many of the new phage genomes were abundantly represented. Furthermore, other available metaviromes also indicated that some of the new phages are globally distributed in low to medium latitude ocean waters. The availability of many genomes from the same sample allows a direct approach to viral population genomics confirming the remarkable mosaicism of phage genomes.
Collapse
Affiliation(s)
- Carolina Megumi Mizuno
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Alicante, Spain
| | - Francisco Rodriguez-Valera
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Alicante, Spain
- * E-mail:
| | - Nikole E. Kimes
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Alicante, Spain
| | - Rohit Ghai
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Alicante, Spain
| |
Collapse
|
26
|
Jiang M, Fang L, Pfeifer BA. Improved heterologous erythromycin A production through expression plasmid re-design. Biotechnol Prog 2013; 29:862-9. [PMID: 23804312 DOI: 10.1002/btpr.1759] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 05/14/2013] [Indexed: 01/15/2023]
Abstract
The production of complex compounds from technically convenient microorganisms is an emerging route to the chemical diversity found in the surrounding environment. In this study, the antibiotic compound erythromycin A is produced from Escherichia coli as an alternative to native production through the soil bacterium Saccharopolyspora erythraea. By doing so, there is an opportunity to apply and refine engineering strategies for the manipulation of the erythromycin biosynthetic pathway and for the overproduction of this and other complex natural compounds. Previously, E. coli-derived production was enabled by the introduction of the entire erythromycin pathway (20 genes total) using separately selectable expression plasmids which demonstrated negative effects on final biosynthesis through metabolic burden and plasmid instability. In this study, improvements to final production were made by altering the design of the expression plasmids needed for biosynthetic pathway introduction. Specifically, the total number of genes and plasmids was pruned to reduce both metabolic burden and plasmid instability. Further, a comparison was conducted between species-specific (E. coli vs. S. coelicolor) protein chaperonins. Results indicate improvements in growth and plasmid retention metrics. The newly designed expression platform also increased erythromycin A production levels 5-fold. In conclusion, the steps outlined in this report were designed to upgrade the E. coli erythromycin A production system, led to improved final compound titers, and suggest additional forms of pathway engineering to further improve results from heterologous production attempts.
Collapse
Affiliation(s)
- Ming Jiang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | | | | |
Collapse
|
27
|
Goldman N, Bertone P, Chen S, Dessimoz C, LeProust EM, Sipos B, Birney E. Towards practical, high-capacity, low-maintenance information storage in synthesized DNA. Nature 2013; 494:77-80. [PMID: 23354052 DOI: 10.1038/nature11875] [Citation(s) in RCA: 386] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 12/12/2012] [Indexed: 11/09/2022]
Abstract
Digital production, transmission and storage have revolutionized how we access and use information but have also made archiving an increasingly complex task that requires active, continuing maintenance of digital media. This challenge has focused some interest on DNA as an attractive target for information storage because of its capacity for high-density information encoding, longevity under easily achieved conditions and proven track record as an information bearer. Previous DNA-based information storage approaches have encoded only trivial amounts of information or were not amenable to scaling-up, and used no robust error-correction and lacked examination of their cost-efficiency for large-scale information archival. Here we describe a scalable method that can reliably store more information than has been handled before. We encoded computer files totalling 739 kilobytes of hard-disk storage and with an estimated Shannon information of 5.2 × 10(6) bits into a DNA code, synthesized this DNA, sequenced it and reconstructed the original files with 100% accuracy. Theoretical analysis indicates that our DNA-based storage scheme could be scaled far beyond current global information volumes and offers a realistic technology for large-scale, long-term and infrequently accessed digital archiving. In fact, current trends in technological advances are reducing DNA synthesis costs at a pace that should make our scheme cost-effective for sub-50-year archiving within a decade.
Collapse
Affiliation(s)
- Nick Goldman
- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SD, UK.
| | | | | | | | | | | | | |
Collapse
|
28
|
Santos CNS, Regitsky DD, Yoshikuni Y. Implementation of stable and complex biological systems through recombinase-assisted genome engineering. Nat Commun 2013; 4:2503. [PMID: 24056574 DOI: 10.1038/ncomms3503] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Accepted: 08/23/2013] [Indexed: 11/09/2022] Open
Abstract
Evaluating the performance of engineered biological systems with high accuracy and precision is nearly impossible with the use of plasmids due to phenotypic noise generated by genetic instability and natural population dynamics. Minimizing this uncertainty therefore requires a paradigm shift towards engineering at the genomic level. Here, we introduce an advanced design principle for the stable installment and implementation of complex biological systems through recombinase-assisted genome engineering (RAGE). We apply this concept to the development of a robust strain of Escherichia coli capable of producing ethanol directly from brown macroalgae. RAGE significantly expedites the optimal implementation of a 34 kb heterologous pathway for alginate metabolism based on genetic background, integration locus, copy number and compatibility with two other pathway modules (alginate degradation and ethanol production). The resulting strain achieves a ~40% higher titre than its plasmid-based counterpart and enables substantial improvements in titre (~330%) and productivity (~1,200%) after 50 generations.
Collapse
|
29
|
Sgaramella V, Eridani S. Mammalian artificial chromosomes: A review. Cytotechnology 2012; 21:253-61. [PMID: 22358757 DOI: 10.1007/bf00365348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/1996] [Accepted: 05/28/1996] [Indexed: 10/26/2022] Open
Abstract
A mammalian artificial chromosome (MAC) may be assembled through the juxtapposition of three kinds of DNA elements: a centromere, several DNA replication origins, and two telomeric repeats. The resulting structure should be able to carry and express one or more selected genes (transgenes), introduced for specific purposes. The minimal length is unknown, but may be of several Mb.Of its basic elements, the telomeres may present lesser problems, in view of their simple composition and organization. Centromeres could be an issue, given their many unknowns. Mammalian DNA replication origins are at present poorly characterized, but it is expected that at least one may be contained within the MAC components, especially the transgene. Their overall assembly may require a combination of in vivo and in vitro approaches.A promising strategy aims at constructing two telomeric arms of a MAC, one of which may include the transgene. The two novel arms could acquire a functional centromere through recombination with the two arms of a resident chromosome. Alternatively, if the two telomeric constructs are also endowed with properly placed and oriented centromeric sequences, a centromere may be rescued in vivo by homologous recombination with the external parts of the centromere of the resident chromosome. Positive selection for the artificial arms and counterselection against the resident arms should facilitate the assembly process.The assembly of such construct would not change the ploidy number of the host cell. After loading of a transgene, however, the resulting MAC may be isolated and transferred into an expression cell, where it may represent a novel chromosomal element. In this case untoward effects to the host cell may derive from an ensuing dosage effect for the transgene(s) rather than from the presence of a MAC per se.A MAC may contribute to a deeper understanding of the structural requirements for chromosomal function and evolution as well as the mechanism of chromatin formation. It should also help in the development of second generation vectors for transfer of Mb-long DNA sequences, as required for properly regulated mammalian gene function as well as, possibly, for therapy.
Collapse
Affiliation(s)
- V Sgaramella
- ITBA-National Research Council, Via Ampere 56, Milano, Italy
| | | |
Collapse
|
30
|
Bi M, Tong J, Chang F, Wang J, Wei H, Dai Y, Chu M, Zhao Y, Li N. Pituitary-specific overexpression of porcine follicle-stimulating hormone leads to improvement of female fecundity in BAC transgenic mice. PLoS One 2012; 7:e42335. [PMID: 22860114 PMCID: PMC3409198 DOI: 10.1371/journal.pone.0042335] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 07/03/2012] [Indexed: 11/18/2022] Open
Abstract
Follicle-stimulating hormone (FSH) is a pituitary glycoprotein that, together with luteinizing hormone, plays a crucial role in ovarian folliculogenesis and female fertility. We previously found that FSH beta is a major gene controlling high prolificacy of Chinese Erhualian pigs. To directly study the biological effects on reproductive function of porcine FSH (pFSH) for polyovulatory species, we generated a novel gain-of-function mouse model using a bacterial artificial chromosome (BAC) system to jointly introduce 92 kb and 165 kb genomic fragments comprising the pFSH α- and β-subunit genes. These directed the physiological expression of pFSH with the same temporal and spatial pattern as endogenous FSH in female transgenic (TG) mice. Serum levels of biologically active pFSH heterodimers in independent TG lines ranged from 6.36 to 19.83 IU/L. High basal pFSH activity led to a significant reduction of serum LH and testosterone levels in TG females compared to wild-type (WT) littermates, yet endogenous FSH and estradiol levels were significantly elevated. Interestingly, ovarian histology showed that the number of corpora lutea was significantly higher at 14 and 28 weeks of age in TG females and breeding curves revealed that mean litter sizes of TG females were obviously larger than for WT littermates before 52 weeks of age. These findings indicate that pituitary-specific overexpression of pFSH within physiological boundaries can increase ovulation rate and litter size, but it does not cause reproductive defects. Therefore, our TG mouse model provides exciting insights for investigating the actions of pFSH in vivo.
Collapse
Affiliation(s)
- Mingjun Bi
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jia Tong
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Fei Chang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jing Wang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Hengxi Wei
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Sciences, South China Agricultural University, Guangzhou, China
| | - Yunping Dai
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Mingxing Chu
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yaofeng Zhao
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ning Li
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- * E-mail:
| |
Collapse
|
31
|
Construction of a llama bacterial artificial chromosome library with approximately 9-fold genome equivalent coverage. J Biomed Biotechnol 2012; 2012:371414. [PMID: 22811594 PMCID: PMC3395300 DOI: 10.1155/2012/371414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Revised: 05/21/2012] [Accepted: 06/04/2012] [Indexed: 11/18/2022] Open
Abstract
The Ilama is an important agricultural livestock in much of South America. The llama is increasing in popularity in the United States as a companion animal. Little work has been done to improve llama production using modern technology. A paucity of information is available regarding the llama genome. We report the construction of a llama bacterial artificial chromosome (BAC) library of about 196,224 clones in the vector pECBAC1. Using flow cytometry and bovine, human, mouse, and chicken as controls, we determined the llama genome size to be 2.4 × 109 bp. The average insert size of the library is 137.8 kb corresponding to approximately 9-fold genome coverage. Further studies are needed to further characterize the library and llama genome. We anticipate that this new library will help facilitate future genomic studies in the llama.
Collapse
|
32
|
Utilization of super BAC pools and Fluidigm access array platform for high-throughput BAC clone identification: proof of concept. J Biomed Biotechnol 2012; 2012:405940. [PMID: 22910714 PMCID: PMC3403795 DOI: 10.1155/2012/405940] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 05/20/2012] [Indexed: 11/17/2022] Open
Abstract
Bacterial artificial chromosome (BAC) libraries are critical for identifying full-length genomic sequences, correlating genetic and physical maps, and comparative genomics. Here we describe the utilization of the Fluidigm access array genotyping system in conjunction with KASPar genotyping technology to identify individual BAC clones corresponding to specific single-nucleotide polymorphisms (SNPs) from an Amplicon Express seven-plate super pooled Amaranthus hypochondriacus BAC library. Ninety-six SNP loci, spanning the length of A. hypochondriacus linkage groups 1, 2, and 15, were simultaneously tested for clone identification from four BAC super pools, corresponding to 28 384-well plates, using a single Fluidigm integrated fluidic chip (IFC). Forty-six percent of the SNPs were associated with a single unambiguous identified BAC clone. PCR amplification and next-generation sequencing of individual BAC clones confirmed the IFC clone identification. Utilization of the Fluidigm Dynamic array platform allowed for the simultaneous PCR screening of 10,752 BAC pools for 96 SNP tag sites in less than three hours at a cost of ~$0.05 per reaction.
Collapse
|
33
|
Back to BAC: the use of infectious clone technologies for viral mutagenesis. Viruses 2012; 4:211-35. [PMID: 22470833 PMCID: PMC3315213 DOI: 10.3390/v4020211] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 01/26/2012] [Accepted: 01/30/2012] [Indexed: 12/18/2022] Open
Abstract
Bacterial artificial chromosome (BAC) vectors were first developed to facilitate the propagation and manipulation of large DNA fragments in molecular biology studies for uses such as genome sequencing projects and genetic disease models. To facilitate these studies, methodologies have been developed to introduce specific mutations that can be directly applied to the mutagenesis of infectious clones (icBAC) using BAC technologies. This has resulted in rapid identification of gene function and expression at unprecedented rates. Here we review the major developments in BAC mutagenesis in vitro. This review summarises the technologies used to construct and introduce mutations into herpesvirus icBAC. It also explores developing technologies likely to provide the next leap in understanding these important viruses.
Collapse
|
34
|
Watanabe M, Kurome M, Matsunari H, Nakano K, Umeyema K, Shiota A, Nakauchi H, Nagashima H. The creation of transgenic pigs expressing human proteins using BAC-derived, full-length genes and intracytoplasmic sperm injection-mediated gene transfer. Transgenic Res 2011; 21:605-18. [PMID: 22038447 DOI: 10.1007/s11248-011-9561-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 09/16/2011] [Indexed: 11/29/2022]
Abstract
In most transgenic (Tg) animals created to date, a transgene consisting of the minimum promoter region linked to a cDNA has been used. However, transgenes on small plasmids are susceptible to the position effect, increasing the difficulty of controlling transgene expression. In this study, we attempted to create Tg pigs by intracytoplasmic sperm injection-mediated gene transfer (ICSI-MGT) using two large genomic transgenes derived from a bacterial artificial chromosome (BAC) containing the full genomic region encoding two human proteins, type I collagen and albumin. The production efficiencies (Tg piglets/live offspring) of type I collagen and albumin Tg pigs were 11.8% (6/51) and 18.2% (2/11), respectively. In all of the Tg pigs examined by real-time PCR analysis, tissue-specific expression of the transgene was confirmed (type I collagen: skin, tendon, vessels, genitalia; albumin: liver). The production of human proteins derived from BAC transgenes was also confirmed. Fluorescence in situ hybridization analysis indicated that the BAC transgenes transferred into porcine oocytes by ICSI-MGT were integrated into single or multiple sites on the host chromosomes. These data demonstrate that Tg pigs expressing human proteins in a tissue-specific manner can be created using a BAC transgenic construct and the ICSI-MGT method.
Collapse
Affiliation(s)
- Masahito Watanabe
- Nakauchi Stem Cell and Organ Regeneration Project, Japan Science and Technology Agency (JST), ERATO, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Reigstad LJ, Bartossek R, Schleper C. Preparation of high-molecular weight DNA and metagenomic libraries from soils and hot springs. Methods Enzymol 2011; 496:319-44. [PMID: 21514470 DOI: 10.1016/b978-0-12-386489-5.00013-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Metagenomics has become an important tool for the characterization of microorganisms, as it is independent of their enrichment or cultivation in the laboratory. Its application has led to the discovery of metabolisms from widespread, yet uncharacterized organisms such as the ammonia-oxidizing archaea. Different approaches ranging from the generation of short sequence reads by direct use of high-throughput sequencing technologies to the construction and sequencing of large-insert DNA libraries are being employed. For these purposes, DNA of high quality needs to be prepared from an environmental sample, which is a particular challenge for soils and sediments. Here we describe the methods used for the isolation of high-molecular weight (hmw) DNA from soil and hot spring samples, the subsequent production of large-insert metagenomic libraries, and the analysis of the resulting genomic fragments. Detailed step-by-step procedures include (1) how to isolate good-quality hmw DNA from soils and mud; (2) how to prepare the DNA for cloning; (3) how to efficiently establish, grow, pick, replicate, and store the large-insert metagenomic fosmid library; and finally, (4) how to screen the library for genes of interest.
Collapse
Affiliation(s)
- Laila J Reigstad
- Centre for Geobiology, Department of Biology, University of Bergen, Bergen, Norway
| | | | | |
Collapse
|
36
|
Bacterial artificial chromosome libraries of pulse crops: characteristics and applications. J Biomed Biotechnol 2011; 2012:493186. [PMID: 21811383 PMCID: PMC3144660 DOI: 10.1155/2012/493186] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 05/29/2011] [Accepted: 05/30/2011] [Indexed: 12/01/2022] Open
Abstract
Pulse crops are considered minor on a global scale despite their nutritional value for human consumption. Therefore, they are relatively less extensively studied in comparison with the major crops. The need to improve pulse crop production and quality will increase with the increasing global demand for food security and people's awareness of nutritious food. The improvement of pulse crops will require fully utilizing all their genetic resources. Bacterial artificial chromosome (BAC) libraries of pulse crops are essential genomic resources that have the potential to accelerate gene discovery and enhance molecular breeding in these crops. Here, we review the availability, characteristics, applications, and potential applications of the BAC libraries of pulse crops.
Collapse
|
37
|
Paiva JAP, Prat E, Vautrin S, Santos MD, San-Clemente H, Brommonschenkel S, Fonseca PGS, Grattapaglia D, Song X, Ammiraju JSS, Kudrna D, Wing RA, Freitas AT, Bergès H, Grima-Pettenati J. Advancing Eucalyptus genomics: identification and sequencing of lignin biosynthesis genes from deep-coverage BAC libraries. BMC Genomics 2011; 12:137. [PMID: 21375742 PMCID: PMC3060884 DOI: 10.1186/1471-2164-12-137] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 03/04/2011] [Indexed: 11/10/2022] Open
Abstract
Background Eucalyptus species are among the most planted hardwoods in the world because of their rapid growth, adaptability and valuable wood properties. The development and integration of genomic resources into breeding practice will be increasingly important in the decades to come. Bacterial artificial chromosome (BAC) libraries are key genomic tools that enable positional cloning of important traits, synteny evaluation, and the development of genome framework physical maps for genetic linkage and genome sequencing. Results We describe the construction and characterization of two deep-coverage BAC libraries EG_Ba and EG_Bb obtained from nuclear DNA fragments of E. grandis (clone BRASUZ1) digested with HindIII and BstYI, respectively. Genome coverages of 17 and 15 haploid genome equivalents were estimated for EG_Ba and EG_Bb, respectively. Both libraries contained large inserts, with average sizes ranging from 135 Kb (Eg_Bb) to 157 Kb (Eg_Ba), very low extra-nuclear genome contamination providing a probability of finding a single copy gene ≥ 99.99%. Libraries were screened for the presence of several genes of interest via hybridizations to high-density BAC filters followed by PCR validation. Five selected BAC clones were sequenced and assembled using the Roche GS FLX technology providing the whole sequence of the E. grandis chloroplast genome, and complete genomic sequences of important lignin biosynthesis genes. Conclusions The two E. grandis BAC libraries described in this study represent an important milestone for the advancement of Eucalyptus genomics and forest tree research. These BAC resources have a highly redundant genome coverage (> 15×), contain large average inserts and have a very low percentage of clones with organellar DNA or empty vectors. These publicly available BAC libraries are thus suitable for a broad range of applications in genetic and genomic research in Eucalyptus and possibly in related species of Myrtaceae, including genome sequencing, gene isolation, functional and comparative genomics. Because they have been constructed using the same tree (E. grandis BRASUZ1) whose full genome is being sequenced, they should prove instrumental for assembly and gap filling of the upcoming Eucalyptus reference genome sequence.
Collapse
Affiliation(s)
- Jorge A P Paiva
- Instituto de Investigação Científica Tropical, Centro de Florestas e dos Produtos Florestais, Tapada da Ajuda, 1349-018 Lisboa, Portugal.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Using bacterial artificial chromosomes in leukemia research: the experience at the university cytogenetics laboratory in Brest, France. J Biomed Biotechnol 2011; 2011:329471. [PMID: 21274439 PMCID: PMC3025366 DOI: 10.1155/2011/329471] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 12/07/2010] [Indexed: 11/18/2022] Open
Abstract
The development of the bacterial artificial chromosome (BAC) system was driven in part by the human genome project in order to construct genomic DNA libraries and physical maps for genomic sequencing. The availability of BAC clones has become a valuable tool for identifying cancer genes. We report here our experience in identifying genes located at breakpoints of chromosomal rearrangements and in defining the size and boundaries of deletions in hematological diseases. The methodology used in our laboratory consists of a three-step approach using conventional cytogenetics followed by FISH with commercial probes, then BAC clones. One limitation to the BAC system is that it can only accommodate inserts of up to 300 kb. As a consequence, analyzing the extent of deletions requires a large amount of material. Array comparative genomic hybridization (array-CGH) using a BAC/PAC system can be an alternative. However, this technique has limitations also, and it cannot be used to identify candidate genes at breakpoints of chromosomal rearrangements such as translocations, insertions, and inversions.
Collapse
|
39
|
Zhang H, Boghigian BA, Armando J, Pfeifer BA. Methods and options for the heterologous production of complex natural products. Nat Prod Rep 2011; 28:125-51. [PMID: 21060956 PMCID: PMC9896020 DOI: 10.1039/c0np00037j] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This review will detail the motivations, experimental approaches, and growing list of successful cases associated with the heterologous production of complex natural products.
Collapse
Affiliation(s)
- Haoran Zhang
- Department of Chemical & Biological Engineering, Science & Technology Center, Tufts University, Medford, MA 02155, USA.
| | | | | | | |
Collapse
|
40
|
Gong S, Kus L, Heintz N. Rapid bacterial artificial chromosome modification for large-scale mouse transgenesis. Nat Protoc 2010; 5:1678-96. [PMID: 20885380 DOI: 10.1038/nprot.2010.131] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
We report here a high-throughput method for the modification of bacterial artificial chromosomes (BACs) that uses a novel two-plasmid approach. In this protocol, a vector modified in our laboratory to hold an R6Kγ origin of replication and a marker recombination cassette is inserted into a BAC in a single recombination step. Temporal control of recombination is achieved through the use of a second plasmid, pSV1.RecA, which possesses a recombinase gene and a temperature-sensitive origin of replication. This highly efficient protocol has allowed us to successfully modify more than 2,000 BACs, from which over 1,000 BAC transgenic mice have been generated. A complete cycle from BAC choice to embryo implantation takes about 5 weeks. Marker genes introduced into the mice include EGFP and EGFP-L10a. All vectors used in this project can be obtained from us by request, and the EGFP reporter mice are available through the Mutant Mouse Regional Resource Center (NINDS/GENSAT collection). CNS anatomical expression maps of the mice are available to the public at http://www.gensat.org/.
Collapse
|
41
|
Abstract
The production of functional spermatozoa is a complex process requiring the coordinated expression of thousands of genes. It is likely that the intricate nature of these interactions contributes to the large number of idiopathic male infertility cases seen in humans. Conversely, the complexity of the highly regulated and interconnected processes of spermatogenesis and posttesticular sperm maturation events offers opportunities for the development of male-based contraceptive targets. The recent advances in genetic manipulation technologies and the completion of the human and mouse genome sequencing programs have provided scientists with sophisticated ways to generate mouse models for the study of basic biological mechanisms, in order to understand disease pathology and develop novel therapeutic approaches. The three common types of mouse model used for medical research are transgenic, knockout/knockin, and chemical-induced point mutant mice. Each type has relative strengths and weaknesses with respect to its fidelity to the disease processes in humans. In this chapter, we focus on the utility of the different types of mouse model in obtaining a better understanding of the mechanisms that control spermatogenesis and developing male-based contraceptive regimens.
Collapse
|
42
|
Novel bacterial artificial chromosome vector pUvBBAC for use in studies of the functional genomics of Listeria spp. Appl Environ Microbiol 2008; 74:1892-901. [PMID: 18223114 DOI: 10.1128/aem.00415-07] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial artificial chromosome (BAC) vectors are important tools for microbial genome research. We constructed a novel BAC vector, pUvBBAC, for replication in both gram-negative and gram-positive bacterial hosts. The pUvBBAC vector was used to generate a BAC library for the facultative intracellular pathogen Listeria monocytogenes EGD-e. The library had insert sizes ranging from 68 to 178 kb. We identified two recombinant BACs from the L. monocytogenes pUvBBAC library that each contained the entire virulence gene cluster (vgc) of L. monocytogenes and transferred them to a nonpathogenic Listeria innocua strain. Recombinant L. innocua strains harboring pUvBBAC+vgc1 and pUvBBAC+vgc2 produced the vgc-specific listeriolysin (LLO) and actin assembly protein ActA and represent the first reported cloning of the vgc locus in its entirety. The use of the novel broad-host-range BAC vector pUvBBAC extends the versatility of this technology and provides a powerful platform for detailed functional genomics of gram-positive bacteria as well as its use in explorative functional metagenomics.
Collapse
|
43
|
Li B, Fang X, Luo H, Seo YS, Petersen E, Ji Y, Rafailovich M, Sokolov J, Gersappe D, Chu B. Separation of DNA with different configurations on flat and nanopatterned surfaces. Anal Chem 2007; 78:4743-51. [PMID: 16841891 DOI: 10.1021/ac060686z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We demonstrate that electrophoresis on a flat Si substrate is an effective method in separation of DNA with different configurations, e.g., linear, supercoiled, and relaxed or DNA of different length, e.g., supercoiled DNA ladder. The surface separation arises from the different number of contacts due to the conformational differences between adsorbed DNA chains. Imposing a Au nanopattern on the Si surface further improves the separation effect. The simulation of electric field on this patterned surface by the finite element method shows that Au nanodots act as local pinning points for DNA segments due to dielectrophoretic force. The results of molecular dynamics simulation showed that the conformational differences between adsorbed polymer chains were amplified on the patterned surface and enhanced separations were achieved, which are consistent with the experimental results.
Collapse
Affiliation(s)
- Bingquan Li
- Department of Materials Science and Engineering, SUNY at Stony Brook, New York 11794, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Strehlow ANT, Li JZ, Myers RM. Wild-type huntingtin participates in protein trafficking between the Golgi and the extracellular space. Hum Mol Genet 2006; 16:391-409. [PMID: 17189290 DOI: 10.1093/hmg/ddl467] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Huntington disease (HD) is an autosomal dominant neurodegenerative disease caused by an expanded CAG trinucleotide repeat in the first exon of the HD gene, which results in a toxic polyglutamine stretch within huntingtin, the protein it encodes. Understanding the normal function of this essential protein is vital to understanding the root of the disease, yet despite more than a decade of investigation, its role in the cell remains elusive. Identifying the subcellular localization of huntingtin and understanding its effects on global gene expression are critical to this endeavor. While most reports agree that huntingtin is predominantly a cytoplasmic protein, conflicting distribution patterns have been demonstrated at the subcellular level. Here, we examine wild-type huntingtin's localization in cultured cells by expressing the full-length human protein tagged with enhanced green fluorescent protein (EGFP) within its unspliced genomic context. In fibrosarcoma and neuroblastoma cells, huntingtin shows discrete punctate, perinuclear localization overlapping largely with the trans-Golgi and cytoplasmic clathrin-coated vesicles, implicating huntingtin in vesicle trafficking. To determine whether huntingtin is involved in trafficking a specific subset of proteins, we measured changes in global transcription levels in embryonic stem cells and neurons lacking huntingtin. Huntingtin null neurons exhibit a significant reduction in transcripts encoding proteins destined for the extracellular space, many of which are components of the extracellular matrix or involved in cellular adhesion, receptor binding and hormone activity. Together, these findings support a role for huntingtin in the intracellular trafficking of proteins required for the construction of the extracellular matrix.
Collapse
Affiliation(s)
- Anne N T Strehlow
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305-5120, USA
| | | | | |
Collapse
|
45
|
Stevens MR, Coleman CE, Parkinson SE, Maughan PJ, Zhang HB, Balzotti MR, Kooyman DL, Arumuganathan K, Bonifacio A, Fairbanks DJ, Jellen EN, Stevens JJ. Construction of a quinoa (Chenopodium quinoa Willd.) BAC library and its use in identifying genes encoding seed storage proteins. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2006; 112:1593-600. [PMID: 16586115 DOI: 10.1007/s00122-006-0266-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2005] [Accepted: 03/07/2006] [Indexed: 05/08/2023]
Abstract
Quinoa (Chenopodium quinoa Willd.) is adapted to the harsh environments of the Andean Altiplano region. Its seeds have a well-balanced amino acid composition and exceptionally high protein content with respect to human nutrition. Quinoa grain is a staple in the diet of some of the most impoverished people in the world. The plant is an allotetraploid displaying disomic inheritance (2n=4x=36) with a di-haploid genome of 967 Mbp (megabase pair), or 2C=2.01 pg. We constructed two quinoa BAC libraries using BamHI (26,880 clones) and EcoRI (48,000 clones) restriction endonucleases. Cloned inserts in the BamHI library average 113 kb (kilobase) with approximately 2% of the clones lacking inserts, whereas cloned inserts in the EcoRI library average 130 kb and approximately 1% lack inserts. Three plastid genes used as probes of high-density arrayed blots of 73,728 BACs identified approximately 2.8% of the clones as containing plastid DNA inserts. We estimate that the combined quinoa libraries represent at least 9.0 di-haploid nuclear genome equivalents. An average of 12.2 positive clones per probe were identified with 13 quinoa single-copy ESTs as probes of the high-density arrayed blots, suggesting that the estimate of 9.0x coverage of the genome is conservative. Utility of the BAC libraries for gene identification was demonstrated by probing the library with a partial sequence of the 11S globulin seed storage protein gene and identifying multiple positive clones. The presence of the 11S globulin gene in four of the clones was verified by direct comparison with quinoa genomic DNA on a Southern blot. Besides serving as a useful tool for gene identification, the quinoa BAC libraries will be an important resource for physical mapping of the quinoa genome.
Collapse
Affiliation(s)
- M R Stevens
- Department of Plant and Animal Sciences, Brigham Young University, Provo, UT 84602-5157, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Katoh M, Ayabe F, Norikane S, Okada T, Masumoto H, Horike SI, Shirayoshi Y, Oshimura M. Construction of a novel human artificial chromosome vector for gene delivery. Biochem Biophys Res Commun 2004; 321:280-90. [PMID: 15358173 DOI: 10.1016/j.bbrc.2004.06.145] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2004] [Indexed: 11/27/2022]
Abstract
Potential problems of conventional transgenes include insertional disruption of the host genome and unpredictable, irreproducible expression of the transgene by random integration. Alternatively, human artificial chromosomes (HACs) can circumvent some of the problems. Although several HACs were generated and their mitotic stability was assessed, a practical way for introducing exogenous genes by the HACs has yet to be explored. In this study, we developed a novel HAC from sequence-ready human chromosome 21 by telomere-directed chromosome truncation and added a loxP sequence for site-specific insertion of circular DNA by the Cre/loxP system. This 21HAC vector, delivered to a human cell line HT1080 by microcell fusion, bound centromere proteins A, B, and C and was mitotically stable during long-term culture without selection. The EGFP gene inserted in the HAC vector expressed persistently. These results suggest that the HAC vector provides useful system for functional studies of genes in isogenic cell lines.
Collapse
Affiliation(s)
- Motonobu Katoh
- Department of Human Genome Sciences (Kirin Brewery), Graduate School of Medical Science, Tottori University, 86 Nishimachi, Yonago, Tottori 683-8503, Japan
| | | | | | | | | | | | | | | |
Collapse
|
47
|
|
48
|
Abstract
The progress made in DNA marker technology has been tremendous and exciting. DNA markers have provided valuable tools in various analyses ranging from phylogenetic analysis to the positional cloning of genes. The development of high-density molecular maps which has been facilitated by PCR-based markers, have made the mapping and tagging of almost any trait possible. Marker-assisted selection has the potential to deploy favorable gene combinations for disease control. Comparative studies between incompatible species using these markers has resulted in synteny maps which are useful not only in predicting genome organization and evolution but also have practical application in plant breeding. DNA marker technology has found application in fingerprinting genotypes, in determining seed purity, in systematic sampling of germplasm, and in phylogenetic analysis. This review discusses the use of this technology for the genetic improvement of plants.
Collapse
Affiliation(s)
- L S Kumar
- Plant Molecular Biology Unit, Division of Biochemical Science, National Chemical Laboratory, Pune 411008, India.
| |
Collapse
|
49
|
Kaiser O, Bartels D, Bekel T, Goesmann A, Kespohl S, Pühler A, Meyer F. Whole genome shotgun sequencing guided by bioinformatics pipelines—an optimized approach for an established technique. J Biotechnol 2003; 106:121-33. [PMID: 14651855 DOI: 10.1016/j.jbiotec.2003.08.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
While the sequencing of bacterial genomes has become a routine procedure at major sequencing centers, there are still a number of genome projects at small- or medium-size facilities. For these facilities a maximum of control over sequencing, assembling and finishing is essential. At the same time, facilities have to be able to co-operate at minimum costs for the overall project. We have established a pipeline for the distributed sequencing of Alcanivorax borkumensis SK2, Azoarcus sp. BH72, Clavibacter michiganensis subsp. michiganensis NCPPB382, Sorangium cellulosum So ce56 and Xanthomonas campestris pv. vesicatoria 85-10. Our pipeline relies on standard tools (e.g. PHRED/PHRAP, CAP3 and Consed/Autofinish) wherever possible, supplementing them with new tools (BioMake and BACCardI) to achieve the aims described above.
Collapse
Affiliation(s)
- Olaf Kaiser
- Lehrstuhl für Genetik, Universität Bielefeld, D-33594 Bielefeld, Germany.
| | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Microinjection of foreign DNA into pronuclei of a fertilized oocyte has predominantly been used for the generation of transgenic livestock. This technology works reliably, but is inefficient and results in random integration and variable expression patterns in the transgenic offspring. Nevertheless, remarkable achievements have been made with this technology. By targeting expression to the mammary gland, numerous heterologous recombinant human proteins have been produced in large amounts which could be purified from milk of transgenic goats, sheep, cattle and rabbit. Products such as human anti-thrombin III, alpha-anti-trypsin and tissue plasminogen activator are currently in advanced clinical trials and are expected to be on the market within the next few years. Transgenic pigs that express human complement regulating proteins have been tested in their ability to serve as donors in human organ transplantation (i.e. xenotransplantation). In vitro and in vivo data convincingly show that the hyperacute rejection response can be overcome in a clinically acceptable manner by successful employing this strategy. It is anticipated that transgenic pigs will be available as donors for functional xenografts within a few years. Similarly, pigs may serve as donors for a variety of xenogenic cells and tissues. The recent developments in nuclear transfer and its merger with the growing genomic data allow a targeted and regulatable transgenic production. Systems for efficient homologous recombination in somatic cells are being developed and the adaptation of sophisticated molecular tools, already explored in mice, for transgenic livestock production is underway. The availability of these technologies are essential to maintain "genetic security" and to ensure absence of unwanted side effects.
Collapse
Affiliation(s)
- Heiner Niemann
- Department of Biotechnology, Institut für Tierzucht Mariensee, FAL, 31535 Neustadt, Germany.
| | | |
Collapse
|