1
|
Zhou X, Liu Z, Bai G, Dazhang B, Zhao P, Wang X, Jiang G. Bioinformatics analysis of the potential receptor and therapeutic drugs for Alzheimer's disease with comorbid Parkinson's disease. Front Aging Neurosci 2024; 16:1411320. [PMID: 38894850 PMCID: PMC11185263 DOI: 10.3389/fnagi.2024.1411320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Background Now, there are no sensitive biomarkers for improving Alzheimer's disease (AD) and comorbid Parkinson's disease (PD). The aim of the present study was to analyze differentially expressed genes (DEGs) in brain tissue from AD and PD patients via bioinformatics analysis, as well as to explore precise diagnostic and therapeutic targets for AD and comorbid PD. Methods GFE122063 and GSE7621 data sets from GEO in NCBI, were used to screen differentially expressed genes (DEGs) for AD and PD, and identify the intersected genes, respectively. Intersected genes were analyzed by Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Then, STRING site and Cytoscape were used to construct a protein-protein interaction (PPI) network, CytoNCA algorithm to analyze and evaluate centrality, Mcode plug-in to analyze module, and Cytohubba to screen key genes. Combined GO-KEGG enrichment analysis with Cytoscape algorithm to screen the key gene in AD complicated with PD. Then, the DEGs for AD and PD were imported into the Association Map (CMap) online platform to screen out the top 10 small molecule drugs, and using molecular docking techniques to evaluate the interactions between small molecule drugs and key genes receptors. Results In total, 231 upregulated genes and 300 downregulated genes were identified. GO analysis revealed that the DEGs were highly enriched in signal transduction, and KEGG analysis revealed that the DEGs were associated with the MAPK and PI3K-Akt signaling pathways. Epidermal growth factor receptor (EGFR) was identified as a potential receptor gene in AD and comorbid PD. EGFR was upregulated in both AD and PD, and the proteins that interact with EGFR were enriched in the Ras/Raf/MAPK and PI3K/Akt signaling pathways. Semagacestat was identified as a drug with therapeutic potential for treating AD complicated with PD. There was a high binding affinity between semagacestat and EGFRNTD, with seven hydrogen bonds and one hydrophobic bond. Discussion Semagacestat may improve the health of patients with AD complicated with PD through the regulation of the Ras/Raf/MAPK and PI3K/Akt signaling pathways by EGFR, providing evidence supporting the structural modification of semagacestat to develop a more effective drug for treating AD complicated with PD.
Collapse
Affiliation(s)
- Xuerong Zhou
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, China
| | - Zhifan Liu
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, China
| | - Guiqin Bai
- Department of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, China
| | - Bai Dazhang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, China
| | - Peilin Zhao
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, China
| | - Xiaoming Wang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, China
| | - Guohui Jiang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, China
| |
Collapse
|
2
|
Boxy P, Nykjær A, Kisiswa L. Building better brains: the pleiotropic function of neurotrophic factors in postnatal cerebellar development. Front Mol Neurosci 2023; 16:1181397. [PMID: 37251644 PMCID: PMC10213292 DOI: 10.3389/fnmol.2023.1181397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/26/2023] [Indexed: 05/31/2023] Open
Abstract
The cerebellum is a multifunctional brain region that controls diverse motor and non-motor behaviors. As a result, impairments in the cerebellar architecture and circuitry lead to a vast array of neuropsychiatric and neurodevelopmental disorders. Neurotrophins and neurotrophic growth factors play essential roles in the development as well as maintenance of the central and peripheral nervous system which is crucial for normal brain function. Their timely expression throughout embryonic and postnatal stages is important for promoting growth and survival of both neurons and glial cells. During postnatal development, the cerebellum undergoes changes in its cellular organization, which is regulated by a variety of molecular factors, including neurotrophic factors. Studies have shown that these factors and their receptors promote proper formation of the cerebellar cytoarchitecture as well as maintenance of the cerebellar circuits. In this review, we will summarize what is known on the neurotrophic factors' role in cerebellar postnatal development and how their dysregulation assists in developing various neurological disorders. Understanding the expression patterns and signaling mechanisms of these factors and their receptors is crucial for elucidating their function within the cerebellum and for developing therapeutic strategies for cerebellar-related disorders.
Collapse
Affiliation(s)
- Pia Boxy
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Danish Research Institute of Translational Neuroscience (DANDRITE)–Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark
- The Danish National Research Foundation Center, PROMEMO, Aarhus University, Aarhus, Denmark
| | - Anders Nykjær
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Danish Research Institute of Translational Neuroscience (DANDRITE)–Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark
- The Danish National Research Foundation Center, PROMEMO, Aarhus University, Aarhus, Denmark
| | - Lilian Kisiswa
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Danish Research Institute of Translational Neuroscience (DANDRITE)–Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark
- The Danish National Research Foundation Center, PROMEMO, Aarhus University, Aarhus, Denmark
| |
Collapse
|
3
|
Chen YJ, Hsu CC, Shiao YJ, Wang HT, Lo YL, Lin AMY. Anti-inflammatory effect of afatinib (an EGFR-TKI) on OGD-induced neuroinflammation. Sci Rep 2019; 9:2516. [PMID: 30792526 PMCID: PMC6385176 DOI: 10.1038/s41598-019-38676-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 12/18/2018] [Indexed: 11/09/2022] Open
Abstract
Activated epidermal growth factor receptor (EGFR) has been proposed in the pathophysiology of neurodegenerative diseases. In the present study, the anti-inflammatory effect of afatinib, an EGFR-tyrosine kinase inhibitor (EGFR-TKIs) was investigated using CTX-TNA2 cells and primary cultured astrocytes subjected to oxygen/glucose deprivation (OGD). We found that OGD induced EGFR phosphorylation and activated subsequent signaling pathways, including phosphorylation of AKT and extracellular signal-regulated kinases (ERK). Afatinib blocked OGD-induced phosphorylation of EGFR, AKT and ERK. At the same time, afatinib attenuated OGD-induced elevations in glial fibrillary acidic protein (a biomarker of activated astrocytes) and proliferating cell nuclear antigen expression (a cell proliferating biomarker) as well as hypoxia-induced migratory ability. Furthermore, afatinib decreased OGD-induced increases in cyclooxygenase-II and inducible nitric oxide synthase expression of the treated astrocytes as well as NO content in the culture medium. Moreover, afatinib attenuated OGD-induced caspase 1 activation (a biomarker of inflammasome activation) and interleukin-1β levels (a pro-inflammatory cytokine). Collectively, afatinib could block OGD-induced EGFR activation and its downstream signaling pathways in astrocytes. Moreover, afatinib attenuated OGD-induced astrocyte activation, proliferation and inflammasome activation. These data support the involvement of EGFR activation in neuroinflammation. Furthermore, EGFR-TKIs may be promising in inhibiting neuroinflammation in the CNS neurodegenerative diseases.
Collapse
Affiliation(s)
- Yen-Ju Chen
- Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan
| | - Chia-Chi Hsu
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Young-Ji Shiao
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan
| | - Hsiang-Tsui Wang
- Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Li Lo
- Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan.
| | - A M Y Lin
- Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan. .,Faculty of Pharmacy, National Yang-Ming University, Taipei, Taiwan. .,Department of Medical Research, Taipei-Veterans General Hospital, Taipei, Taiwan.
| |
Collapse
|
4
|
Tatter SB, Galpern WR, Isacson O. Neurotrophic Factor Protection against Excitotoxic Neuronal Death. Neuroscientist 2016. [DOI: 10.1177/107385849500100506] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Neurotrophic factors are polypeptides capable of promoting neuronal survival in both the developing and the adult brain. In addition to the neurotrophins, NGF, brain-derived neurotropic factor, and NT-3 to -6, other neurotrophic factors include ciliary neurotrophic factor, fibroblast growth factors, insulin-like growth factors, members of the transforming growth factor superfamily, members of the epidermal growth factor family, and other cytokines such as leukemia inhibitory factor, oncostatin M, and interleukins-6 and -11. One condition under which these factors promote survival is the challenge of neurons with analogs of excitatory amino acid transmitters. Such analogs, including quinolinic acid, kainic acid, and ibotenic acid, are frequently employed as models of neurological diseases such as Huntington's disease, Parkinson's disease, Alzheimer's disease, epilepsy, cerebellar degenerations, and amyotrophic lateral sclerosis. Excitotoxicity also plays a role in neu ronal death caused by focal ischemia, hypoglycemia, or trauma. Although much has been learned about the mechanisms of both the action of neurotrophic factors and of cell death in response to excitotoxins, the mechanism of protection by these factors remains uncertain. This review explores the biochemical and phys iological changes mediated by neurotrophic factors that may underlie their ability to protect against excito toxic cell death. Second messenger pathways used degenerately by both excitotoxins and neurotrophic factors are discussed as a potential site of interaction mediating the protective effects of neurotrophic factors. Particular attention is also paid to the importance of the route of neurotrophic factor delivery in conferring neuroprotection in particular excitotoxic models. The Neuroscientist 1:286-297, 1995
Collapse
Affiliation(s)
- Stephen B. Tatter
- Departments of Neurosurgery and Neurology Massachusetts
General Hospital Boston, Massachusetts, Neuroregeneration Laboratory McLean Hospital Belmont,
Massachusetts
| | - Wendy R. Galpern
- Departments of Neurosurgery and Neurology Massachusetts
General Hospital Boston, Massachusetts, Neuroregeneration Laboratory McLean Hospital Belmont,
Massachusetts
| | - Ole Isacson
- Departments of Neurosurgery and Neurology Massachusetts
General Hospital Boston, Massachusetts, Neuroregeneration Laboratory McLean Hospital Belmont,
Massachusetts
| |
Collapse
|
5
|
Zhang J, Li P, Wang Y, Liu J, Zhang Z, Cheng W, Wang Y. Ameliorative effects of a combination of baicalin, jasminoidin and cholic acid on ibotenic acid-induced dementia model in rats. PLoS One 2013; 8:e56658. [PMID: 23437202 PMCID: PMC3577735 DOI: 10.1371/journal.pone.0056658] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 01/12/2013] [Indexed: 11/19/2022] Open
Abstract
Aims To investigate the therapeutic effects and acting mechanism of a combination of Chinese herb active components, i.e., a combination of baicalin, jasminoidin and cholic acid (CBJC) on Alzheimer’s disease (AD). Methods Male rats were intracerebroventricularly injected with ibotenic acid (IBO), and CBJC was orally administered. Therapeutic effect was evaluated with the Morris water maze test, FDG-PET examination, and histological examination, and the acting mechanism was studied with DNA microarrays and western blotting. Results CBJC treatment significantly attenuated IBO-induced abnormalities in cognition, brain functional images, and brain histological morphology. Additionally, the expression levels of 19 genes in the forebrain were significantly influenced by CBJC; approximately 60% of these genes were related to neuroprotection and neurogenesis, whereas others were related to anti-oxidation, protein degradation, cholesterol metabolism, stress response, angiogenesis, and apoptosis. Expression of these genes was increased, except for the gene related to apoptosis. Changes in expression for 5 of these genes were confirmed by western blotting. Conclusion CBJC can ameliorate the IBO-induced dementia in rats and may be significant in the treatment of AD. The therapeutic mechanism may be related to CBJC’s modulation of a number of processes, mainly through promotion of neuroprotection and neurogenesis, with additional promotion of anti-oxidation, protein degradation, etc.
Collapse
Affiliation(s)
- Junying Zhang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, P. R. China
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, P. R. China
| | - Peng Li
- The Laboratory Research Center of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, P. R. China
| | - Yanping Wang
- The Institute of Basic Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, P. R. China
| | - Jianxun Liu
- The Laboratory Research Center of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, P. R. China
| | - Zhanjun Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, P. R. China
- * E-mail:
| | - Weidong Cheng
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, P. R. China
- * E-mail:
| | - Yongyan Wang
- The Institute of Basic Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, P. R. China
| |
Collapse
|
6
|
Sun D, Bullock MR, Altememi N, Zhou Z, Hagood S, Rolfe A, McGinn MJ, Hamm R, Colello RJ. The effect of epidermal growth factor in the injured brain after trauma in rats. J Neurotrauma 2010; 27:923-38. [PMID: 20158379 PMCID: PMC2943945 DOI: 10.1089/neu.2009.1209] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Epidermal growth factor (EGF) is a known mitogen for neural stem and progenitor cells (NS/NPCs) in the central nervous system (CNS). In vitro, EGF maintains NS/NPCs in the proliferative state, whereas in the normal rodent brain it promotes their proliferation and migration in the subventricular zone (SVZ). Additionally, EGF administration can augment neuronal replacement in the ischemic-injured adult striatum. Recently we found that the SVZ and the hippocampus display an injury-induced proliferative response following traumatic brain injury (TBI) that is linked to increased EGF expression. As adult neurogenesis is associated with cognitive function, we hypothesized that post-TBI administration of EGF could affect neurogenesis and cognitive recovery. Adult rats were intraventricularly infused with EGF or vehicle for 7 days following TBI. 5-Bromo-2-deoxyuridine (BrdU) was administered to label proliferating cells and the animals were sacrificed at 1 or 4 weeks post-injury. Using immunohistochemistry and stereology, we found that at 1 week post-injury, compared to vehicle-infused animals EGF-infused animals had significantly more BrdU-positive cells in the SVZ and hippocampus concomitant with enhanced EGF receptor expression. At 4 weeks post-injury, the number of BrdU-positive cells in the hippocampus was similar in both groups, suggesting that EGF does not support long-term survival of newly generated cells. Furthermore, we found that the EGF-induced proliferative population differentiated preferentially toward astroglial phenotype. Nevertheless, animals treated with EGF showed significant improvement in cognitive function, which was accompanied by reduced hippocampal neuronal cell loss. Collectively, the data from this study demonstrate that EGF exerts a neuroprotective rather than neurogenic effect in protecting the brain from injury.
Collapse
Affiliation(s)
- Dong Sun
- Department of Neurosurgery, Virginia Commonwealth University, Richmond, Virginia 23298-0631, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Aremu DA, Meshitsuka S. Some aspects of astroglial functions and aluminum implications for neurodegeneration. ACTA ACUST UNITED AC 2006; 52:193-200. [PMID: 16529821 DOI: 10.1016/j.brainresrev.2006.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2005] [Revised: 01/24/2006] [Accepted: 02/02/2006] [Indexed: 01/29/2023]
Abstract
The present decade had witnessed an unprecedented attention focused on glial cells as a result of their unusual physiological roles that are being unraveled. It is now known that, rather than being a mere supporter of neurons, astroglia are actively involved in their modulation. The aluminum hypothesis seems to have been laid to rest, probably due to contradictory epidemiological reports on it as a causative factor of neurodegenerative diseases. Surprisingly, newer scientific evidences continue to appear and recent findings have implicated astrocytes as the principal target of its toxic action. In view of the likely detrimental effects of the interaction between these two infamous partners in neuroscience on neurons and nervous system, we have reviewed some aspects of glia-neuron interaction and discussed the implications of aluminum-impaired astrocytic functions on neurodegeneration. Because sporadic causes still account for the majority of the neurodegenerative diseases of which Alzheimer's disease is the most prominent, it has been suggested that neurotoxicologists should not relent in screening for the environmental agents, such as aluminum, and that considerable attention should be given to glial cells in view of the likely implications of environmental toxicants on their never-imagined newly reported roles in the central nervous system (CNS).
Collapse
Affiliation(s)
- David A Aremu
- Division of Medical Environmentology, Department of Social Medicine, Graduate School of Medical Sciences, Tottori University, Yonago 683-8503, Japan.
| | | |
Collapse
|
8
|
Jacobs CM, Boldingh KA, Slagsvold HH, Thoresen GH, Paulsen RE. ERK2 Prohibits Apoptosis-induced Subcellular Translocation of Orphan Nuclear Receptor NGFI-B/TR3. J Biol Chem 2004; 279:50097-101. [PMID: 15448159 DOI: 10.1074/jbc.m409145200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription factor NGFI-B (neuronal growth factor-induced clone B), also called Nur77 or TR3, is an immediate early gene and an orphan member of the nuclear receptor family. The NGFI-B protein also has a function distinct from that of a transcription factor; it translocates to mitochondria to initiate apoptosis. Recently, it was demonstrated that NGFI-B interacts with Bcl-2 by inducing a conformational change in Bcl-2, converting it from protector to a killer. After exposing rat cerebellar granule neurons to glutamate (100 mum, 15 min), NGFI-B translocated to the mitochondria. Growth factors such as the epidermal growth factor activate the MAP kinase ERK, the activity of which may determine whether a cell survives or undergoes apoptosis. In the present study we found that the epidermal growth factor activated ERK2 in cerebellar granule neurons and that this activation prohibited glutamate-induced subcellular translocation of NGFI-B. Likewise, overexpressed active ERK2 resulted in a predominant nuclear localization of green fluorescent protein-tagged NGFI-B. Thus, activation of ERK2 may overcome apoptosis-induced subcellular translocation of NGFI-B. This finding represents a novel and rapid growth factor survival pathway that is independent of gene regulation.
Collapse
Affiliation(s)
- Chris M Jacobs
- Institute of Pharmacy, University of Oslo, N-0316 Oslo, Norway
| | | | | | | | | |
Collapse
|
9
|
Carrasco E, Blum M, Weickert CS, Casper D. Epidermal growth factor receptor expression is related to post-mitotic events in cerebellar development: regulation by thyroid hormone. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2003; 140:1-13. [PMID: 12524172 DOI: 10.1016/s0165-3806(02)00539-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
It has been established that thyroid hormone and neurotrophic factors both orchestrate developmental events in the brain. However, it is not clear how these two influences are related. In this study, we investigated the effects of thyroid hormone on cerebellar development and the coincident expression of transforming growth factor-alpha (TGF-alpha), a ligand in the epidermal growth factor (EGF) family, and the epidermal growth factor receptor (EGFR). Profiles of thyroid hormone expression were measured in postnatal animals and were found to peak at postnatal day 15 (P15). These levels dropped below detectable levels when mice were made hypothyroid with propylthiouracil (PTU). TGF-alpha and EGFR expression, as determined by RNAse protection assay, was maximal at P6 in normal animals, but remained low in hypothyroid animals, suggesting that thyroid hormone was responsible for their induction. In situ hybridization and immunohistochemical analysis of EGFR expression revealed that this receptor was present on granule cells within the inner zone of the external granule cell layer (EGL), suggesting that EGFR-ligands were not inducing granule cell proliferation. The persistence of EGFR expression on migrating granule cells and subsequent down-regulation of expression in the internal granule cell layer (IGL) implicates a role for EGFR-ligands in differentiation and/or migration. In hypothyroid animals, we observed a delayed progression of granule cell migration, consistent with the persistence of EGFR labeling in the EGL, and in the 'pile-up' of labeled cells at the interface between the molecular layer and the Purkinje cell layer. Taken together, these results implicate thyroid hormone in the coordinated expression of TGF-alpha and EGFR, which are positioned to play a role in post-mitotic developmental events in the cerebellum.
Collapse
Affiliation(s)
- Emilce Carrasco
- Subprogram in Biopsychology, Hunter College of the City University of New York, New York, NY, USA
| | | | | | | |
Collapse
|
10
|
Suzuki K, Ikegaya Y, Matsuura S, Kanai Y, Endou H, Matsuki N. Transient upregulation of the glial glutamate transporter GLAST in response to fibroblast growth factor, insulin-like growth factor and epidermal growth factor in cultured astrocytes. J Cell Sci 2001; 114:3717-25. [PMID: 11707523 DOI: 10.1242/jcs.114.20.3717] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although expression of the glial glutamate transporter GLAST is tightly regulated during development and under pathophysiological conditions, little is known about endogenous modulators of GLAST expression. Because growth factors are generally believed to regulate glial functions, we addressed their possible contribution to GLAST regulation in cultured rat astrocytes. Of the six growth factors tested (basic fibroblast growth factor (bFGF), insulin-like growth factor-1 (IGF-1), epidermal growth factor (EGF), insulin, platelet-derived growth factor, and hepatocyte growth factor), bFGF, IGF-1 and EGF enhanced [3H]glutamate transport activity in a concentration-dependent manner. These effects were accompanied by an increase in the Vmax value for transport activity and in GLAST protein and mRNA levels, which suggests that GLAST expression is transcriptionally regulated by the growth factors. Interestingly, the effects reached a peak after 36 hours of exposure to growth factors, and rapidly returned to baseline by 48 hours. A combination of IGF-1 with either bFGF or EGF showed an additive effect on the glutamate uptake activity, but a combination of bFGF and EGF did not. Pharmacological blockade of protein kinase C inhibited the effects of IGF-1 and EGF, but not bFGF. By contrast, genistein, an inhibitor of tyrosine kinases, blocked the effects of bFGF and EGF without affecting the effect of IGF-1. These results suggest that the growth factors activate different signaling pathways for GLAST upregulation. The present study may indicate a novel regulatory system of glial glutamate transporters.
Collapse
Affiliation(s)
- K Suzuki
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
Transforming growth factor alpha (TGFalpha) is a member of the epidermal growth factor (EGF) family with which it shares the same receptor, the EGF receptor (EGFR or erbB1). Identified since 1985 in the central nervous system (CNS), its functions in this organ have started to be determined during the past decade although numerous questions remain unanswered. TGFalpha is widely distributed in the nervous system, both glial and neuronal cells contributing to its synthesis. Although astrocytes appear as its main targets, mediating in part TGFalpha effects on different neuronal populations, results from different studies have raised the possibility for a direct action of this growth factor on neurons. A large array of experimental data have thus pointed to TGFalpha as a multifunctional factor in the CNS. This review is an attempt to present, in a comprehensive manner, the very diverse works performed in vitro and in vivo which have provided evidences for (i) an intervention of TGFalpha in the control of developmental events such as neural progenitors proliferation/cell fate choice, neuronal survival/differentiation, and neuronal control of female puberty onset, (ii) its role as a potent regulator of astroglial metabolism including astrocytic reactivity, (iii) its neuroprotective potential, and (iv) its participation to neuropathological processes as exemplified by astroglial neoplasia. In addition, informations regarding the complex modes of TGFalpha action at the molecular level are provided, and its place within the large EGF family is precised with regard to the potential interactions and substitutions which may take place between TGFalpha and its kindred.
Collapse
Affiliation(s)
- M P Junier
- INSERM U421, Faculté de Médecine, 8, rue du Général Sarrail, 94010, Créteil, France.
| |
Collapse
|
12
|
Xia Y, Haddad GG. Effect of prolonged O2 deprivation on Na+ channels: differential regulation in adult versus fetal rat brain. Neuroscience 2000; 94:1231-43. [PMID: 10625063 DOI: 10.1016/s0306-4522(99)00375-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Neuronal Na+ channels are functionally inhibited in the adult in response to acute O2 deprivation. Since prolonged hypoxia may not only affect channel function, but also its expression, we hypothesized that long-term hypoxia alters Na+ channel density. This alteration may depend on age, because we have found major differences in neuronal responses to hypoxia between the immature and adult. In the present work, we used northern blots, slot blots, saxitoxin binding and autoradiography to ask whether: (i) prolonged hypoxia alters Na+ channel messenger RNA and protein levels in the brain; (ii) there is a difference between the adult and prenatal brains regarding Na+ channel expression with hypoxic exposure; and (iii) regional differences in Na+ channel expression occur in hypoxia-exposed brains. Our results show the following. (1) Na+ channel messenger RNA and saxitoxin binding density decreased after prolonged hypoxia in adult brain homogenates; this is in sharp contrast to the changes observed in fetal brains, which tended to increase Na+ channel messenger RNA and protein after hypoxia. (2) Changes in saxitoxin binding density are related to alterations in the number of saxitoxin binding sites and not to binding affinity, since there was no major change in Kd values between the hypoxia and naive groups. (3) The hypoxia-induced Na+ channel expression was heterogeneous, with major differences between rostral regions (e.g., the cortex) and caudal regions (e.g., the medulla and pons). We speculate that down-regulation of Na+ channels during long-term hypoxia in mature brains is an adaptive cellular response, aimed at minimizing the mismatch between energy supply and demand, since maintenance of Na+ gradients is a major energy-requiring process. However, the prenatal brain does not depend on this adaptive mechanism in response to hypoxic stress.
Collapse
Affiliation(s)
- Y Xia
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA.
| | | |
Collapse
|
13
|
Xian CJ, Zhou XF. Roles of transforming growth factor-alpha and related molecules in the nervous system. Mol Neurobiol 1999; 20:157-83. [PMID: 10966120 DOI: 10.1007/bf02742440] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The epidermal growth factor (EGF) family of polypeptides is regulators for tissue development and repair, and is characterized by the fact that their mature forms are proteolytically derived from their integral membrane precursors. This article reviews roles of the prominent members of the EGF family (EGF, transforming growth factor-alpha [TGF-alpha] and heparin-binding EGF [HB-EGF]) and the related neuregulin family in the nerve system. These polypeptides, produced by neurons and glial cells, play an important role in the development of the nervous system, stimulating proliferation, migration, and differentiation of neuronal, glial, and Schwann precursor cells. These peptides are also neurotrophic, enhancing survival and inhibiting apoptosis of post-mitotic neurons, probably acting directly through receptors on neurons, or indirectly via stimulating glial proliferation and glial synthesis of other molecules such as neurotrophic factors. TGF-alpha, EGF, and neuregulins are involved in mediating glial-neuronal and axonal-glial interactions, regulating nerve injury responses, and participating in injury-associated astrocytic gliosis, brain tumors, and other disorders of the nerve system. Although the collective roles of the EGF family (as well as those of the neuregulins) are shown to be essential for the nervous system, redundancy may exist among members of the EGF family.
Collapse
Affiliation(s)
- C J Xian
- Department of Human Physiology and Centre for Neuroscience, Flinders University of South Australia, Adelaide, Australia.
| | | |
Collapse
|
14
|
Kornblum HI, Zurcher SD, Werb Z, Derynck R, Seroogy KB. Multiple trophic actions of heparin-binding epidermal growth factor (HB-EGF) in the central nervous system. Eur J Neurosci 1999; 11:3236-46. [PMID: 10510187 DOI: 10.1046/j.1460-9568.1999.00744.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The epidermal growth factor (EGF) family of ligands interacts with the epidermal growth factor receptor (EGF-R) to produce numerous direct and indirect actions on central nervous system cells. They induce the proliferation of astrocytes and multipotent progenitors ('stem' cells) and promote the survival and differentiation of postmitotic neurons. Heparin-binding epidermal growth factor (HB-EGF) interacts with both EGF-R and a related receptor, ErbB4, whereas transforming growth factor alpha (TGFalpha) interacts only with EGF-R. Because of the unique characteristics of HB-EGF and the potential utility of EGF family members in brain repair, we examine the effects of HB-EGF on rat and mouse CNS cells in vitro and compare them to those of TGFalpha. We find that, like TGFalpha, HB-EGF stimulates the proliferation of CNS astrocytes and multipotent progenitors. These proliferative effects require the expression of EGF-R, as no such effects are observed in cells derived from EGF-R-/- mice. Both HB-EGF and TGFalpha enhanced the survival of neurons derived from the neocortex and the striatum. Within these neuron-enriched cultures, nestin-positive cells but not neurons express EGF-R mRNA, indicating that the neurotrophic actions of EGF-R ligands are a result of indirect stimulation mediated by non-neuronal cells. The neurotrophic actions of HB-EGF and TGFalpha are accompanied by an elevation in immunoreactive dual phosphorylated mitogen-activated protein kinase (MAP kinase) in neurons, providing evidence that the MAP kinase cascade mediates these actions. In situ hybridization studies demonstrate that HB-EGF mRNA is present within the brainstem as early as E14 and subsequently is found in the developing cortical plate, hippocampus, cerebellar Purkinje cells and ventrobasal thalamus, among other brain areas. These findings indicate that HB-EGF may be an important trophic factor in the developing CNS and is a useful candidate molecule for brain repair strategies.
Collapse
Affiliation(s)
- H I Kornblum
- Department of Molecular and Medical Pharmacology, Brain Research Institute, University of California, Los Angeles School of Medicine 90095, USA.
| | | | | | | | | |
Collapse
|
15
|
Dammann O, Leviton A. Brain damage in preterm newborns: might enhancement of developmentally regulated endogenous protection open a door for prevention? Pediatrics 1999; 104:541-50. [PMID: 10469783 DOI: 10.1542/peds.104.3.541] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We present a two-component model of brain white matter damage in preterm neonates. The insult component comprises infection and hypoxia-ischemia, which are both associated with inflammation-related abnormalities in the white matter. The developmental component comprises at least three factors, ie, immaturity of the ependymal/endothelial, oligodendroglial, and endogenous protection systems. All three factors are likely contributors to an increased vulnerability of the preterm newborn's white matter. In this article, we focus on recent developments in oligodendrocyte biology that support the view of certain cytokines and growth factors as oligotrophins based on their capability to enhance oligodendrocyte development or survival. We suggest that research into networks of developmentally regulated endogenous protectors (such as oligotrophins) is necessary to broaden our perspectives in brain injury prevention in preterm newborns.
Collapse
Affiliation(s)
- O Dammann
- Neuroepidemiology Unit, Department of Neurology, Children's Hospital, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
16
|
Kornblum HI, Hussain R, Wiesen J, Miettinen P, Zurcher SD, Chow K, Derynck R, Werb Z. Abnormal astrocyte development and neuronal death in mice lacking the epidermal growth factor receptor. J Neurosci Res 1998; 53:697-717. [PMID: 9753198 DOI: 10.1002/(sici)1097-4547(19980915)53:6<697::aid-jnr8>3.0.co;2-0] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Stimulation of the epidermal growth factor receptor (EGF-R) produces numerous effects on central nervous system (CNS) cells in vitro including neuronal survival and differentiation, astrocyte proliferation and the proliferation of multipotent progenitors. However, the in vivo role of EGF-R is less well understood. In the present study, we demonstrate that EGF-R null mice generated on a 129Sv/J Swiss Black background undergo focal but massive degeneration the olfactory bulb, piriform cortex, neocortex, and thalamus between postnatal days 5 and 8 which is due, at least in part, to apoptosis. Some of the neuronal populations that degenerate do not normally express EGF-R, indicating an indirect mechanism of neuronal death. There were also delays in GFAP expression within the glia limitans and within structures outside the germinal zones in early postnatal ages. At or just prior to the onset of the degeneration, however, there was an increase in GFAP expression in these areas. The brains of EGF-R (-/-) animals were smaller but cytoarchitecturally normal at birth and neuronal populations appeared to be intact, including striatal GABAergic and midbrain dopaminergic neurons which have previously been shown to express EGF-R. Multipotent progenitors and astrocytes derived from EGF-R (-/-) mice were capable of proliferating in response to FGF-2. These data demonstrate that EGF-R expression is critical for the maintenance of large portions of the postnatal mouse forebrain as well as the normal development of astrocytes.
Collapse
Affiliation(s)
- H I Kornblum
- Department of Molecular and Medical Pharmacology, Brain Research Institute, University of California, Los Angeles School of Medicine, 90095, USA.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Dreyfus H, Sahel J, Heidinger V, Mohand-Said S, Guérold B, Meuillet E, Fontaine V, Hicks D. Gangliosides and neurotrophic growth factors in the retina. Molecular interactions and applications as neuroprotective agents. Ann N Y Acad Sci 1998; 845:240-52. [PMID: 9668358 DOI: 10.1111/j.1749-6632.1998.tb09677.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Polypeptide growth factors and gangliosides can both be considered as trophic agents involved in almost all stages of neural cell development, differentiation, survival, and pathology. In most cases their physiological roles are still not clear due to the considerable complexity in their regulation. Several growth factors [e.g., basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF)] and one species of ganglioside (GM1) have been shown to exert interactions with each other and also to exhibit neuroprotective effects against retinal ischemia in vivo and cerebral excitotoxicity in vitro. Different experimental models are used to investigate their relevance to ischemic and excitotoxic conditions in the retina, and it is shown that (1) both bFGF and EGF show very effective neuroprotection for rat retinal neurones exposed to toxic levels of glutamate or its nonphysiological agonist kainate in vitro; (2) GM1 (10(-5M) used under the same conditions does not afford protection; (3) retinal glial cells also suffer morphological perturbations following glutamate or kainate treatment, but this effect is dependent on neuron-glial interactions, indicating the existence of intermediate neuron-derived messenger molecules; (4) these glial changes can be corrected by posttreatment with either bFGF or EGF in vitro; (5) using an in vivo animal model involving anterior chamber pressure-induced ischemia in adult rats, it is shown that either pretreatment by intraperitoneal injection of GM1, or posttreatment by intraocular injection of the same ganglioside, reduces significantly histological damage to inner nuclear regions; and (6) in cultured retinal Müller glial cells the existence of molecular and metabolic interactions between both types of trophic factors is demonstrated. Hence both these groups of trophic molecules show interesting features for retinal ischemic treatment.
Collapse
Affiliation(s)
- H Dreyfus
- Laboratoire de Physiopathologie Rétinienne, INSERM CJF 92-02, Centre Hospitalier et Universitaire Régional, Strasbourg, France.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Hicks D, Heidinger V, Mohand-Said S, Sahel J, Dreyfus H. Growth factors and gangliosides as neuroprotective agents in excitotoxicity and ischemia. GENERAL PHARMACOLOGY 1998; 30:265-73. [PMID: 9510073 DOI: 10.1016/s0306-3623(97)00356-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
1. At least two different groups of molecules can be considered neurotrophic factors because they exert a variety of effects upon neural cells. The first consists of the numerous families of polypeptide growth factors known to take part in almost all stages of neural cell growth and functioning, including development, differentiation, survival and pathology. The second group also is characterized by extensive complexity of multiple forms, and consists of the sialic acid-containing glycosphingolipids or gangliosides. These molecules also take part in the transfer of information from the extracellular milieu to the cell interior, and, similarly to growth factors, are participants in such aspects as development, differentiation and functioning. 2. In this short overview, we consider the existing data on the neuroprotective effects of growth factors [e.g., basic fibroblast growth factor (bFGF), epidermal growth factor (EGF) and brain-derived neurotrophic factor] and one species of ganglioside (GM1) against retinal ischemia in vivo and cerebral excitotoxicity in vitro. 3. We used three different experimental models to investigate their relevance to ischemic and excitotoxic conditions in the retina and have shown that: (a) both bFGF and EGF show highly effective neuroprotection for rat retinal neurons exposed to toxic levels of glutamate or its nonphysiological agonist kainate in vitro (b) retinal glial cells suffer morphological perturbations after glutamate or kainate treatment, and this effect depends on neuron-glial interactions; (c) these glial changes can also be corrected by posttreatment with either bFGF or EGF in vitro; (d) with the use of an in vivo animal model involving anterior chamber pressure-induced ischemia in adult rats, either pretreatment by intraperitoneal injection of GM1 or posttreatment by intraocular injection of the same ganglioside significantly reduces histological damage to inner nuclear regions. 4. Hence both groups of trophic molecules show interesting features for retinal ischemic treatment.
Collapse
Affiliation(s)
- D Hicks
- INSERM CJF 92-02, Centre Hospitalier et Universitaire Régional, Strasbourg, France.
| | | | | | | | | |
Collapse
|
19
|
Hayase Y, Higashiyama S, Sasahara M, Amano S, Nakagawa T, Taniguchi N, Hazama F. Expression of heparin-binding epidermal growth factor-like growth factor in rat brain. Brain Res 1998; 784:163-78. [PMID: 9518593 DOI: 10.1016/s0006-8993(97)01325-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
According to a recent report, messenger RNA coding for a member of the epidermal growth factor (EGF) family, heparin-binding EGF-like growth factor (HB-EGF), is expressed in the central nervous system (CNS). To obtain information about the role of HB-EGF in the brain, we carried out Northern analysis, in situ hybridization, and immunohistochemical studies evaluating the distribution and amounts of the growth factor using cDNA HB-EGF probes and an antibody raised against synthetic HB-EGF propeptide. Northern analysis revealed transcripts for HB-EGF in all regions of normal rat brain. Immunohistochemically, HB-EGF was demonstrated extensively in neurons at levels varying according to location. HB-EGF mRNA also was detected in neurons, suggesting that the growth factor is produced in these cells. HB-EGF mRNA and immunoreactivity were also demonstrated in interfascicular oligodendrocytes. These findings suggest that HB-EGF is a physiologic ligand for brain EGF receptors, and is likely to be important in neural function.
Collapse
Affiliation(s)
- Y Hayase
- Department of Pathology, Shiga University of Medical Science, Ohtsu, 520-21, Japan
| | | | | | | | | | | | | |
Collapse
|
20
|
Heidinger V, Hicks D, Sahel J, Dreyfus H. Peptide growth factors but not ganglioside protect against excitotoxicity in rat retinal neurons in vitro. Brain Res 1997; 767:279-88. [PMID: 9367259 DOI: 10.1016/s0006-8993(97)00605-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Glutamate is the major excitatory neurotransmitter in the retina, but excessive stimulation of its receptors leads to widespread neuronal stress and death. Both growth factors and gangliosides display important influences on responses to neuronal injury and degeneration. In this study, we have investigated the potential protective effects of two well characterized growth factors, epidermal and basic fibroblast growth factor (EGF and bFGF respectively), and the monosialoganglioside GM1, on cultured rat retinal neurons submitted to toxic levels of excitatory amino acids. Application of 1 mM glutamic acid reduced global neuronal viability by 80% when compared to control untreated cultures, whereas treatment with the glutamic acid agonist kainic acid (1 mM) led to specific, large decreases (75% reduction) in amacrine cell numbers. 24 h pretreatment with either EGF or bFGF (500 pM each) prevented the majority of excitatory amino acid-induced neuronal death, whereas similar treatment with 10(-5) M GM1 did not block neuronal degeneration. These findings demonstrate that EGF and bFGF act as neuroprotective agents against retinal excitotoxicity in vitro, whereas ganglioside GM1 is not effective in this particular paradigm.
Collapse
Affiliation(s)
- V Heidinger
- Laboratoire de Physiopathologie rétinienne, INSERM CJF 92 / 02, Médicale A, Centre Hospitalier et Universitaire de Strasbourg, France.
| | | | | | | |
Collapse
|
21
|
Morishita E, Masuda S, Nagao M, Yasuda Y, Sasaki R. Erythropoietin receptor is expressed in rat hippocampal and cerebral cortical neurons, and erythropoietin prevents in vitro glutamate-induced neuronal death. Neuroscience 1997; 76:105-16. [PMID: 8971763 DOI: 10.1016/s0306-4522(96)00306-5] [Citation(s) in RCA: 522] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Recently, erythropoietin has been shown to be produced by astrocytes and its production is hypoxia-inducible. In the present study, we demonstrated, using a reverse transcription-polymerase chain reaction assay and immunostaining of the cells, that the erythropoietin receptor was expressed in cultured hippocampal and cerebral cortical neurons of day 19 rat embryo. Erythropoietin protected the cultured neurons from glutamate neurotoxicity. Neurons cultured for seven to 10 days were exposed to glutamate for 15 min and after culture for a further 24 h in the absence of glutamate the neuron survival was assayed. Significant protection was observed with erythropoietin from 3 pM (c. 100 pg/ml) in a dose-dependent manner. The protection was completely reversed by co-application of a soluble erythropoietin receptor, an extracellular domain capable of binding with erythropoietin. For exhibition of the neuroprotective effect, exposure of neurons to erythropoietin approximately 8 h prior to exposure to glutamate was required. Experiments with the inhibitors indicated that RNA and protein syntheses were necessary for the protection. However, exposure to erythropoietin for a short period (5 min or less) was sufficient to elicit the protective effect. The protective effect of erythropoietin was blocked by the simultaneous addition of EGTA. These findings and the previous finding that erythropoietin induces a rapid and transient increase in intracellular Ca2+ concentration in neuronal cells suggest that erythropoietin plays a neuroprotective role in brain injury caused by hypoxia or ischemia and that erythropoietin-induced Ca2+ influx from outside of the cells is a critical initial event yielding an enhanced resistance of the neurons to glutamate toxicity.
Collapse
Affiliation(s)
- E Morishita
- Department of Food Science and Technology, Faculty of Agriculture, Kyoto University, Japan
| | | | | | | | | |
Collapse
|
22
|
Abstract
A mix of peptides and amino acids obtained from porcine brain tissue (Cerebrolysin) has been shown to affect passive avoidance behavior in neonatal rats. To identify the active components and mechanisms of action, Cerebrolysin effects were studied in in vitro hippocampal slices. Cerebrolysin induced dose-dependent suppression followed by a small rebound increase of synaptic responses in the CA1 but not dentate gyrus neurons. These actions may be due to peptides present in Cerebrolysin and may contribute to its reported behavioural effects.
Collapse
Affiliation(s)
- A Baskys
- Department of Physiology, University of Toronto, Ontario, Canada
| | | |
Collapse
|
23
|
Farooqui AA, Horrocks LA. Excitotoxicity and neurological disorders: involvement of membrane phospholipids. INTERNATIONAL REVIEW OF NEUROBIOLOGY 1994; 36:267-323. [PMID: 7822118 DOI: 10.1016/s0074-7742(08)60306-2] [Citation(s) in RCA: 86] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Excitatory amino acids and their receptors play an important role in membrane phospholipid metabolism. Persistent stimulation of excitatory amino acid receptors by glutamate may be involved in neurodegenerative diseases and brain and spinal cord trauma. The molecular mechanism of neurodegeneration induced by excitatory amino acids is, however, not known. Excitotoxin-induced calcium entry causes the stimulation of phospholipases and lipases. These enzymes act on neural membrane phospholipids and their stimulation results in accumulation of free fatty acids, diacylglycerols, eicosanoids, and lipid peroxides in neurodegenerative diseases and brain and spinal cord trauma. Other enzymes, such as protein kinase C and calcium-dependent proteases, may also contribute to the neuronal injury. Excitotoxin-induced alterations in membrane phospholipid metabolism in neurodegenerative diseases and neural trauma can be studied in animal and cell culture models. These models can be used to study the molecular mechanisms of the neurodegenerative processes and to screen the efficacy of therapeutic drugs.
Collapse
Affiliation(s)
- A A Farooqui
- Department of Medical Biochemistry, Ohio State University, Columbus 43210
| | | |
Collapse
|
24
|
Affiliation(s)
- G J Lees
- Department of Psychiatry and Behavioural Science, School of Medicine, University of Auckland, New Zealand
| |
Collapse
|