1
|
Wałecka-Zacharska E, Korkus J, Skowron K, Wietlicka-Piszcz M, Kosek-Paszkowska K, Bania J. Effect of Temperatures Used in Food Storage on Duration of Heat Stress Induced Invasiveness of L. monocytogenes. Microorganisms 2019; 7:E467. [PMID: 31627472 PMCID: PMC6843778 DOI: 10.3390/microorganisms7100467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/31/2019] [Accepted: 10/17/2019] [Indexed: 12/02/2022] Open
Abstract
The unpropitious conditions of the food processing environmenttrigger in Listeria monocytogenes stress response mechanisms that may affect the pathogen's virulence. To date, many studies have revealed that acid, osmotic, heat, cold and oxidative stress modify invasiveness of L. monocytogenes. Nonetheless, there is limited data on the duration of the stress effect on bacterial invasiveness. Since most food is stored at low or room temperatures we studied the impact of these temperatures on the duration of heat stress effect on invasiveness of 8 L. monocytogenes strains. Bacteria were heat-treated for 20 min at 54 °C and then incubated at 5 and 20 °C up to 14 days. A decrease in invasiveness over time was observed for bacteria not exposed to heating. It was found that heat shock significantly reduced the invasion capacity of all strains and the effect lasted between 7 and 14 days at both 5 and 20 °C. In conclusion, 20-min heating reduces invasion capacity of all L. monocytogenes strains; however, the stress effect is temporary and lasts between 7 and 14 days in the food storage conditions. The invasiveness of bacteria changes along with the incubation time and is temperature-dependent.
Collapse
Affiliation(s)
- Ewa Wałecka-Zacharska
- Department of Food Hygiene and Consumer Health Protection, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland; (J.K.); (K.K.-P.); (J.B.)
| | - Jakub Korkus
- Department of Food Hygiene and Consumer Health Protection, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland; (J.K.); (K.K.-P.); (J.B.)
| | - Krzysztof Skowron
- Department of Microbiology, Nicolaus Copernicus University in Toruń, Collegium Medicum of L. Rydygier in Bydgoszcz, 85-094 Bydgoszcz, Poland;
| | - Magdalena Wietlicka-Piszcz
- Department of Theoretical Foundations of Biomedical Sciences and Medical Computer Science, Nicolaus Copernicus University in Toruń, L. Rydygier Collegium Medicum in Bydgoszcz, 9 M. Skłodowska-Curie St., 85-094 Bydgoszcz, Poland;
| | - Katarzyna Kosek-Paszkowska
- Department of Food Hygiene and Consumer Health Protection, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland; (J.K.); (K.K.-P.); (J.B.)
| | - Jacek Bania
- Department of Food Hygiene and Consumer Health Protection, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland; (J.K.); (K.K.-P.); (J.B.)
| |
Collapse
|
2
|
|
3
|
Susceptibility of Escherichia coli O157:H7 grown at low temperatures to the krypton-chlorine excilamp. Sci Rep 2019; 9:563. [PMID: 30679621 PMCID: PMC6346039 DOI: 10.1038/s41598-018-37060-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 11/27/2018] [Indexed: 11/28/2022] Open
Abstract
This study was conducted to investigate the resistance of Escherichia coli O157:H7 to 222-nm krypton-chlorine(KrCl) excilamp and 254-nm low-pressure Hg lamp (LP lamp) treatment according to growth temperature. As growth temperature decreased, lag time of E. coli O157:H7 significantly increased while the growth rate significantly decreased. Regardless of growth temperature, the KrCl excilamp showed higher disinfection capacity compared to the LP lamp at stationary growth phase. KrCl excilamp treatment showed significantly higher reduction as growth temperature decreased. Conversely, reduction levels according to growth temperature were not significantly different when the pathogen was subjected to LP lamp treatment. Inactivation mechanisms were evaluated by the thiobarbituric acid reactive substances (TBARS) assay and SYBR green assay, and we confirmed that lipid oxdiation capacity following KrCl excilamp treatment increased as growth temperature decreased, which was significantly higher than that of LP lamp treated samples regardless of growth temperature. DNA damage level was significantly higher for LP Hg lamp treated samples compared to those subjected to the KrCl excilamp, but no significant difference pursuant to growth temperature was observed. At the transcriptional level, gene expression related to several metabolic pathways was significantly higher for the pathogen grown at 15 °C compared that of 37 °C, enabling it to adapt and survive at low temperature, and membrane lipid composition became altered to ensure membrane fluidity. Consequently, resistance of E. coli O157:H7 to the KrCl excilamp decreased as growth temperature decreased because the ratio of unsaturated fatty acid composition increased at low growth temperature resulting in higher lipid oxidation levels. These results indicate that KrCl excilamp treatment should be determined carefully considering the growth temperature of E. coli O157:H7.
Collapse
|
4
|
Impact of food model (micro)structure on the microbial inactivation efficacy of cold atmospheric plasma. Int J Food Microbiol 2017; 240:47-56. [DOI: 10.1016/j.ijfoodmicro.2016.07.024] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 06/21/2016] [Accepted: 07/15/2016] [Indexed: 11/24/2022]
|
5
|
Smet C, Noriega E, Rosier F, Walsh J, Valdramidis V, Van Impe J. Influence of food intrinsic factors on the inactivation efficacy of cold atmospheric plasma: Impact of osmotic stress, suboptimal pH and food structure. INNOV FOOD SCI EMERG 2016. [DOI: 10.1016/j.ifset.2016.09.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Leite de Souza E. The effects of sublethal doses of essential oils and their constituents on antimicrobial susceptibility and antibiotic resistance among food-related bacteria: A review. Trends Food Sci Technol 2016. [DOI: 10.1016/j.tifs.2016.07.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
7
|
Faour-Klingbeil D, Kuri V, Todd EC. The influence of pre-wash chopping and storage conditions of parsley on the efficacy of disinfection against S. Typhimurium. Food Control 2016. [DOI: 10.1016/j.foodcont.2016.01.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2022]
|
8
|
Ricke SC. Anaerobic Microbiology Laboratory Training and Writing Comprehension for Food Safety Education. Food Saf (Tokyo) 2015. [DOI: 10.1016/b978-0-12-800245-2.00019-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
9
|
Seow YX, Yeo CR, Chung HL, Yuk HG. Plant essential oils as active antimicrobial agents. Crit Rev Food Sci Nutr 2014; 54:625-44. [PMID: 24261536 DOI: 10.1080/10408398.2011.599504] [Citation(s) in RCA: 223] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Essential oils derived from plants have been recognized for decades to exhibit biological activities, including antioxidant, anticancer, and antimicrobial attributes. Antimicrobial activities of these natural plant materials have been intensively explored in recent years, mainly in response to the overwhelming concern of consumers over the safety of synthetic food additives. Gram-negative organisms are believed to be slightly less sensitive to essential oils than Gram-positive bacteria. Generally, a higher concentration is required to obtain the same efficacy in foods than in synthetic media. The combinations of different types of essential oils or with other food additives have been found to potentially exhibit synergistic if not additive effects. This suggests a cost-efficient and wholesome alternative to both food industry and consumers, at the same time adhering to the hurdle technology in inhibiting proliferation of foodborne pathogens. This review aims to examine the conventional methods commonly used for assessment of antimicrobial activities of essential oils and phytochemicals, the use of these substances as antimicrobials in food products, factors that affect their efficacy, synergism between components or with available food preservatives as well as the challenges and future directions of using essential oils and phytochemicals as natural food preservatives.
Collapse
Affiliation(s)
- Yi Xin Seow
- a Food Science & Technology Programme, Department of Chemistry , National University of Singapore, Block S3 Level 6, Science Drive 3 , Singapore , 117543
| | | | | | | |
Collapse
|
10
|
Noriega E, Velliou EG, Van Derlinden E, Mertens L, Van Impe JFM. Role of growth morphology in the formulation of NaCl-based selective media for injury detection of Escherichia coli, Salmonella Typhimurium and Listeria innocua. Food Res Int 2014; 64:402-411. [PMID: 30011667 DOI: 10.1016/j.foodres.2014.06.047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 06/26/2014] [Accepted: 06/29/2014] [Indexed: 11/26/2022]
Abstract
Sublethal injury (SI) poses major public health concerns since injured cells are responsible for serious limitations in food diagnostics and are susceptible to recovery, often developing adaptive stress responses. Detection of SI is based on the difference in plate counts between non-selective media, which represent the total cell population, and selective media, to which injured cells become sensitive. Selective media for detection of sublethal membrane damage are often based on NaCl supplement, although there is a lack of consensus in the literature about appropriate levels. Planktonic cells are generally used to investigate SI mechanisms, although they often exhibit different stress tolerance than cell colonies in/on solid food (model) systems. In this work, the effect of growth morphology, colony size and concentration of the gelling agent in the growth media, on the maximum non-inhibitory NaCl concentration in the plating medium was assessed for Escherichia coli, Salmonella Typhimurium and Listeria innocua. Stationary phase cultures of planktonic cells and large and small colonies grown in either 1.5% (w/v) xanthan gum-based system or 2.5% (w/v) xanthan gum-based system exhibited significantly different viable counts and osmotolerance. The effect of cell arrangement and xanthan gum percentage in the growth media depended on the microorganism under investigation. Additionally, differences in the maximum non-inhibitory concentration were evident, with 5.0% (w/v) NaCl for the Gram-negative bacteria and 6.5% (w/v), for L. innocua. Different extent of colony shrinkage and morphological damage was observed as NaCl concentration in the plating medium increased. This information will contribute to define NaCl-based selective media for accurate SI detection under realistic scenarios.
Collapse
Affiliation(s)
- Estefanía Noriega
- CPMF(2) - Flemish Cluster Predictive Microbiology in Foods, http://www.cpmf2.be, Belgium; BioTeC - Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Leuven, Belgium.
| | - Eirini G Velliou
- CPMF(2) - Flemish Cluster Predictive Microbiology in Foods, http://www.cpmf2.be, Belgium; BioTeC - Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Leuven, Belgium.
| | - Eva Van Derlinden
- CPMF(2) - Flemish Cluster Predictive Microbiology in Foods, http://www.cpmf2.be, Belgium; BioTeC - Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Leuven, Belgium.
| | - Laurence Mertens
- CPMF(2) - Flemish Cluster Predictive Microbiology in Foods, http://www.cpmf2.be, Belgium; BioTeC - Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Leuven, Belgium.
| | - Jan F M Van Impe
- CPMF(2) - Flemish Cluster Predictive Microbiology in Foods, http://www.cpmf2.be, Belgium; BioTeC - Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Leuven, Belgium.
| |
Collapse
|
11
|
Noriega E, Velliou E, Van Derlinden E, Mertens L, Van Impe JFM. Effect of cell immobilization on heat-induced sublethal injury of Escherichia coli, Salmonella Typhimurium and Listeria innocua. Food Microbiol 2013; 36:355-64. [PMID: 24010617 DOI: 10.1016/j.fm.2013.06.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 05/15/2013] [Accepted: 06/14/2013] [Indexed: 10/26/2022]
Abstract
The occurrence of sublethally injured cells in foods poses major public health concerns and is an essential aspect when assessing the microbial response to food preservation strategies, yet there is limited research dealing with its specific implications for mild heating. All available studies so far have been performed in broths colonized by planktonic cells, although their susceptibility to lethal agents has often been reported to be markedly different to the stress tolerance of cell colonies developed in solid foods. In this work, the effect of planktonic and colony growth, as well as the influence of colony density on sublethal injury induced by mild heating of Escherichia coli, Salmonella Typhimurium and Listeria innocua were assessed in food model systems. Detection of injured survivors relied on their inability to form visible colonies on salt-based selective media, which do not affect the growth of healthy cells. Sublethal injury (SI) increased rapidly with shorter exposure times and afterwards, decreased progressively, suggesting a mechanism of cumulative damage triggering lethal instead of SI. Cell arrangement affected the degree of SI, higher values being generally found for gelified systems, although the effect of colony density depended on the target microorganism. This information is essential for optimizing the design of food safety assurance systems.
Collapse
|
12
|
Santos AL, Gomes NCM, Henriques I, Almeida A, Correia A, Cunha A. Growth conditions influence UVB sensitivity and oxidative damage in an estuarine bacterial isolate. Photochem Photobiol Sci 2013; 12:974-86. [PMID: 23493991 DOI: 10.1039/c3pp25353h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The dose-dependent variation of oxidative cellular damage imposed by UVB exposure in a representative estuarine bacterial strain, Pseudomonas sp. NT5I1.2B, was studied at different growth phases (mid-exponential, late-exponential, and stationary), growth temperatures (15 °C and 25 °C) and growth media (nutrient-rich Tryptic Soy Broth [TSB] and nutrient-poor M9). Survival and markers of oxidative damage (lipid peroxidation, protein carbonylation, DNA strand breakage, and DNA-protein cross-links) were monitored during exposure to increasing UVB doses (0-60 kJ m(-2)). Oxidative damage did not follow a clear linear dose-dependent pattern, particularly at high UVB doses (>10 kJ m(-2)), suggesting a dynamic interaction between damage induction and repair during irradiation and/or saturation of oxidative damage. Survival of stationary phase cells generally exceeded that of exponential phase cells by up to 33.5 times; the latter displayed enhanced levels of DNA-protein cross-links (up to 15.6-fold) and protein carbonylation (up to 6.0-fold). Survival of mid-exponential phase cells was generally higher at 15 °C than at 25 °C (up to 6.6-fold), which was accompanied by lower levels of DNA strand breaks (up to 4000-fold), suggesting a temperature effect on reactive oxygen species (ROS) generation and/or ROS interaction with cellular targets. Survival under medium-high UVB doses (>10 kJ m(-2)) was generally higher (up to 5.4-fold) in cells grown in TSB than in M9. These results highlight the influence of growth conditions preceding irradiation on the extent of oxidative damage induced by UVB exposure in bacteria.
Collapse
Affiliation(s)
- Ana L Santos
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal
| | | | | | | | | | | |
Collapse
|
13
|
Van Impe J, Vercammen D, Van Derlinden E. Toward a next generation of predictive models: A systems biology primer. Food Control 2013. [DOI: 10.1016/j.foodcont.2012.06.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Gomes Neto NJ, Luz IDS, Tavares AG, Honório VG, Magnani M, de Souza EL. Rosmarinus officinalis L. essential oil and its majority compound 1,8-cineole at sublethal amounts induce no direct and cross protection in Staphylococcus aureus ATCC 6538. Foodborne Pathog Dis 2012. [PMID: 23190166 DOI: 10.1089/fpd.2012.1258] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In this study, the inhibitory efficacy of Rosmarinus officinalis essential L. (ROEO) and 1,8-cineole (CIN) in inhibiting the growth and survival of Staphylococcus aureus ATCC 6538 and the induction of direct and bacterial cross protection (lactic acid pH 5.2; NaCl 100 g/L; high temperature 45°C) were evaluated following exposure to sublethal and increasing amounts of these treatments in meat broth. All of the concentrations of the ROEO and CIN examined in this study (minimum inhibitory concentration [MIC], 1/2 MIC, and 1/4 MIC) inhibited the viability of S. aureus throughout the 120 min of exposure. The overnight exposure of S. aureus to sublethal amounts of both ROEO or CIN in meat broth did not result in direct or cross protection. Cells progressively subcultured (24-h cycles) in meat broth with increasing amounts of ROEO or CIN showed no increased direct tolerance. These results reveal the antimicrobial efficacy of ROEO and CIN for use in food conservation systems as anti-S. aureus compounds given their efficacy at inhibiting bacterial growth, in addition to their lack of induction for the development of homologous and heterologous resistance.
Collapse
Affiliation(s)
- Nelson Justino Gomes Neto
- Laboratory of Food Microbiology, Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa, Brazil
| | | | | | | | | | | |
Collapse
|
15
|
Gomes Neto NJ, Luz IS, Honório WG, Tavares AG, de Souza EL. Rosmarinus officinalisL. essential oil and the related compound 1,8-cineole do not induce direct or cross-protection inListeria monocytogenesATCC 7644 cultivated in meat broth. Can J Microbiol 2012; 58:973-81. [DOI: 10.1139/w2012-070] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Listeria monocytogenes has the capability of adapting to 1 or more antimicrobial compounds or procedures applied by the food industry to control the growth and survival of microorganisms in foods. In this study, the effects of Rosmarinus officinalis essential oil (EO) and the related compound 1,8-cineole on the inhibition of the growth and survival of L. monocytogenes ATCC 7644 were determined. The ability of the R. officinalis EO and 1,8-cineole to induce direct and cross-protection of bacteria against various stresses (lactic acid, pH 5.2; NaCl, 3 g/100 mL; high temperature, 45 °C) was also determined. At all concentrations tested (minimum inhibitory concentration (MIC), ½ MIC, and ¼ MIC), both compounds inhibited the cell viability of L. monocytogenes over 120 min of exposure. Overnight exposure of L. monocytogenes to sublethal amounts of either the R. officinalis EO or 1,8-cineole in meat broth revealed no induction of direct or cross-protection against lactic acid, NaCl, or high temperature. Similarly, cells subjected to 24 h cycles of adaptation with increasing amounts (½ MIC to 2× MIC) of the EO and 1,8-cineole showed no increase in direct tolerance, as they were able to survive in growth medium containing up to ½ MIC of either substance. These results show the antimicrobial efficacy of R. officinalis EO and 1,8-cineole for use in systems, particularly as anti-L. monocytogenes compounds.
Collapse
Affiliation(s)
- Nelson Justino Gomes Neto
- Laboratory of Food Microbiology, Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, Brazil
| | - Isabelle Silva Luz
- Laboratory of Food Microbiology, Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, Brazil
| | - Wanessa Gonçalves Honório
- Laboratory of Food Microbiology, Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, Brazil
| | - Adassa Gama Tavares
- Laboratory of Food Microbiology, Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, Brazil
| | - Evandro Leite de Souza
- Laboratory of Food Microbiology, Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, Brazil
| |
Collapse
|
16
|
|
17
|
Wałecka E, Molenda J, Karpíšková R, Bania J. Effect of osmotic stress and culture density on invasiveness of Listeria monocytogenes strains. Int J Food Microbiol 2010; 144:440-5. [PMID: 21093947 DOI: 10.1016/j.ijfoodmicro.2010.10.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 10/14/2010] [Accepted: 10/27/2010] [Indexed: 01/30/2023]
Abstract
The effect of osmotic stress on its capacity to invade the human enterocytic cell line HT-29 was studied in the early log through the stationary phase in 10 L. monocytogenes strains representing three genetically independent lineages. The results demonstrate that the transition of the bacteria from the log to the stationary phase results in a stepwise reduction of invasiveness. This effect was heterogeneous in the studied L. monocytogenes population, as the range of invasiveness reduction between the log and stationary phases varied from 10- to 380-fold depending on the strain. Ten-minute exposure to 0.3 M NaCl was sufficient to generate invasiveness alteration. No significant change in invasiveness induction caused by osmotic stress was found between the different points of the log phase (OD₆₀₀ 0.4-1.2), being significantly different in the early log phase (OD₆₀₀ 0.2-0.3) and in the stationary phase after 18 h of culture. The level of internalins and opuCA transcripts in response to osmotic stress did not correlate with invasiveness alteration in most L. monocytogenes strains. Prolongation of stress exposure to 1 h and an increase in NaCl concentration from 0.3 to 1.8 M had no significant effect on a further increase in invasiveness. Short exposure times and low NaCl concentrations were sufficient for the generation of maximal invasiveness response of L. monocytogenes. It appears that although stationary-phase bacteria exhibit lower invasiveness than log-phase bacteria, they have a greater capacity to enhance their pathogenicity in response to stress.
Collapse
Affiliation(s)
- Ewa Wałecka
- Department of Food Hygiene and Consumer Health Protection, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | | | | | | |
Collapse
|
18
|
King T, Lucchini S, Hinton JCD, Gobius K. Transcriptomic analysis of Escherichia coli O157:H7 and K-12 cultures exposed to inorganic and organic acids in stationary phase reveals acidulant- and strain-specific acid tolerance responses. Appl Environ Microbiol 2010; 76:6514-28. [PMID: 20709847 PMCID: PMC2950450 DOI: 10.1128/aem.02392-09] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Accepted: 08/01/2010] [Indexed: 11/20/2022] Open
Abstract
The food-borne pathogen Escherichia coli O157:H7 is commonly exposed to organic acid in processed and preserved foods, allowing adaptation and the development of tolerance to pH levels otherwise lethal. Since little is known about the molecular basis of adaptation of E. coli to organic acids, we studied K-12 MG1655 and O157:H7 Sakai during exposure to acetic, lactic, and hydrochloric acid at pH 5.5. This is the first analysis of the pH-dependent transcriptomic response of stationary-phase E. coli. Thirty-four genes and three intergenic regions were upregulated by both strains during exposure to all acids. This universal acid response included genes involved in oxidative, envelope, and cold stress resistance and iron and manganese uptake, as well as 10 genes of unknown function. Acidulant- and strain-specific responses were also revealed. The acidulant-specific response reflects differences in the modes of microbial inactivation, even between weak organic acids. The two strains exhibited similar responses to lactic and hydrochloric acid, while the response to acetic acid was distinct. Acidulant-dependent differences between the strains involved induction of genes involved in the heat shock response, osmoregulation, inorganic ion and nucleotide transport and metabolism, translation, and energy production. E. coli O157:H7-specific acid-inducible genes were identified, suggesting that the enterohemorrhagic E. coli strain possesses additional molecular mechanisms contributing to acid resistance that are absent in K-12. While E. coli K-12 was most resistant to lactic and hydrochloric acid, O157:H7 may have a greater ability to survive in more complex acidic environments, such as those encountered in the host and during food processing.
Collapse
Affiliation(s)
- Thea King
- CSIRO Food and Nutritional Sciences, Brisbane, Queensland, Australia.
| | | | | | | |
Collapse
|
19
|
Cornet I, Van Derlinden E, Cappuyns A, Van Impe J. Heat stress adaptation of Escherichia coli under dynamic conditions: effect of inoculum size*. Lett Appl Microbiol 2010; 51:450-5. [DOI: 10.1111/j.1472-765x.2010.02920.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Van Derlinden E, Lule I, Bernaerts K, Van Impe J. Quantifying the heterogeneous heat response ofEscherichia coliunder dynamic temperatures. J Appl Microbiol 2010; 108:1123-35. [DOI: 10.1111/j.1365-2672.2009.04512.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Wesche AM, Gurtler JB, Marks BP, Ryser ET. Stress, sublethal injury, resuscitation, and virulence of bacterial foodborne pathogens. J Food Prot 2009; 72:1121-38. [PMID: 19517746 DOI: 10.4315/0362-028x-72.5.1121] [Citation(s) in RCA: 296] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Environmental stress and food preservation methods (e.g., heating, chilling, acidity, and alkalinity) are known to induce adaptive responses within the bacterial cell. Microorganisms that survive a given stress often gain resistance to that stress or other stresses via cross-protection. The physiological state of a bacterium is an important consideration when studying its response to food preservation techniques. This article reviews the various definitions of injury and stress, sublethal injury of bacteria, stresses that cause this injury, stress adaptation, cellular repair and response mechanisms, the role of reactive oxygen species in bacterial injury and resuscitation, and the potential for cross-protection and enhanced virulence as a result of various stress conditions.
Collapse
Affiliation(s)
- Alissa M Wesche
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | |
Collapse
|
22
|
Álvarez-Ordóñez A, Fernández A, López M, Arenas R, Bernardo A. Modifications in membrane fatty acid composition of Salmonella typhimurium in response to growth conditions and their effect on heat resistance. Int J Food Microbiol 2008; 123:212-9. [DOI: 10.1016/j.ijfoodmicro.2008.01.015] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Revised: 01/29/2008] [Accepted: 01/30/2008] [Indexed: 10/22/2022]
|
23
|
Van Derlinden E, Bernaerts K, Van Impe JF. Dynamics of Escherichia coli at elevated temperatures: effect of temperature history and medium. J Appl Microbiol 2007; 104:438-53. [PMID: 17931374 DOI: 10.1111/j.1365-2672.2007.03592.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS The dynamics of Escherichia coli near the maximum temperature for growth in a rich medium are analysed. The effects of temperature history, medium composition and physiological state of the inoculum are evaluated. METHODS AND RESULTS Kinetics of E. coli K12 MG1655 is studied in 'brain-heart infusion' broth in a temperature controlled environment. Based on viable counts, 'smooth' growth curves are observed at 40, 41, 42 and 43 degrees C. The exponential growth phase at 44 and 45 degrees C is interrupted. At 46 degrees C, a period of exponential growth is followed by inactivation. Neither the physiological state of the inoculum nor medium enrichment alters the dynamics, whilst temperature pre-adaptation or chemical chaperones restore regular cell growth and division ('smooth' exponential growth). CONCLUSIONS Atypical, nonexponential growth at 44, 45 and 46 degrees C seems related to protein destabilization and can (partly) be restored by an appropriate medium design (i.e. addition of chemical chaperones) or temperature history (i.e. selection of a more resistant subpopulation). SIGNIFICANCE AND IMPACT OF THE STUDY This study indicates that the maximum temperature for growth is dependent on the temperature history and the chemical environment. These observations and the nonexponential kinetics have important implications for the development of predictive models for food safety and quality.
Collapse
Affiliation(s)
- E Van Derlinden
- Chemical and Biochemical Process Technology and Control Section (BioTeC), Department of Chemical Engineering, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | |
Collapse
|
24
|
McCann MS, McGovern AC, McDowell DA, Blair IS, Sheridan JJ. Surface decontamination of beef inoculated with Salmonella Typhimurium DT104 or Escherichia coli O157:H7 using dry air in a novel heat treatment apparatus. J Appl Microbiol 2006; 101:1177-87. [PMID: 17040242 DOI: 10.1111/j.1365-2672.2006.02988.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIMS To determine the effectiveness of a novel dry air decontamination apparatus in the deactivation of Salmonella serotype Typhimurium DT104 or Escherichia coli O157:H7 on beef surfaces. METHODS AND RESULTS A laboratory scale dry air decontamination apparatus, capable of producing repeatable and known heating time-temperature cycles on food surfaces was used in decontamination trials. Beef samples were surface inoculated with 7-8 log10CFU cm(-2) of S. Typhimurium DT104 or E. coli O157:H7 and heated at 60, 75, 90 and 100 degrees C using fast and slow heating rates and subsequently held at these temperatures for up to 600 s. A substantial reduction in pathogen numbers was achieved at higher temperatures (90 and 100 degrees C, 4.18-6.06 log10CFU cm(-2)) using both heating rates, but cell survival at these temperatures was also observed. At the lower temperatures, deactivation was small at 60 degrees C in particular it was less than one log unit after 3 min heating. No significant differences were observed when total reductions in pathogen counts were compared for all the temperature/heat up time combinations tested. During slow heating at 90 degrees C, and both heating rates at 100 degrees C, the pattern of deactivation of S. Typhimurium DT104 or E. coli O157:H7 was triphasic. CONCLUSIONS This study has shown that heating meat surfaces with dry air can achieve substantial reductions in S. Typhimurium DT104 or E. coli O157:H7. As surface decontamination of beef surfaces with dry air had a negative effect on beef colour and appearance, such a decontamination apparatus would be unsuitable for producing meat for retail sale but it could be used to produce safer meat for use in the catering trade. SIGNIFICANCE AND IMPACT OF THE STUDY This study provides researchers and food processors with data on the dynamic changes in S. Typhimurium DT104 and E. coli O157:H7 counts on intact beef surfaces during heating with dry air under realistic (time-varying) temperature conditions.
Collapse
Affiliation(s)
- M S McCann
- The Ashtown Food Research Centre, Teagasc, Ashtown, Dublin, Ireland.
| | | | | | | | | |
Collapse
|
25
|
|
26
|
Hew CM, Hajmeer MN, Farver TB, Riemann HP, Glover JM, Cliver DO. Pathogen survival in chorizos: ecological factors. J Food Prot 2006; 69:1087-95. [PMID: 16715809 DOI: 10.4315/0362-028x-69.5.1087] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This study addressed health risks from ethnic sausages produced on a small scale, without inspection, in California and elsewhere. Mexican-style chorizo, a raw pork sausage that is not cured, fermented, or smoked, was contaminated experimentally in the batter with Escherichia coli O157:H7, Listeria monocytogenes, or Salmonella serotypes and stuffed into natural casings. Formulations were based on a market survey in California. Physical parameters that were controlled were pH, water activity (a(w)), and storage temperature. The pH was adjusted with vinegar, stabilizing at 5.0 within 24 h. Initial a(w) levels adjusted with salt were 0.97, 0.95, 0.93, 0.90, and 0.85; levels declined with time because of evaporation. Pathogen numbers declined with storage up to 7 days, with few brief exceptions. Main effects and interactions of constant temperature and pH with declining a(w) on survival of the pathogens were determined. Maximum death rates occurred at higher a(w) for E. coli O157:H7 and Salmonella than for L. monocytogenes. Salt used to adjust a(w) affected palatability. Spices (black pepper, chili pepper, chili powder, cumin, garlic, guajillo pepper, oregano, and paprika) comprised another, potentially significant aspect of the sausage formulation. Some (notably black pepper and cumin) carried an indigenous microflora that contributed significantly to the microbial load of the sausage batter. Only undiluted fresh and powdered garlic exhibited a significant antimicrobial effect on the pathogens. Although each of the tested formulations caused death of the inoculated pathogens, none of the death rates was sufficiently rapid to ensure safety within the probable shelf life of the product.
Collapse
Affiliation(s)
- Carrie M Hew
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, California 95616, USA
| | | | | | | | | | | |
Collapse
|
27
|
Sharkey FH, Dooley JS, Haylock RW. Quantitative effects of carbohydrates and aromatic amino acids on Clostridium botulinum toxin gene expression using a rapid competitive RT/PCR assay. J Mol Microbiol Biotechnol 2006; 9:35-43. [PMID: 16254444 DOI: 10.1159/000088144] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
A rapid competitive RT/PCR assay was developed to determine the effects of nutrients on Clostridium botulinum type E toxin gene expression. The type E strain (EVH) was grown in a nutrient-rich broth containing 1% glucose (base medium). Toxin gene expression was quantified at both mid and late exponential phases of growth. It was found that toxin encoding mRNA levels were highly growth phase dependent with elevated levels found in late exponential phase compared to mid exponential phase. Changing the carbohydrate source had a smaller effect on toxin encoding mRNA levels but as earlier results have suggested, toxin encoding mRNA levels show a strong correlation with type E growth rate. The results have important implications for the food industry whereby risk of type E botulism could be correlated to the nutrient composition of the contaminated food or assessed from C. botulinum growth rates in challenged foodstuffs.
Collapse
Affiliation(s)
- Freddie H Sharkey
- MRC, Human Genetics Unit, Western General Hospital, Edinburgh, Scotland
| | | | | |
Collapse
|
28
|
Weeks ME, Nebe von Caron G, James DC, Smales CM, Robinson GK. Monitoring changes in nisin susceptibility of Listeria monocytogenes Scott A as an indicator of growth phase using FACS. J Microbiol Methods 2005; 66:43-55. [PMID: 16316702 DOI: 10.1016/j.mimet.2005.10.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2005] [Revised: 10/14/2005] [Accepted: 10/14/2005] [Indexed: 11/23/2022]
Abstract
Listeria monocytogenes has previously been shown to adapt to a wide variety of environmental niches, principally those associated with low pH, and this compromises its control in food environments. An understanding of the mechanism(s) by which L. monocytogenes survives unfavourable environmental conditions will aid in developing new food processing methods to control the organism in foodstuffs. The present study aimed to gain a further understanding of the physiological basis for the differential effects of one control strategy, namely the use of the lantibiotic nisin. Using propidium iodide (PI) to probe membrane integrity it was shown that L. monocytogenes Scott A was sensitive to nisin (8 ng mL(-)) but this was growth phase dependent with stationary phase cells (OD600=1.2) being much more resistant than exponential phase cells (OD600=0.38). We demonstrate that, using a combination of techniques including fluorescence activated cell sorting (FACS), the membrane adaptations underpinning nisin resistance are triggered much earlier (OD600<0.5) than the onset of stationary phase. The significance of these findings in terms of mechanism and application are discussed.
Collapse
Affiliation(s)
- M E Weeks
- Molecular Oncology, Cancer Research UK, Barts and The London School of Medicine and Dentistry, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | | | | | | | | |
Collapse
|
29
|
Mellefont LA, McMeekin TA, Ross T. Viable count estimates of lag time responses for Salmonella typhimurium M48 subjected to abrupt osmotic shifts. Int J Food Microbiol 2005; 105:399-410. [PMID: 16109449 DOI: 10.1016/j.ijfoodmicro.2005.03.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2004] [Revised: 03/05/2005] [Accepted: 03/28/2005] [Indexed: 11/20/2022]
Abstract
Generally, relative lag times (RLT; lag time divided by generation time) become extended as conditions become less favourable for growth. Mellefont et al. (2003, 2004) [Mellefont, L.A., McMeekin, T.A., Ross, T., 2003. The effect of abrupt osmotic shifts on the lag phase duration of foodborne bacteria. Int. J. Food Microbiol. 83(3), 281-293; Mellefont, L.A., McMeekin, T.A., Ross, T., 2004. The effect of abrupt osmotic shifts on the lag phase duration of physiologically distinct populations of Salmonella typhimurium. Int. J. Food Microbiol. 92, 111-120] reported that abrupt osmotic shifts of Salmonella typhimurium M48 from optimal to low aw led to unexpectedly small RLTs at low aw. In this study, RLTs resulting from similar osmotic shifts were estimated by viable count (VC) and compared to turbidimetric estimates to test the hypothesis that the 'downturn' in RLT is an artefact of the turbidimetric technique used. No 'downturn' in RLT was observed with VC data and RLTs increased with increasing magnitude of osmotic shift. Anomalous turbidimetric estimates of lag time at low aw were confirmed as the likely source of the 'downturn' in RLT. The abrupt osmotic shifts resulted in a complex pattern of microbial population behaviour. Immediately after transfer from optimal aw to low aw, inactivation of a portion of the population occurred for all the conditions tested. The degree of inactivation became progressively larger with larger shifts in aw. The initial decline in population was followed by a period during which no change in numbers occurred, followed by growth that appeared, in most cases, to be exponential. At the lowest aws tested (< or =0.954), the growth response after the initial decline was at a rate slower than that of exponential phase growth. Due to the use of non-selective media containing pyruvate (to eliminate oxygen radicals), the observed patterns of inactivation, lag and regrowth at most aw conditions are unlikely to result from a temporary loss of culturability, but may represent inactivation of a portion of the population.
Collapse
Affiliation(s)
- L A Mellefont
- Australian Food Safety Centre of Excellence, University of Tasmania, Private Bag 54, Hobart 7001, Tasmania, Australia.
| | | | | |
Collapse
|
30
|
Carvalho AS, Silva J, Ho P, Teixeira P, Malcata F, Gibbs P. Relevant factors for the preparation of freeze-dried lactic acid bacteria. Int Dairy J 2004. [DOI: 10.1016/j.idairyj.2004.02.001] [Citation(s) in RCA: 251] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Burt S. Essential oils: their antibacterial properties and potential applications in foods--a review. Int J Food Microbiol 2004; 94:223-53. [PMID: 15246235 DOI: 10.1016/j.ijfoodmicro.2004.03.022] [Citation(s) in RCA: 5047] [Impact Index Per Article: 252.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2003] [Accepted: 03/03/2004] [Indexed: 11/18/2022]
Abstract
In vitro studies have demonstrated antibacterial activity of essential oils (EOs) against Listeria monocytogenes, Salmonella typhimurium, Escherichia coli O157:H7, Shigella dysenteria, Bacillus cereus and Staphylococcus aureus at levels between 0.2 and 10 microl ml(-1). Gram-negative organisms are slightly less susceptible than gram-positive bacteria. A number of EO components has been identified as effective antibacterials, e.g. carvacrol, thymol, eugenol, perillaldehyde, cinnamaldehyde and cinnamic acid, having minimum inhibitory concentrations (MICs) of 0.05-5 microl ml(-1) in vitro. A higher concentration is needed to achieve the same effect in foods. Studies with fresh meat, meat products, fish, milk, dairy products, vegetables, fruit and cooked rice have shown that the concentration needed to achieve a significant antibacterial effect is around 0.5-20 microl g(-1) in foods and about 0.1-10 microl ml(-1) in solutions for washing fruit and vegetables. EOs comprise a large number of components and it is likely that their mode of action involves several targets in the bacterial cell. The hydrophobicity of EOs enables them to partition in the lipids of the cell membrane and mitochondria, rendering them permeable and leading to leakage of cell contents. Physical conditions that improve the action of EOs are low pH, low temperature and low oxygen levels. Synergism has been observed between carvacrol and its precursor p-cymene and between cinnamaldehyde and eugenol. Synergy between EO components and mild preservation methods has also been observed. Some EO components are legally registered flavourings in the EU and the USA. Undesirable organoleptic effects can be limited by careful selection of EOs according to the type of food.
Collapse
Affiliation(s)
- Sara Burt
- Department of Public Health and Food Safety, Faculty of Veterinary Medicine, University of Utrecht, P.O. Box 80175, 3508 TD Utrecht, The Netherlands.
| |
Collapse
|
32
|
Sampathkumar B, Khachatourians GG, Korber DR. Treatment of Salmonella enterica serovar Enteritidis with a sublethal concentration of trisodium phosphate or alkaline pH induces thermotolerance. Appl Environ Microbiol 2004; 70:4613-20. [PMID: 15294793 PMCID: PMC492340 DOI: 10.1128/aem.70.8.4613-4620.2004] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2004] [Accepted: 04/22/2004] [Indexed: 12/26/2022] Open
Abstract
The responses of Salmonella enterica serovar Enteritidis to a sublethal dose of trisodium phosphate (TSP) and its equivalent alkaline pH made with NaOH were examined. Pretreatment of S. enterica serovar Enteritidis cells with 1.5% TSP or pH 10.0 solutions resulted in a significant increase in thermotolerance, resistance to 2.5% TSP, resistance to high pH, and sensitivity to acid and H(2)O(2). Protein inhibition studies with chloramphenicol revealed that thermotolerance, unlike resistance to high pH, was dependent on de novo protein synthesis. Two-dimensional polyacrylamide gel electrophoresis (PAGE) of total cellular proteins from untreated control cells resolved as many as 232 proteins, of which 22 and 15% were absent in TSP- or alkaline pH-pretreated cells, respectively. More than 50% of the proteins that were either up- or down-regulated by TSP pretreatment were also up- or down-regulated by alkaline pH pretreatment. Sodium dodecyl sulfate-PAGE analysis of detergent-insoluble outer membrane proteins revealed the up-regulation of at least four proteins. Mass spectrometric analysis showed the up-regulated proteins to include those involved in the transport of small hydrophilic molecules across the cytoplasmic membrane and those that act as chaperones and aid in the export of newly synthesized proteins by keeping them in open conformation. Other up-regulated proteins included common housekeeping proteins like those involved in amino acid biosynthesis, nucleotide metabolism, and aminoacyl-tRNA biosynthesis. In addition to the differential expression of proteins following TSP or alkaline pH treatment, changes in membrane fatty acid composition were also observed. Alkaline pH- or TSP-pretreated cells showed a higher saturated and cyclic to unsaturated fatty acid ratio than did the untreated control cells. These results suggest that the cytoplasmic membrane could play a significant role in the induction of thermotolerance and resistance to other stresses following TSP or alkaline pH treatment.
Collapse
Affiliation(s)
- Balamurugan Sampathkumar
- Department of Applied Microbiology and Food Science, University of Saskatchewan, 51 Campus Dr., Saskatoon, SK S7N 5A8, Canada
| | | | | |
Collapse
|
33
|
Lu L, Hume ME, Pillai SD. Autoinducer-2-like activity associated with foods and its interaction with food additives. J Food Prot 2004; 67:1457-62. [PMID: 15270501 DOI: 10.4315/0362-028x-67.7.1457] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The autoinducer-2 (AI-2) molecule produced by bacteria as part of quorum sensing is considered to be a universal inducer signal in bacteria because it reportedly influences gene expression in a variety of both gram-negative and gram-positive bacteria. The objective of this study was to determine whether selected fresh produce and processed foods have AI-2-like activity and whether specific food additives can act as AI-2 mimics and result in AI-2-like activity. The luminescence-based response of the reporter strain Vibrio harveyi BB170 was used as the basis for determining AI-2 activity in the selected foods and food ingredients. Maximum AI-2 activity was seen on the frozen fish sample (203-fold, compared with the negative control) followed by tomato, cantaloupe, carrots, tofu, and milk samples. Interestingly, some samples were capable of inhibiting AI-2 activity. Turkey patties showed the highest inhibition (99.8% compared with the positive control) followed by chicken breast (97.5%), homemade cheeses (93.7%), beef steak (90.6%), and beef patties (84.4%). AI-2 activity was almost totally inhibited by sodium propionate, whereas sodium benzoate caused 93.3% inhibition, compared with 75% inhibition by sodium acetate. Sodium nitrate did not have any appreciable effect, even at 200 ppm. Understanding the relationships that exist between AI-2 activity on foods and the ecology of pathogens and food spoilage bacteria on foods could yield clues about factors controlling food spoilage and pathogen virulence.
Collapse
Affiliation(s)
- Lingeng Lu
- Poultry Science Department and Institute of Food Science and Engineering, Food Safety and Environmental Microbiology Program, Texas A&M University, College Station, Texas 77843, USA
| | | | | |
Collapse
|
34
|
Mellefont LA, McMeekin TA, Ross T. The effect of abrupt osmotic shifts on the lag phase duration of physiologically distinct populations of Salmonella typhimurium. Int J Food Microbiol 2004; 92:111-20. [PMID: 15109788 DOI: 10.1016/s0168-1605(02)00475-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2001] [Revised: 09/23/2002] [Accepted: 10/05/2002] [Indexed: 11/18/2022]
Abstract
Relative lag time (RLT), i.e. lag time divided by generation time, was used to characterise the lag phase response of exponential and stationary phase Salmonella typhimurium subjected to NaCl-mediated hyperosmotic shifts. Abrupt hyperosmotic shifts induced lag phases. The RLT, however, varied with the physiological history of the inoculum and the magnitude of the shift. Turbidimetric data showed that exponential phase cells had larger RLTs (up to approximately 8 units) than stationary phase cells (up to 2-4 units). Inocula containing exponential and stationary phase cells mixed in known proportions gave intermediate results. For viable count data, there was little difference in RLT between exponential and stationary phase cells. The RLT response determined turbidimetrically was reproducible for exponential phase cells, but less so for stationary phase cells. It is suggested that there may be a lower limit for resolution of RLT, in the range 0-2 units, and that this may account for the lack of reproducibility in RLTs of stationary phase cells. It is hypothesised that stationary phase cells have enhanced resistance to osmotic stress and are able to exploit new growth environments at low a(w) more rapidly than exponential phase cells, resulting in shorter lag phases. However, the data indicate that turbidimetry may not accurately describe the lag phase response of exponential phase cells subjected to large osmotic shifts. Viable count data is required to investigate this hypothesis further.
Collapse
Affiliation(s)
- L A Mellefont
- Centre for Food Safety and Quality, School of Agricultural Science, University of Tasmania, GPO Box 252-54, Hobart 7001, Tasmania, Australia.
| | | | | |
Collapse
|
35
|
Sharma M, Beuchat LR. Sensitivity of Escherichia coli O157:H7 to commercially available alkaline cleaners and subsequent resistance to heat and sanitizers. Appl Environ Microbiol 2004; 70:1795-803. [PMID: 15006806 PMCID: PMC368313 DOI: 10.1128/aem.70.3.1795-1803.2004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2003] [Accepted: 12/08/2003] [Indexed: 11/20/2022] Open
Abstract
The effects of seven commercially available alkaline cleaners used in the food processing industry, 0.025 M NaOH, and 0.025 M KOH on viability of wild-type (EDL 933) and rpoS-deficient (FRIK 816-3) strains of Escherichia coli O157:H7 in logarithmic and stationary phases of growth were determined. Cells were treated at 4 or 23 degrees C for 2, 10, or 30 min. Cleaners 2, 4, 6, and 7, which contained hypochlorite and <11% NaOH and/or KOH (pH 11.2 to 11.7), killed significantly higher numbers of cells than treatment with cleaner 3, containing sodium metasilicate (pH 11.4) and <10% KOH, and cleaner 5, containing ethylene glycol monobutyl ether (pH 10.4). There were no differences in the sensitivities of logarithmic and stationary-phase cells to the alkaline cleaners. Treatment with KOH or NaOH (pH 12.2) was not as effective as four out of seven commercial cleaners in killing E. coli O157:H7, indicating that chlorine and other cleaner components have bactericidal activity at high pH. Stationary-phase cells of strain EDL 933 that had been exposed to cleaner 7 at 4 or 23 degrees C and strain FRIK 816-3 exposed to cleaner 7 at 23 degrees C had significantly higher D(55 degrees C) (decimal reduction time, minutes at 55 degrees C) values than control cells or cells exposed to cleaner 5, indicating that exposure to cleaner 7 confers cross-protection to heat. Cells of EDL 933 treated with cleaner 7 at 12 degrees C showed significantly higher D(55 degrees C) values than cells of FRIK 816-3, indicating that rpoS may play a role in cross-protection. Stationary-phase cells treated with cleaner 5 or cleaner 7 at 4 or 12 degrees C were not cross-protected against subsequent exposure to sanitizers containing quaternary ammonium compounds or sodium hypochlorite, or to cetylpyridinium chloride and benzalkonium chloride.
Collapse
Affiliation(s)
- Manan Sharma
- Center for Food Safety and Department of Food Science and Technology, University of Georgia, Griffin, Georgia 30223-1797, USA
| | | |
Collapse
|
36
|
McEvoy JM, Doherty AM, Sheridan JJ, Bailey DG, Blair IS, McDowell DA. The effects of treating bovine hide with steam at subatmospheric pressure on bacterial numbers and leather quality. Lett Appl Microbiol 2003; 37:344-8. [PMID: 12969501 DOI: 10.1046/j.1472-765x.2003.01406.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS To examine the effect of subatmospheric steam treatment on total viable counts (TVCs) on bovine hide and on the quality of derived leather. METHODS AND RESULTS Pieces of bovine hide were heated to 75 degrees C (+/-2 degrees C) (n = 3) or 80 degrees C (+/-2 degrees C) (n = 3) for periods of 1, 10 or 20 s by the application of steam at subatmospheric pressure in a laboratory scale apparatus. Treated hide pieces and untreated controls were tanned and the quality of leather was assessed. Treatment at 80 degrees C (T80) reduced the TVC on hide pieces by 2.95 (1 s), 3.33 (10 s) and 3.99 (20 s) log10 CFU cm-2 (P > 0.05). Treatment at 75 degrees C (T75) reduced the TVC on hide pieces by 1.87 (1 s), 2.51 (10 s) and 2.56 (20 s) log10 CFU cm-2 (P > 0.05). The grain on all treated hides was damaged resulting in sueding on derived leather. Sueding was observed on 100% of surfaces from T80-treated samples and on 18 (1 s) to 84% (20 s) of the surfaces of T75 samples. CONCLUSIONS The magnitude of TVC reductions achieved using T75 and T80 could limit the impact and scale of contamination transfer to the carcass during dehiding. However, because of the sueding observed on derived leather, it is unlikely that either T75 or T80 would be a commercially valid operation during routine slaughter operations. SIGNIFICANCE AND IMPACT OF THE STUDY Hide decontamination would provide an important critical control point for beef processing, however there are currently no commercially available treatments.
Collapse
Affiliation(s)
- J M McEvoy
- Teagasc, The National Food Centre, Ashtown, Dublin, Ireland.
| | | | | | | | | | | |
Collapse
|
37
|
Samelis J, Ikeda JS, Sofos JN. Evaluation of the pH-dependent, stationary-phase acid tolerance in Listeria monocytogenes and Salmonella Typhimurium DT104 induced by culturing in media with 1% glucose: a comparative study with Escherichia coli O157:H7. J Appl Microbiol 2003; 95:563-75. [PMID: 12911705 DOI: 10.1046/j.1365-2672.2003.02013.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS To comparatively evaluate the adaptive stationary-phase acid tolerance response (ATR) in food-borne pathogens induced by culturing in glucose-containing media, as affected by strain variability and antibiotic resistance, growth temperature, challenge pH and type of acidulant. METHODS AND RESULTS Antibiotic resistant or sensitive strains of Listeria monocytogenes, Salmonella including S. Typhimurium DT104, and Escherichia coli O157:H7 were cultured (30 degrees C for 24 h; 10 degrees C for up to 14 days) in trypticase soya broth with yeast extract (TSBYE) with 1% or without glucose to induce or prevent acid adaptation, respectively. Cultures were subsequently exposed to pH 3.5 or 3.7 with lactic or acetic acid at 25 degrees C for 120 min. Acid-adapted cultures were more acid tolerant than nonadapted cultures, particularly those of L. monocytogenes and Salmonella. No consistent, positive or negative, influence of antibiotic resistance on the pH-inducible ATR or acid resistance (AR) was observed. Compared with 30 degrees C cultures, growth and acid adaptation of L. monocytogenes and S. Typhimurium DT104 at 10 degrees C markedly reduced their ATR and AR in stationary phase. E. coli O157:H7 had the greatest AR, relying less on acid adaptation. A 0.2 unit difference in challenge pH (3.5-3.7) caused great variations in survival of acid-adapted and nonadapted cells. CONCLUSIONS Culturing L. monocytogenes and Salmonella to stationary phase in media with 1% glucose induces a pH-dependent ATR and enhances their survival to organic acids; thus, this method is suitable for producing acid-adapted cultures for use in food challenge studies. SIGNIFICANCE AND IMPACT OF THE STUDY Bacterial pathogens may become acid-adapted in foods containing glucose or other fermentable carbohydrates. Low storage temperatures may substantially decrease the stationary-phase ATR of L. monocytogenes and S. Typhimurium DT104, but their effect on ATR of E. coli O157:H7 appears to be far less dramatic.
Collapse
Affiliation(s)
- J Samelis
- Department of Animal Sciences, Colorado State University, Fort Collins, CO, USA.
| | | | | |
Collapse
|
38
|
Weeks ME, James DC, Robinson GK, Smales CM. Global changes in gene expression observed at the transition from growth to stationary phase in
Listeria monocytogenes
ScottA batch culture. Proteomics 2003; 4:123-35. [PMID: 14730677 DOI: 10.1002/pmic.200300527] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Listeria monocytogenes is a food-borne Gram-positive bacterium that is responsible for a variety of infections (worldwide) annually. The organism is able to survive a variety of environmental conditions and stresses, however, the mechanisms by which L. monocytogenes adapts to environmental change are yet to be fully elucidated. An understanding of the mechanism(s) by which L. monocytogenes survives unfavourable environmental conditions will aid in developing new food processing methods to control the organism in foodstuffs. We have utilized a proteomic approach to investigate the response of L. monocytogenes batch cultures to the transition from exponential to stationary growth phase. Proteomic analysis showed that batch cultures of L. monocytogenes perceived stress and began preparations for stationary phase much earlier (approximately A(600) = 0.75, mid-exponential) than predicted by growth characteristics alone. Global analysis of the proteome revealed that the expression levels of more than 50% of all proteins observed changed significantly over a 7-9 h period during this transition phase. We have highlighted ten proteins in particular whose expression levels appear to be important in the early onset of the stationary phase. The significance of these findings in terms of functionality and the mechanistic picture are discussed.
Collapse
Affiliation(s)
- Mark E Weeks
- Research School of Biosciences, University of Kent, Canterbury, Kent, UK
| | | | | | | |
Collapse
|
39
|
Clarke SC, Haigh RD, Freestone PPE, Williams PH. Virulence of enteropathogenic Escherichia coli, a global pathogen. Clin Microbiol Rev 2003; 16:365-78. [PMID: 12857773 PMCID: PMC164217 DOI: 10.1128/cmr.16.3.365-378.2003] [Citation(s) in RCA: 152] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) remains an important cause of diarrheal disease worldwide. Research into EPEC is intense and provides a good virulence model of other E. coli infections as well as other pathogenic bacteria. Although the virulence mechanisms are now better understood, they are extremely complex and much remains to be learnt. The pathogenesis of EPEC depends on the formation of an ultrastructural lesion in which the bacteria make intimate contact with the host apical enterocyte membrane. The formation of this lesion is a consequence of the ability of EPEC to adhere in a localized manner to the host cell, aided by bundle-forming pili. Tyrosine phosphorylation and signal transduction events occur within the host cell at the lesion site, leading to a disruption of the host cell mechanisms and, consequently, to diarrhea. These result from the action of highly regulated EPEC secreted proteins which are released via a type III secretion system, many genes of which are located within a pathogenicity island known as the locus of enterocyte effacement. Over the last few years, dramatic increases in our knowledge of EPEC virulence have taken place. This review therefore aims to provide a broad overview of and update to the virulence aspects of EPEC.
Collapse
Affiliation(s)
- S C Clarke
- Scottish Meningococcus and Pneumococcus Reference Laboratory, Glasgow University, Glasgow, United Kingdom.
| | | | | | | |
Collapse
|
40
|
Vialette M, Pinon A, Chasseignaux E, Lange M. Growths kinetics comparison of clinical and seafood Listeria monocytogenes isolates in acid and osmotic environment. Int J Food Microbiol 2003; 82:121-31. [PMID: 12568752 DOI: 10.1016/s0168-1605(02)00249-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Comparison of pathogenic bacterial strains of clinical origin with strains of the same species isolated from the environment may be a valuable tool for microbial risk assessment, especially for foodborne pathogens. Thus, a number of Listeria monocytogenes strains responsible for human cases of listeriosis, in relation to the consumption of contaminated seafood, have been compared with "natural" L. monocytogenes strains isolated from similar seafood products. Complete factorial designs were used to assess quantitatively the growth abilities of four clinical and four seafood isolates of L. monocytogenes placed in various environmental conditions. The cells were submitted to acid and osmotic stress as they were in stationary phase (constant condition) or in exponential phase (dynamic condition). The effects and interactions of pH (5-7) and NaCl concentration (0.5-8% v/v) were studied at two growth temperatures (10 and 20 degrees C). Growth parameters (lag and generation times calculated with Gompertz equation) were used to compare the behavior of the strains with respect to the conditions of culture. The results indicated an overall weak effect of acid stress alone, whereas osmotic stress clearly affected bacterial growth and a synergic effect between these two factors was observed. Clinical strains displayed better adaptation than seafood strains in stationary phase, however, this difference was not verified in exponential phase. Low temperature (10 degrees C) usually confirmed the observations at 20 degrees C, and the differences between clinical and food strains were more pronounced. Finally, a classification of the eight strains, based on the collected data, showed three groups: (i) seafood strains, (ii) three clinical strains and (iii) the last clinical strain, alone due to its high resistance to adverse conditions.
Collapse
Affiliation(s)
- M Vialette
- Institut Pasteur de Lille, 1 rue du Professeur Calmette, BP 245, France.
| | | | | | | |
Collapse
|
41
|
Reissbrodt R, Rienaecker I, Romanova JM, Freestone PPE, Haigh RD, Lyte M, Tschäpe H, Williams PH. Resuscitation of Salmonella enterica serovar typhimurium and enterohemorrhagic Escherichia coli from the viable but nonculturable state by heat-stable enterobacterial autoinducer. Appl Environ Microbiol 2002; 68:4788-94. [PMID: 12324321 PMCID: PMC126406 DOI: 10.1128/aem.68.10.4788-4794.2002] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica serovar Typhimurium and enterohemorrhagic Escherichia coli were stressed by prolonged incubation in water microcosms until it was no longer possible to observe colony formation when samples were plated on nonselective medium. Overnight incubation of samples in nutrient-rich broth medium supplemented with growth factors, however, allowed resuscitation of stressed and viable but nonculturable cells so that subsequent plating yielded observable colonies for significantly extended periods of time. The growth factors were (i) the trihydroxamate siderophore ferrioxamine E (for Salmonella only), (ii) the commercially available antioxidant Oxyrase, and (iii) the heat-stable autoinducer of growth secreted by enterobacterial species in response to norepinephrine. Analysis of water microcosms with the Bioscreen C apparatus confirmed that these supplements enhanced recovery of cells in stressed populations; enterobacterial autoinducer was the most effective, promoting resuscitation in populations that were so heavily stressed that ferrioxamine E or Oxyrase had no effect. Similar results were observed in Bioscreen analysis of bacterial populations stressed by heating. Patterns of resuscitation of S. enterica serovar Typhimurium rpoS mutants from water microcosms and heat stress were qualitatively similar, suggesting that the general stress response controlled by the sigma(s) subunit of RNA polymerase plays no role in autoinducer-dependent resuscitation. Enterobacterial autoinducer also resuscitated stressed populations of Citrobacter freundii and Enterobacter agglomerans.
Collapse
|
42
|
Park SF. The physiology of Campylobacter species and its relevance to their role as foodborne pathogens. Int J Food Microbiol 2002; 74:177-88. [PMID: 11981968 DOI: 10.1016/s0168-1605(01)00678-x] [Citation(s) in RCA: 279] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Campylobacter jejuni and C. coli are recognised as the leading causes of bacterial foodborne diarrhoeal disease throughout the development world. While most foodborne bacterial pathogens are considered to be relatively robust organisms, as a consequence of the necessity to survive the inimical conditions imposed by food processing and preservation, Campylobacter species have uniquely fastidious growth requirements and an unusual sensitivity to environmental stress. Campylobacters also lack many of the well characterised adaptive responses that can be collated with resistance to stress in other bacteria. The aim of this review is to outline the unusual physiology of campylobacters (C. jejuni and C. coli) and to describe how this influences their role as foodborne pathogens.
Collapse
Affiliation(s)
- Simon F Park
- School of Biomedical and Life Sciences, University of Surrey, Guildford, UK.
| |
Collapse
|
43
|
Dodd CER, Aldsworth TG. The importance of RpoS in the survival of bacteria through food processing. Int J Food Microbiol 2002; 74:189-94. [PMID: 11981969 DOI: 10.1016/s0168-1605(01)00679-1] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The resistance of bacteria to environmental stresses is recognised as an increasingly important area of microbiology. In particular, the alternative sigma factor RpoS has been shown to produce greater stress resistance in stationary phase cells of Salmonella and Escherichia coli compared with those in exponential phase. Our work has shown that RpoS can be induced in exponential phase in response to a number of inimical processes used in the food industry, including changes in water activity produced using a range of humectants and preservatives. The presence of high levels of competitor cells will also lead to early induction of RpoS in Salmonella by an as yet unknown mechanism. High levels of competitor cells also provide Salmonella with an increased resistance to heat and freeze-thaw injury; the mechanism for this, however, is rpoS independent and has lead to the theory of a holistic mechanism for sub-lethal injury in respiring bacteria--the bacterial suicide response. This hypothesis predicts that sub-lethal injury occurs through the production of free radical species and not by the action of the applied inimical process per se. The demonstration of the production of a free radical burst when cells are subjected to differing types of stresses has been shown by a number of methods.
Collapse
Affiliation(s)
- Christine E R Dodd
- Division of Food Sciences, School of Biosciences, University of Nottingham, Loughborough, Leicestershire, United Kingdom.
| | | |
Collapse
|
44
|
Abstract
The control of water activity has been used as a means of preserving foods for thousands of years. This preservation strategy presents food-borne microorganisms with serious problems, many of which relate to the management of water flow. Although the specific details of how each organism deals with these problems are different, several common themes have emerged. Bacteria induce specific responses. both physiological and genetic, to respond to either the loss or the gain of water, triggered by changes in the osmolarity of the environment. Many of the key systems have now been identified and the mechanisms of their regulation are beginning to be understood. Here we review recent developments in the field of bacterial osmoregulation with emphasis on key food-borne genera.
Collapse
Affiliation(s)
- Conor P O'Byrne
- Department of Molecular and Cell Biology, University of Aberdeen, Institute of Medical Sciences, Scotland, UK
| | | |
Collapse
|
45
|
Farkas J, Andrássy E, Beczner J, Vidács I, Mészáros L. Utilizing luminometry for monitoring growth of Listeria monocytogenes in its liquid or gelified monocultures and cocultures with "acid-only" Lactococcus lactis. Int J Food Microbiol 2002; 73:159-70. [PMID: 11934024 DOI: 10.1016/s0168-1605(01)00646-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The light output of a bioluminescent recombinant strain of Listeria monocytogenes increased parallel with its viable cell counts during the exponential phase of the growth both in aerobic monocultures and mixed cultures, but dropped significantly at the commencement of the stationary phase. Suppression of L. monocytogenes by a nisin-less strain of Lactococcus lactis occurred only as an early induction of the stationary state of the target organism. In low-salt cocultures, an inverse linear correlation was found between the logarithmic initial counts of lactic acid bacteria and the extent of growth of Listeria. Decrease of luminometric activity of the bioluminescent test organism indicate sensitively the transformation of the cells into metabolically less active stationary state as a stress-adaptive response to nutrient depletion, "metabolic crowding", or, inimical processes.
Collapse
Affiliation(s)
- József Farkas
- Department of Refrigeration and Livestock Products' Technology, Szent István University, Budapest, Hungary.
| | | | | | | | | |
Collapse
|
46
|
Luppens SBI, Rombouts FM, Abee T. The effect of the growth phase of Staphylococcus aureus on resistance to disinfectants in a suspension test. J Food Prot 2002; 65:124-9. [PMID: 11811156 DOI: 10.4315/0362-028x-65.1.124] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The influence of growth phase on the resistance of Staphylococcus aureus to the surface-active agents benzalkonium chloride and dodecylbenzyl sulfonic acid and the oxidizing agents sodium hypochlorite and hydrogen peroxide was studied. The resistances of cells in different growth phases were compared to those of solid medium cells grown according to the European phase I suspension test. Using cells from different growth phases (+/- 3 x 10(7) CFU ml(-1)), we found that decline-phase cells were the most resistant cells. However, the decline-phase cell suspension contained more than 90% dead cells. A 10-fold-diluted suspension with a total concentration of cells equal to that of the other cell suspensions still revealed decline-phase cells to be generally the most resistant cell type. However, the resistance was drastically reduced, indicating that the large proportion of dead cells provided significant protection to the viable decline-phase cells. Hydrogen peroxide resistance could be partly explained by the high catalase activity in the dead-cell fraction. Exponential-phase cells were less resistant than decline-phase cells, and, surprisingly, stationary-phase cells were the least resistant of the three. Cells grown according to the European phase 1 suspension test were never the most resistant cells. Their survival was 1 to 3 log units lower than that of the most resistant cells. These findings show that the solid-medium cells currently used in disinfectant tests are not the most resistant cells that can be used.
Collapse
Affiliation(s)
- S B I Luppens
- Department of Agrotechnology and Food Sciences, Wageningen University and Research Center, The Netherlands
| | | | | |
Collapse
|
47
|
Guerzoni ME, Lanciotti R, Cocconcelli PS. Alteration in cellular fatty acid composition as a response to salt, acid, oxidative and thermal stresses in Lactobacillus helveticus. MICROBIOLOGY (READING, ENGLAND) 2001; 147:2255-2264. [PMID: 11496002 DOI: 10.1099/00221287-147-8-2255] [Citation(s) in RCA: 192] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The fundamental question in this study is concerned with whether the increase of unsaturated fatty acids in the cell membrane is a general response of certain thermotolerant strains or species when exposed to superoptimal temperatures, and in combination with other stresses, especially oxidative stress. A strain of Lactobacillus helveticus, a species widely used as a starter in the dairy industry and able to tolerate high temperature and NaCl concentrations as well as acidic conditions, was chosen for this study. Cells of strain CNBL 1156, grown in its natural medium (i.e. milk whey), were exposed for 100 min to sublethal combinations of temperature, NaCl, H(2)O(2) and pH, modulated according to a Central Composite Design. The fatty acid composition of cell lipid extract was identified by GC/MS. Polynomial equations, able to describe the individual interactive and quadratic effects of the independent variables on cell fatty acid composition, were obtained. The results and the mathematical models relative to the individual fatty acids indirectly suggest that desaturase activation or hyperinduction play an important role in the response to heat stress. In fact, the relative proportions of oleic, linoleic and palmitic acids increased with temperature in a range between 38 and 54 degrees C. The fatty acid profiles included vernolic acid (up to 37% of total fatty acids), an epoxide of linoleic acid not previously reported in microbial cells. In particular, this epoxide was present in cells exposed to low pH in combination with high temperatures and oxidative stress. In conclusion, these results provide experimental support to the hypothesis that the increase of an oxygen-consuming desaturase system, with a consequent increase in fatty acid desaturation, is a cellular response to environmental stresses able to protect the cells of this anaerobic micro-organism from toxic oxygen species and high temperatures.
Collapse
Affiliation(s)
- M Elisabetta Guerzoni
- Dipartimento di Protezione e Valorizzazione Agroalimentare, University of Bologna, via S. Giacomo 7, 40126 Bologna, Italy1
| | - Rosalba Lanciotti
- Dipartimento di Protezione e Valorizzazione Agroalimentare, University of Bologna, via S. Giacomo 7, 40126 Bologna, Italy1
| | - P Sandro Cocconcelli
- Istituto di Microbiologia, Centro Ricerche Biotecnologiche, University Cattolica del Sacro Cuore Piacenza-Cremona, via Emilia Parmense 84, 29100 Piacenza, Italy2
| |
Collapse
|
48
|
Leenanon B, Drake MA. Acid stress, starvation, and cold stress affect poststress behavior of Escherichia coli O157:H7 and nonpathogenic Escherichia coli. J Food Prot 2001; 64:970-4. [PMID: 11456205 DOI: 10.4315/0362-028x-64.7.970] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The effects of acid shock, acid adaptation, starvation, and cold stress of Escherichia coli O157:H7 (ATCC 43895), an rpoS mutant (FRIK 816-3), and nonpathogenic E. coli (ATCC 25922) on poststress heat resistance and freeze-thaw resistance were investigated. Following stress, heat tolerance at 56 degrees C and freeze-thaw resistance at -20 to 21 degrees C were determined. Heat and freeze-thaw resistance of E. coli O157:H7 and nonpathogenic E. coli was enhanced after acid adaptation and starvation. Following cold stress, heat resistance of E. coli O157:H7 and nonpathogenic E. coli was decreased, while freeze-thaw resistance was increased. Heat and freeze-thaw resistance of the rpoS mutant was enhanced only after acid adaptation. Increased or decreased tolerance of acid-adapted, starved, or cold-stressed E. coli O157:H7 cells to heat or freeze-thaw processes should be considered when processing minimally processed or extended shelf-life foods.
Collapse
Affiliation(s)
- B Leenanon
- Department of Food Science and Technology, Southeast Dairy Foods Research Center, Mississippi State University, Mississippi State 39762-9805, USA
| | | |
Collapse
|
49
|
Wouters PC, Bos AP, Ueckert J. Membrane permeabilization in relation to inactivation kinetics of Lactobacillus species due to pulsed electric fields. Appl Environ Microbiol 2001; 67:3092-101. [PMID: 11425727 PMCID: PMC92986 DOI: 10.1128/aem.67.7.3092-3101.2001] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Membrane permeabilization due to pulsed electric field (PEF) treatment of gram-positive Lactobacillus cells was investigated by using propidium iodide uptake and single-cell analysis with flow cytometry. Electric field strength, energy input, treatment time, and growth phase affected membrane permeabilization of Lactobacillus plantarum during PEF treatment. A correlation between PEF inactivation and membrane permeabilization of L. plantarum cells was demonstrated, whereas no relationship was observed between membrane permeabilization and heat inactivation. The same results were obtained with a Lactobacillus fermentum strain, but the latter organism was more PEF resistant and exhibited less membrane permeabilization, indicating that various bacteria have different responses to PEF treatment. While membrane permeabilization was the main factor involved in the mechanism of inactivation, the growth phase and the acidity of the environment also influenced inactivation. By using flow cytometry it was possible to sort cells in the L. plantarum population based on different cell sizes and shapes, and the results were confirmed by image analysis. An apparent effect of morphology on membrane permeabilization was observed, and larger cells were more easily permeabilized than smaller cells. In conclusion, our results indicate that the ability of PEF treatment to cause membrane permeabilization is an important factor in determining inactivation. This finding should have an effect on the final choice of the processing parameters used so that all microorganisms can be inactivated and, consequently, on the use of PEF treatment as an alternative method for preserving food products.
Collapse
Affiliation(s)
- P C Wouters
- Microbiology & Preservation, Unilever Research Vlaardingen, 3133 AT Vlaardingen, The Netherlands.
| | | | | |
Collapse
|
50
|
Luppens SB, Abee T, Oosterom J. Effect of benzalkonium chloride on viability and energy metabolism in exponential- and stationary-growth-phase cells of Listeria monocytogenes. J Food Prot 2001; 64:476-82. [PMID: 11307882 DOI: 10.4315/0362-028x-64.4.476] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The difference in killing exponential- and stationary-phase cells of Listeria monocytogenes by benzalkonium chloride (BAC) was investigated by plate counting and linked to relevant bioenergetic parameters. At a low concentration of BAC (8 mg liter(-1)), a similar reduction in viable cell numbers was observed for stationary-phase cells and exponential-phase cells (an approximately 0.22-log unit reduction), although their membrane potential and pH gradient were dissipated. However, at higher concentrations of BAC, exponential-phase cells were more susceptible than stationary-phase cells. At 25 mg liter(-1), the difference in survival on plates was more than 3 log units. For both types of cells, killing, i.e., more than 1-log unit reduction in survival on plates, coincided with complete inhibition of acidification and respiration and total depletion of ATP pools. Killing efficiency was not influenced by the presence of glucose, brain heart infusion medium, or oxygen. Our results suggest that growth phase is one of the major factors that determine the susceptibility of L. monocytogenes to BAC.
Collapse
Affiliation(s)
- S B Luppens
- Department of Food Technology and Nutritional Sciences, Wageningen University and Research Center, The Netherlands
| | | | | |
Collapse
|