1
|
Shi X, Rao R, Xu M, Dong M, Feng S, Huang Y, Zhou B. Methylcellulose improves dissociation quality of adult human primary cardiomyocytes. Heliyon 2024; 10:e31653. [PMID: 38841456 PMCID: PMC11152705 DOI: 10.1016/j.heliyon.2024.e31653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/07/2024] Open
Abstract
Obtaining high-quality adult human primary cardiomyocytes (hPCM) have been technically challenging due to isolation-induced biochemical and mechanical stress. Building upon a previous tissue slicing-assisted digestion method, we introduced polymers into the digestion solution to reduce mechanical damage to cells. We found that low-viscosity methylcellulose (MC) significantly improved hPCM viability and yield. Mechanistically, it protected cells from membrane damage, which led to decreased apoptosis and mitochondrial reactive oxygen species production. MC also improved the electrophysiological properties of hPCMs by maintaining the density of sodium channels. The effects on cell viability and cell yield effects were not recapitulated by MC of larger viscosities, other cellulose derivatives, nor shear protectants polyethylene glycol and polyvinyl alcohol. Finally, MC also enhanced the isolation efficiency and the culture quality of hPCMs from diseased ventricular myocardium, expanding its potential applications. Our findings showed that the isolation quality of hPCMs can be further improved through the addition of a polymer, rendering hPCMs a more reliable cellular model for cardiac research.
Collapse
Affiliation(s)
- Xun Shi
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, 167 North Lishi Road, Xicheng District, Beijing, 100037, China
| | - Rongjia Rao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, 167 North Lishi Road, Xicheng District, Beijing, 100037, China
| | - Miaomiao Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, 167 North Lishi Road, Xicheng District, Beijing, 100037, China
| | - Mengqi Dong
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, 167 North Lishi Road, Xicheng District, Beijing, 100037, China
| | - Shanshan Feng
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, 167 North Lishi Road, Xicheng District, Beijing, 100037, China
| | - Yafei Huang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, 167 North Lishi Road, Xicheng District, Beijing, 100037, China
| | - Bingying Zhou
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, 167 North Lishi Road, Xicheng District, Beijing, 100037, China
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Science, Shenzhen, Shenzhen, China
| |
Collapse
|
2
|
Yilmaz G, Guler E, Barlas FB, Timur S, Yagci Y. Polymeric Thioxanthones as Potential Anticancer and Radiotherapy Agents. Macromol Rapid Commun 2016; 37:1046-51. [DOI: 10.1002/marc.201600189] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 04/20/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Gorkem Yilmaz
- Department of Chemistry; Faculty of Science and Letters; Istanbul Technical University; 34469 Istanbul Turkey
| | - Emine Guler
- Biochemistry Department; Faculty of Science Ege University; 35100 Bornova, Izmir Turkey
- Institute of Drug Abuse Toxicology and Pharmaceutical Sciences; Ege University; 35100 Bornova, Izmir Turkey
| | - Firat Baris Barlas
- Biochemistry Department; Faculty of Science Ege University; 35100 Bornova, Izmir Turkey
| | - Suna Timur
- Biochemistry Department; Faculty of Science Ege University; 35100 Bornova, Izmir Turkey
- Institute of Drug Abuse Toxicology and Pharmaceutical Sciences; Ege University; 35100 Bornova, Izmir Turkey
| | - Yusuf Yagci
- Department of Chemistry; Faculty of Science and Letters; Istanbul Technical University; 34469 Istanbul Turkey
- Chemistry Department Faculty of Science; King Abdulaziz University; 21589 Jeddah Saudi Arabia
| |
Collapse
|
3
|
Michaels JD, Nowak JE, Mallik AK, Koczo K, Wasan DT, Papoutsakis ET. Interfacial properties of cell culture media with cell-protecting additives. Biotechnol Bioeng 2012; 47:420-30. [PMID: 18623418 DOI: 10.1002/bit.260470403] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In an effort to identify key rheological properties that contribute to cell protection against shear damage, we have measured surface shear and dilatationai viscosities, dynamic surface tension, foaminess, and foam stability for media containing cell-protecting additives. In a companion article,(18) we found that cell-to-bubble attachment was decreased in media containing Methocel, Pluronic F68, or polyvinyl alcohol (PVA). In medium containing polyethylene glycol (PEG) or potyvinyl-pyrrolidone (PVP), attachment was increased. PEG, PVP, serum (FBS), and serum albumin (BSA) increased the surface viscosity of the air/medium surface (thus, producing a more rigid interface), whereas F68 and PVA lowered it greatly. Foaming experiments showed that Methocel, PEG, PVA, and F68 decreased the foam half-life while FBS, BSA, and PVP were foam stabilizers. Interestingly, the foam stability of CHO cell suspensions decreased significantly for cell concentrations higher than ca. 2 x 10(6) cells/mL. Nonviable CHO cells reduced foam stability further. Dynamic surface tension values of the media tested were found significantly differentfrom their static surface tension values. The interfacial properties measured and the results presented in the companion study suggest that the additives that lower dynamic surface tension the most (Methocel, F68, and PVA) correlate well with reduced cell-to-bubble attachment, and thus, cell protection. Reduced dynamic surface tension with these additives implies faster surfactant adsorption, mobile interfaces, lower surface viscosity, and foam destabilization. Because PEG and PVP resulted in increased cell-to-bubble attachment and had different interfacial properties, a different mechanism (compared with Methocel, PVP, and F68) is apparently responsible for their protective effect. Finally, cell protection offered by FBS and BSA is attributed to the foam stabilization properties provided by these additives. (c) 1995 John Wiley & Sons Inc.
Collapse
Affiliation(s)
- J D Michaels
- Department of Chemical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3120
| | | | | | | | | | | |
Collapse
|
4
|
Michaels JD, Nowak JE, Mallik AK, Koczo K, Wasan DT, Papoutsakis ET. Analysis of cell-to-bubble attachment in sparged bioreactors in the presence of cell-protecting additives. Biotechnol Bioeng 2012; 47:407-19. [PMID: 18623417 DOI: 10.1002/bit.260470402] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
To investigate the mechanisms of cell protection provided by medium additives against animal cell injury in sparged bioreactors, we have analyzed the effect of various additives on the cell-to-bubble attachment process using CHO cells in suspension. Cell-to-bubble attachment was examined using three experimental techniques: (1) cell-bubble induction time analysis (cell-to-bubble attachment times); (2) forming thin liquid films and observing the movement and location of cells in the thin films; and (3) foam flotation experiments. The induction times we measured for the various additives are as follows: no additive (50 to 500 ms), polyvinyl pyrrolidone (PVP: 20 to 500 ms), polyethylene glycol (PEG: 200 to 1000 ms), 3% serum (500 to 1000 ms), polyvinyl alcohol (PVA: 2 to 10 s), Pluronic F68 (5 to 20 s), and Methocel (20 to 60 s). In the thin film formation experiments, cells in medium with either F68, PVA, or Methocel quickly flowed out of draining thin liquid films and entered the plateau border. When using media with no additive or with serum, the flow of cells out of the thin liquid film and film drainage were slower than for media containing Pluronic F68. PVA, or Methocel. With PVP and PEG, the thin film drainage was much slower and cells remained trapped in the film. For the foam flotation experiments, a separation factor (ratio of cell concentration in the foam catch to that in the bubble column) was determined for the various additives. In the order of increasing separation factors (i.e., increasing cell attachment to bubbles), the additives are as follows: Methocel, PVA, Pluronic F68, 3% serum, serum-free medium with no additives, PEG, and PVP. Based on the results of these three different cell-to-bubble attachment experiments, we have classified the cell-protecting additives into three groups: (1) Pluronic F68, PVA, and Methocel (reduced cell-to-bubble attachment); (2) PEG and PVP (high or increased cell-to-bubble attachment); and (3) FBS (reduced cell attachment butslower drainage films compared with F68, PVA, and Methocel with some cell entrapment in those films). These phenomena are discussed in relation to the interfacial properties of the media reported in a companion Study (this issue). (c) 1995 John Wiley & Sons Inc.
Collapse
Affiliation(s)
- J D Michaels
- Department of Chemical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3120
| | | | | | | | | | | |
Collapse
|
5
|
Poly-γ-glutamic acid enhances the growth and viability of Chinese hamster ovary cells in serum-free medium. Biotechnol Lett 2012; 34:1807-10. [DOI: 10.1007/s10529-012-0982-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 05/29/2012] [Indexed: 10/28/2022]
|
6
|
Bauer M, Lautenschlaeger C, Kempe K, Tauhardt L, Schubert US, Fischer D. Poly(2-ethyl-2-oxazoline) as alternative for the stealth polymer poly(ethylene glycol): comparison of in vitro cytotoxicity and hemocompatibility. Macromol Biosci 2012; 12:986-98. [PMID: 22648985 DOI: 10.1002/mabi.201200017] [Citation(s) in RCA: 226] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Indexed: 11/06/2022]
Abstract
Limitations of PEG in drug delivery have been reported from clinical trials. PEtOx (0.4-40 kDa) as alternative is synthesized by a living, microwave-assisted polymerization, and is directly compared to PEG of similar molar mass regarding cytotoxicity and hemocompatibility. In short-term treatments, both types of polymers are well tolerated even at high concentrations. Moderate concentration and molar mass dependent cytotoxic effects occurred only after long-term incubation at concentrations higher than therapeutic doses. PEtOx possesses not only an easy route of synthesis and beneficial physicochemical characteristics such as low viscosity and high stability, which are advantageous over PEG, but additionally in vitro toxicology comparable to PEG.
Collapse
Affiliation(s)
- Marius Bauer
- Department of Pharmaceutical Technology, Institute of Pharmacy, Friedrich-Schiller University Jena, Jena, Germany
| | | | | | | | | | | |
Collapse
|
7
|
Hu W, Berdugo C, Chalmers JJ. The potential of hydrodynamic damage to animal cells of industrial relevance: current understanding. Cytotechnology 2011; 63:445-60. [PMID: 21785843 PMCID: PMC3176934 DOI: 10.1007/s10616-011-9368-3] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Accepted: 06/11/2011] [Indexed: 11/25/2022] Open
Abstract
Suspension animal cell culture is now routinely scaled up to bioreactors on the order of 10,000 L, and greater, to meet commercial demand. However, the concern of the 'shear sensitivity' of animal cells still remains, not only within the bioreactor, but also in the downstream processing. As the productivities continue to increase, titer of ~10 g/L are now reported with cell densities greater than 2 × 10(7) cells/mL. Such high, and potentially higher cell densities will inevitably translate to increased demand in mass transfer and mixing. In addition, achieving productivity gains in both the upstream stage and downstream processes can subject the cells to aggressive environments such as those involving hydrodynamic stresses. The perception of 'shear sensitivity' has historically put an arbitrary upper limit on agitation and aeration in bioreactor operation; however, as cell densities and productivities continue to increase, mass transfer requirements can exceed those imposed by these arbitrary low limits. Therefore, a better understanding of how animal cells, used to produce therapeutic products, respond to hydrodynamic forces in both qualitative and quantitative ways will allow an experimentally based, higher, "upper limit" to be created to guide the design and operation of future commercial, large scale bioreactors. With respect to downstream hydrodynamic conditions, situations have already been achieved in which practical limits with respect to hydrodynamic forces have been experienced. This review mainly focuses on publications from both the academy and industry regarding the effect of hydrodynamic forces on industrially relevant animal cells, and not on the actual scale-up of bioreactors. A summary of implications and remaining challenges will also be presented.
Collapse
Affiliation(s)
- Weiwei Hu
- Cell Culture Development, Biogen Idec Inc., 5000 Davis Drive, RTP, NC 27709 USA
| | - Claudia Berdugo
- Scientist / Research & Development, BD Biosciences, 54 Loveton Circle, Sparks, MD 21152 USA
| | - Jeffrey J. Chalmers
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 140 West 19th Ave., Columbus, OH 43210 USA
| |
Collapse
|
8
|
Franco C, Price J, West J. Development and optimization of a dual-photoinitiator, emulsion-based technique for rapid generation of cell-laden hydrogel microspheres. Acta Biomater 2011; 7:3267-76. [PMID: 21704198 DOI: 10.1016/j.actbio.2011.06.011] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 06/03/2011] [Accepted: 06/07/2011] [Indexed: 01/10/2023]
Abstract
A growing number of clinical trials explore the use of cell-based therapies for the treatment of disease and restoration of damaged tissue; however, limited cell survival and engraftment remains a significant challenge. As the field continues to progress, microencapsulation strategies are proving to be a valuable tool for protecting and supporting these cell therapies while preserving minimally invasive delivery. This work presents a novel, dual-photoinitiator technique for encapsulation of cells within hydrogel microspheres. A desktop vortexer was used to generate an emulsion of poly(ethylene glycol) diacrylate (PEGDA) or PEGDA-based precursor solution in mineral oil. Through an optimized combination of photoinitiators added to both the aqueous and the oil phase, rapid gelation of the suspended polymer droplets was achieved. The photoinitiator combination provided superior cross-linking consistency and greater particle yield, and required lower overall initiator concentrations compared with a single initiator system. When cells were combined with the precursor solution, these benefits translated to excellent microencapsulation yield with 60-80% viability for the tested cell types. It was further shown that the scaffold material could be modified with cell-adhesive peptides to be used as surface-seeded microcarriers, or additionally with enzymatically degradable sequences to support three-dimensional spreading, migration and long-term culture of encapsulated cells. Three cell lines relevant to neural stem cell therapies are demonstrated here, but this technology is adaptable, scalable and easy to implement with standard laboratory equipment, making it a useful tool for advancing the next generation of cell-based therapeutics.
Collapse
|
9
|
Beas-Catena A, Sánchez-Mirón A, García-Camacho F, Molina-Grima E. Adaptation of the Se301 insect cell line to suspension culture. Effect of turbulence on growth and on production of nucleopolyhedrovius (SeMNPV). Cytotechnology 2011; 63:543-52. [PMID: 21830050 DOI: 10.1007/s10616-011-9387-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 07/26/2011] [Indexed: 11/29/2022] Open
Abstract
As chemical pesticides are being banned as control agents for agricultural pests, the use of the highly specific, safe to non-target organisms baculoviruses has been proposed. These viruses can be produced either in vivo or in vitro. In vitro production requires appropriated host insect cell lines with the ability for growing as freely-suspended cells. In this work, the Spodoptera exigua Se301 cell line was used to produce the commercially available S. exigua nucleopolyhedrovirus (SeMNPV) in suspension. Se301 cells showed to be very sensitive to the hydrodynamic shear rates developed in bioreactors. A process of progressive adaptation to freely-suspended cultures using protective additives against shear stress and disaggregant was proposed. The best combinations were polyvinyl alcohol (PVA) or polyvinyl pyrrolidone (PVP) with the disaggregant dextran sulfate (DS). Both static and freely-suspended Se301 cell cultures were successfully infected with the SeMNPV baculovirus. Production of occluded baculovirus (OB) increased with the multiplicity of infection (MOI > 0.1).
Collapse
Affiliation(s)
- Alba Beas-Catena
- Department of Chemical Engineering, University of Almería, 04120, Almería, Spain
| | | | | | | |
Collapse
|
10
|
Petersen S, Steiniger F, Fischer D, Fahr A, Bunjes H. The physical state of lipid nanoparticles influences their effect on in vitro cell viability. Eur J Pharm Biopharm 2011; 79:150-61. [PMID: 21458564 DOI: 10.1016/j.ejpb.2011.03.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2010] [Revised: 03/19/2011] [Accepted: 03/28/2011] [Indexed: 01/28/2023]
Abstract
Although lipid nanoparticles represent potent drug carriers, for many formulations toxicity data are rare. Thus, in this study, the effect of different lipid nanoparticles on the cell viability of L929 mouse fibroblasts was systematically investigated using the MTT assay. The formulations were composed of trimyristin, tristearin or cholesteryl myristate stabilized with poloxamer 188, polysorbate 80, polyvinyl alcohol or a blend of soybean phospholipid and sodium glycocholate. Depending on lipid and storage conditions, the nanoparticles were prepared in different physical states or crystal modifications leading to different particle shapes. The cell viability was influenced considerably by the physical state of the particle matrix with crystalline nanoparticles causing a stronger decrease in viability than the corresponding liquid or liquid crystalline particles. Effects on the cell viability were also related to the type of matrix lipid, stabilizer and the particle shape. However, the effects of differently shaped particles of different polymorphic modifications of crystalline tristearin were comparable. The low viability caused by poloxamer 188-stabilized particles could be correlated with a strong cell uptake which was investigated by confocal laser scanning microscopy.
Collapse
Affiliation(s)
- Silvia Petersen
- Department of Pharmaceutical Technology, Institute of Pharmacy, Friedrich-Schiller-Universität Jena, Jena, Germany
| | | | | | | | | |
Collapse
|
11
|
|
12
|
MICHAELS JAMESD, KUNAS KURTT, PAPOUTSAKIS ELEFTHERIOST. FLUID-MECHANICAL DAMAGE OF FREELY-SUSPENDED ANIMAL CELLS IN AGITATED BIOREACTORS: EFFECTS OF DEXTRAN, DERIVATIZED CELLULOSES AND POLYVINYL ALCOHOL. CHEM ENG COMMUN 2007. [DOI: 10.1080/00986449208936102] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- JAMES D. MICHAELS
- a Dept. of Chemical Engineering , Northwestern University , Evanston, IL, 60208
| | - KURT T. KUNAS
- a Dept. of Chemical Engineering , Northwestern University , Evanston, IL, 60208
| | | |
Collapse
|
13
|
Taché S, Parnaud G, Van Beek E, Corpet DE. Polyethylene glycol, unique among laxatives, suppresses aberrant crypt foci, by elimination of cells. Scand J Gastroenterol 2006; 41:730-6. [PMID: 16716974 PMCID: PMC2643349 DOI: 10.1080/00365520500380668] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Polyethylene glycol (PEG), an osmotic laxative, is a potent inhibitor of colon cancer in rats. In a search for the underling mechanisms, the hypothesis that fecal bulking and moisture decrease colon carcinogenesis was tested. We also investigated the PEG effects on crypt cells in vivo. MATERIAL AND METHODS Fischer 344 rats (n=272) were injected with the colon carcinogen, azoxymethane. They were then randomized to a standard AIN76 diet containing one of 19 laxative agents (5% w/w in most cases): PEG 8000 and other PEG-like compounds, carboxymethylcellulose, polyvinylpyrrolidone, sodium polyacrylate, calcium polycarbophil, karaya gum, psyllium, mannitol, sorbitol, lactulose, propylene glycol, magnesium hydroxide, sodium phosphate, bisacodyl, docusate, and paraffin oil. Aberrant crypt foci (ACF) and fecal values were measured blindly after a 30-day treatment regimen. Proliferation, apoptosis, and the removal of cells from crypts were studied in control and PEG-fed rats using various methods, including TUNEL and fluorescein dextran labeling. RESULTS PEG 8000 reduced the number of ACF 9-fold in rats (p<0.001). The other PEGs and magnesium hydroxide modestly suppressed ACF, but not the other laxatives. ACF number did not correlate with fecal weight or moisture. PEG doubled the apoptotic bodies per crypt (p<0.05), increased proliferation by 25-50% (p<0.05) and strikingly increased (>40-fold) a fecal marker of epitheliolysis in the gut (p<0.001). PEG normalized the percentage of fluorescein dextran labeled cells on the top of ACF (p<0.001). CONCLUSIONS Among laxatives, only PEG afforded potent chemoprevention. PEG protection was not due to increased fecal bulking, but in all likelihood to the elimination of cells from precancerous lesions.
Collapse
|
14
|
Carswell KS, Papoutsakis ET. Culture of human T cells in stirred bioreactors for cellular immunotherapy applications: shear, proliferation, and the IL-2 receptor. Biotechnol Bioeng 2000; 68:328-38. [PMID: 10745201 DOI: 10.1002/(sici)1097-0290(20000505)68:3<328::aid-bit11>3.0.co;2-v] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Ex vivo expansion of T cells is a key step of many cellular immunotherapy protocols, which require large numbers of immune cells to eradicate malignant or virally infected cells. The use of stirred culture systems for T cell expansion offers many potential advantages over the static culture systems commonly used today, including homogeneity of culture conditions, ease of sampling, and implementation of control systems. Primary human T cells as well as the transformed TALL103/2 T cell line were cultured in 100-mL spinner flasks as well as 2-L bioreactors to investigate the effects of shear forces produced by agitation and sparging-based aeration on the expansion of T cells. Primary T cells could be successfully grown at agitation rates of up to 120 rpm in the spinner flasks and to 180 rpm in the bioreactors with no immediate detrimental effects on proliferation. Exposure to agitation and sparging did, however, cause a significantly increased rate of downregulation of the interleukin-2 receptor (IL-2R), resulting in lower overall expansion potential from a single stimulation as compared to static controls, with faster IL-2R downregulation occurring at higher agitation rates. For the primary T cells, no significant effects of agitation were found on expression levels of other key surface receptors (CD3, CD28, or CD62L) examined. No significant effects of agitation were observed on primary T cell metabolism or levels of cellular apoptosis in the cultures. The TALL103/2 T cell line was found to be extremely sensitive to agitation, showing severely reduced growth at speeds above 30 rpm in 100-mL spinner flasks. This unexpected increased fragility in the transformed T cell line as compared to primary T cells points out the importance of carefully selecting a model cell line which will accurately represent the characteristics of the cell system of interest.
Collapse
Affiliation(s)
- K S Carswell
- Department of Chemical Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | | |
Collapse
|
15
|
Abstract
The question is addressed as to whether observed parameter(s) characterizing single bubble burst (bubble jet height and speed) can be used to predict cell damage in sparged animal cell cultures. Bubble burst profiles are examined in the presence of realistic concentrations of fetal calf serum (FCS) or Pluronic F-68 using a high-speed video technique. The damage to TBC3 hybridoma cells from bubble sparging, characterized as a first-order decline, is reduced by even very small concentrations of both FCS and Pluronic F-68, but neither single bubble burst parameters nor surface properties give usable correlations with death rate constants. © 1999 John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- D Dey
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | |
Collapse
|
16
|
Tan J, Saltzman WM. Influence of synthetic polymers on neutrophil migration in three-dimensional collagen gels. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH 1999; 46:465-74. [PMID: 10398007 DOI: 10.1002/(sici)1097-4636(19990915)46:4<465::aid-jbm4>3.0.co;2-n] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In vitro studies of cell migration within three-dimensional polymeric materials are essential for understanding cell behavior and for developing new biomedical materials. Human neutrophil motility was examined in hydrated collagen gels containing various synthetic polymers. Physical mixtures of collagen and certain water-soluble polymers formed stable gels that were good substrates for cell migration. Addition of either polyethylene glycol (PEG) or the pluronictrade mark copolymer F68 did not change the morphological or mechanical properties of collagen gels, as determined by SEM and oscillatory rheometry; however, addition of either polymer significantly inhibited cell motility in both a modified 96-well chemotaxis chamber assay and a direct visual assay. Although the mechanism for this observed polymer inhibition of neutrophil migration is not yet clear, these results suggest that PEG and F68, two widely used biomedical polymers that are considered to be relatively "inert," may cause significant inhibition of cell motility.
Collapse
Affiliation(s)
- J Tan
- School of Chemical Engineering, 120 Olin Hall, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
17
|
Meier SJ, Hatton TA, Wang DIC. Cell death from bursting bubbles: Role of cell attachment to rising bubbles in sparged reactors. Biotechnol Bioeng 1999. [DOI: 10.1002/(sici)1097-0290(19990220)62:4<468::aid-bit10>3.0.co;2-n] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
18
|
McDowell CL, Carver RT, Papoutsakis ET. Effects of methocel A15LV, polyethylene glycol, and polyvinyl alcohol on CD13 and CD33 receptor surface content and metabolism of HL60 cells cultured in stirred tank bioreactors. Biotechnol Bioeng 1998; 60:251-8. [PMID: 10099426 DOI: 10.1002/(sici)1097-0290(19981020)60:2<251::aid-bit12>3.0.co;2-p] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Flow cytometry was used to examine the effect of hydrodynamic forces in a stirred tank bioreactor on the CD13 and CD33 receptor surface content of HL60 (human promyelocytic leukemia) cells. A step increase in agitation rate from 80 to 400 rpm reduced the HL60 cell apparent growth rate and increased the CD13 receptor surface content per cell, on average, by 95%. In contrast, this step increase in agitation rate to 400 rpm decreased the CD33 receptor surface content per cell, on average, by 10%. The protective effects of 0.1% Methocel A15LV, polyethylene glycol (PEG), and polyvinyl alcohol (PVA) on CD13 and CD33 receptor surface content were examined under agitation at 300 rpm in parallel 2 L bioreactor runs. The average CD33 receptor surface content was unaffected by the presence of Methocel A15LV or PEG, while PVA had a slight protective effect. In contrast, in terms of CD13 receptor content, HL60 cells agitated at 300 rpm with Methocel A15LV, PEG, or PVA behaved like cells agitated at 80 rpm with no media additives (McDowell and Papoutsakis, 1998). That is, Methocel A15LV, PEG, and PVA prevented the transduction of mechanical forces which affect CD13 cell content. HL60 cells cultured with 0.1% A15LV, PEG or PVA under conditions of mild agitation (60 rpm) in spinner flasks exhibited glucose consumption and lactate production rates that were approximately 20% lower than values of cultures containing no additive. Under conditions of agitation at 300 rpm in the 2 L bioreactor, the presence of A15LV, PEG, and PVA reduced the HL60 glucose consumption and lactate production rates by approximately 50%. Thus, media additives can dramatically reduce lactate accumulation in agitated bioreactors due to cell growth, in addition to providing protection from cellular injury.
Collapse
Affiliation(s)
- C L McDowell
- Northwestern University, Department of Chemical Engineering, 2145 Sheridan Road, Evanston, Illinois 60208-3120, USA
| | | | | |
Collapse
|
19
|
Dey D, Boulton-Stone J, Emery A, Blake J. Experimental comparisons with a numerical model of surfactant effects on the burst of a single bubble. Chem Eng Sci 1997. [DOI: 10.1016/s0009-2509(97)00083-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Molina Grima E, Chisti Y, Moo-Young M. Characterization of shear rates in airlift bioreactors for animal cell culture. J Biotechnol 1997. [DOI: 10.1016/s0168-1656(97)00043-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Gromada A, Fiedurek J. Optimization of catalase biosynthesis in submerged cultures of Aspergillus niger mutant. J Basic Microbiol 1997; 37:85-91. [PMID: 9151421 DOI: 10.1002/jobm.3620370203] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The effect of some medium components, viscous substances and metabolic inhibitors, on catalase production by mutant Aspergillus niger has been studied in shake culture. Altering the composition of the basal medium, particularly substituting NaNO3 for KNO3, and peptone for yeast extract brought an increase in extra- and intracellular catalase activity by 1.5- and 3-fold, respectively. The addition of 2.0-6.0 mg sodium alginate or pectin/ml as viscous additive to the medium, containing glucose as carbon source, increased the medium viscosity and catalase production in shake culture by about 2.8- to 3.0-fold. The highest yield of extracellular catalase activity of A. niger was obtained in the presence of sodium orthovanadate and Triton X-100, which improved the activity of this enzyme by about 1.5-2.2-fold. A significant increase in intracellular catalase activity was observed in the presence of hematin, Tween 80 and sodium orthovanadate (1.7-, 1.6- and 1.4-fold respectively). The time course of growth and enzyme production by A. niger in the optimized medium is also reported.
Collapse
Affiliation(s)
- A Gromada
- Department of Industrial Microbiology, Maria Curie-Skłodowska University, Lublin, Poland
| | | |
Collapse
|
22
|
Kristiansen TB, Hagemeister JJ, Grave M, Hellung-Larsen P. Surface mediated death of unconditioned Tetrahymena cells: effect of physical parameters, growth factors, hormones, and surfactants. J Cell Physiol 1996; 169:139-48. [PMID: 8841430 DOI: 10.1002/(sici)1097-4652(199610)169:1<139::aid-jcp14>3.0.co;2-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A new form of cell death has been observed. The death occurs at liquid-air interfaces when Tetrahymena cells are grown in a chemically defined medium (CDM) at low inocula. The cells die by lysis at the liquid-air interface (medium surface), which they reach due to negative gravitaxis as well as positive aerotaxis. When the cells are grown in a closed compartment, with no liquid-air interface, the death is not observed, and the cells proliferate. Cloning of cells in CDM is thus possible. The addition of effectors such as NGF (10(-11) M), EGF (10(-10) M), PDGF (10(-10) M), and insulin (10(-7) M) to cells in CDM prevents the surface mediated death. Since detergents/surfactants like SDS (7 x 10(-5) M), NP-40 (2 x 10(-5) M), Tween 80 (10(-4))% w/v), Pluronic F-68 (10(-7) M), and the biosurfactant surfactin (10(-6) M) have the same effect, we suggest that the effectors act by stimulating the cells to exudate surfactant(s) of their own. Furthermore, lyzed cells and exudates from living cells (pre-conditioned medium) prevent the death. In conditions with liquid-air interfaces, certain physical parameters are of great importance for the survival of cells at low inocula. The parameters are the distance to the surface, the temperature, and the inoculum. By increasing the height of the medium, lowering the temperature, and increasing the inoculum of the culture, the survival can be greatly enhanced. There is no evidence for programmed cell death (PCD) or apoptosis.
Collapse
Affiliation(s)
- T B Kristiansen
- Institute of Medical Biochemistry and Genetics, Panum Institute, University of Copenhagen, Denmark
| | | | | | | |
Collapse
|
23
|
Joshi J, Elias C, Patole M. Role of hydrodynamic shear in the cultivation of animal, plant and microbial cells. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/0923-0467(95)03062-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
Polyvinyl Alcohol. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/s0099-5428(08)60699-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
25
|
|
26
|
van der Pol LA, Paijens I, Tramper J. Dextran as protectant against damage caused by sparging for hybridoma cells in a bubble column. J Biotechnol 1995; 43:103-10. [PMID: 8562016 DOI: 10.1016/0168-1656(95)00120-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The effect of the addition of dextran as a protective polymer against sparging was examined with hybridoma suspension cells in a bubble column under standardized conditions. The protective effect of high concentrations of high molecular weight dextran showed a correlation with the bulk viscosity of the medium. A distinct protective effect occurs at viscosities greater than 20 x 10(-3) Pa s-1. In contrast, low molecular weight dextrans that cause a minor increase in viscosity, also provide no protection against sparging. There is no strict correlation between surface tension and the protective effect of dextran against sparging. Oxygen transfer is strongly reduced by high concentrations of high molecular weight dextran. Therefore, addition of dextran as protective polymer against sparging for large-scale production processes with animal cells in stirred reactors does not seem feasible.
Collapse
|
27
|
Wu J. Mechanisms of animal cell damage associated with gas bubbles and cell protection by medium additives. J Biotechnol 1995; 43:81-94. [PMID: 8562021 DOI: 10.1016/0168-1656(95)00133-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Animal cell damage arising from gas sparging is considered to be a major barrier to large-scale production of recombinant biologicals in animal cell culture. Understanding sparging cell damage is therefore of significance to the application of animal cell culture. The paper reviews the hydrodynamics of bubble rupture, mechanisms of cell-bubble interaction, mathematical modelling and quantification of the sparging damage. Another interesting topic addressed in the paper is the protective effects of various medium additives against fluid mechanical cell damage, especially those surface-active polymers such as pluronic polyols, methylcellulose and polyethylene glycol. Experimental results obtained recently by the author and other researchers were examined to reveal the mechanisms of additive protection. The interactions of additives with air-liquid interfaces and the animal cells were analyzed with respect to their physical properties and chemical structure.
Collapse
Affiliation(s)
- J Wu
- Hong Kong Polytechnic University, Department of Applied Biology and Chemical Technology, Kowloon
| |
Collapse
|
28
|
Polyethylene glycol as protectant against damage caused by sparging for hybridoma suspension cells in a bubble column. Enzyme Microb Technol 1995. [DOI: 10.1016/0141-0229(94)00063-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
29
|
Chattopadhyay D, Rathman JF, Chalmers JJ. The protective effect of specific medium additives with respect to bubble rupture. Biotechnol Bioeng 1995; 45:473-80. [DOI: 10.1002/bit.260450603] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
30
|
Tan WS, Dai GC, Chen YL. Quantitative investigations of cell-bubble interactions using a foam fractionation technique. Cytotechnology 1994; 15:321-8. [PMID: 7765947 DOI: 10.1007/bf00762407] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Previous work by the authors and others has shown that suspended animal cell damage in bioreactors is caused by cell-bubble interactions, regardless whether the bubbles are from bubble entrainment or direct gas sparging. As approach to measure the adsorptivity of animal cells to bubbles, a modified batch foam fractionation technique has been developed in this work and proven to be applicable. By using this technique, the number of cells absorbed per unit bubble surface area and the adsorption coefficients have been measured to quantify hybridoma cell-bubble interactions, and the preventive effects of serum and Pluronic F68 on these interactions. It was demonstrated quantitatively that the hybridoma cells adhere to bubbles spontaneously and significant numbers exist in the foam, and that both the serum and Pluronic F68 provide strong prevention to these cell-bubble interactions. The results obtained provide criteria for bioreactor operation and medium formulation to prevent cell-bubble interactions and cell damage in the culture processes.
Collapse
Affiliation(s)
- W S Tan
- Laboratory of Cell Culture Technology, East China University of Science & Technology, Shanghai
| | | | | |
Collapse
|
31
|
Tomeczkowski J, Ludwig A, Kretzmer G. Effect of cholesterol addition on growth kinetics and shear stress sensitivity of adherent mammalian cells. Enzyme Microb Technol 1993; 15:849-53. [PMID: 7764103 DOI: 10.1016/0141-0229(93)90096-k] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The growth kinetics of adherent baby hamster kidney cells cultivated with additional cholesterol as well as the effect of cholesterol addition on shear stress sensitivity were investigated. The influence of various cholesterol preparations was tested, whereby dimethylsulfoxide and ethanol show negative effects at higher concentrations. With addition of cholesterol in the range of 90 micrograms ml-1, a positive effect on the shear stress resistance was achieved.
Collapse
|
32
|
Smith CG, Greenfield PF. Mechanical agitation of hybridoma suspension cultures: Metabolic effects of serum, pluronic F68, and albumin supplements. Biotechnol Bioeng 1992; 40:1045-55. [DOI: 10.1002/bit.260400908] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|