1
|
Grimm D. Microgravity and Space Medicine 2.0. Int J Mol Sci 2022; 23:ijms23084456. [PMID: 35457274 PMCID: PMC9029223 DOI: 10.3390/ijms23084456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 04/15/2022] [Indexed: 02/05/2023] Open
Abstract
This Special Issue (SI), "Microgravity and Space Medicine 2 [...].
Collapse
Affiliation(s)
- Daniela Grimm
- Department of Biomedicine, Aarhus University, Ole Worms Allé 4, 8000 Aarhus, Denmark; ; Tel.: +45-2137-9702; Fax: +45-8612-8804
- Department of Microgravity and Translational Regenerative Medicine, University Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, Pfälzer Str. 2, 39106 Magdeburg, Germany
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt-und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
| |
Collapse
|
2
|
Cockell CS. Bridging the gap between microbial limits and extremes in space: space microbial biotechnology in the next 15 years. Microb Biotechnol 2022; 15:29-41. [PMID: 34534397 PMCID: PMC8719799 DOI: 10.1111/1751-7915.13927] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 09/05/2021] [Indexed: 12/01/2022] Open
Abstract
The establishment of a permanent human settlement in space is one of humanity's ambitions. To achieve this, microorganisms will be used to carry out many functions such as recycling, food and pharmaceutical production, mining and other processes. However, the physical and chemical extremes in all locations beyond Earth exceed known growth limits of microbial life. Making microbes more tolerant of a greater range of extraterrestrial extremes will not produce organisms that can grow in unmodified extraterrestrial environments since in many of them not even liquid water can exist. However, by narrowing the gap, the engineering demands on bioindustrial processes can be reduced and greater robustness can be incorporated into the biological component. I identify and describe these required microbial biotechnological modifications and speculate on long-term possibilities such as microbial biotechnology on Saturn's moon Titan to support a human presence in the outer Solar System and bioprocessing of asteroids. A challenge for space microbial biotechnology in the coming decades is to narrow the microbial gap by systemically identifying the genes required to do this and incorporating them into microbial systems that can be used to carry out bioindustrial processes of interest.
Collapse
Affiliation(s)
- Charles S. Cockell
- UK Centre for AstrobiologySchool of Physics and AstronomyUniversity of EdinburghEdinburghUK
| |
Collapse
|
3
|
Cockell CS, Santomartino R, Finster K, Waajen AC, Nicholson N, Loudon CM, Eades LJ, Moeller R, Rettberg P, Fuchs FM, Van Houdt R, Leys N, Coninx I, Hatton J, Parmitano L, Krause J, Koehler A, Caplin N, Zuijderduijn L, Mariani A, Pellari S, Carubia F, Luciani G, Balsamo M, Zolesi V, Ochoa J, Sen P, Watt JAJ, Doswald-Winkler J, Herová M, Rattenbacher B, Wadsworth J, Everroad RC, Demets R. Microbially-Enhanced Vanadium Mining and Bioremediation Under Micro- and Mars Gravity on the International Space Station. Front Microbiol 2021; 12:641387. [PMID: 33868198 PMCID: PMC8047202 DOI: 10.3389/fmicb.2021.641387] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/04/2021] [Indexed: 11/30/2022] Open
Abstract
As humans explore and settle in space, they will need to mine elements to support industries such as manufacturing and construction. In preparation for the establishment of permanent human settlements across the Solar System, we conducted the ESA BioRock experiment on board the International Space Station to investigate whether biological mining could be accomplished under extraterrestrial gravity conditions. We tested the hypothesis that the gravity (g) level influenced the efficacy with which biomining could be achieved from basalt, an abundant material on the Moon and Mars, by quantifying bioleaching by three different microorganisms under microgravity, simulated Mars and Earth gravitational conditions. One element of interest in mining is vanadium (V), which is added to steel to fabricate high strength, corrosion-resistant structural materials for buildings, transportation, tools and other applications. The results showed that Sphingomonas desiccabilis and Bacillus subtilis enhanced the leaching of vanadium under the three gravity conditions compared to sterile controls by 184.92 to 283.22%, respectively. Gravity did not have a significant effect on mean leaching, thus showing the potential for biomining on Solar System objects with diverse gravitational conditions. Our results demonstrate the potential to use microorganisms to conduct elemental mining and other bioindustrial processes in space locations with non-1 × g gravity. These same principles apply to extraterrestrial bioremediation and elemental recycling beyond Earth.
Collapse
Affiliation(s)
- Charles S Cockell
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| | - Rosa Santomartino
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| | - Kai Finster
- Department of Biology - Microbiology, Aarhus University, Aarhus, Denmark
| | - Annemiek C Waajen
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| | - Natasha Nicholson
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| | - Claire-Marie Loudon
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| | - Lorna J Eades
- School of Chemistry, University of Edinburgh, Edinburgh, United Kingdom
| | - Ralf Moeller
- Radiation Biology Department, German Aerospace Center (DLR), Institute of Aerospace Medicine, Köln, Germany
| | - Petra Rettberg
- Radiation Biology Department, German Aerospace Center (DLR), Institute of Aerospace Medicine, Köln, Germany
| | - Felix M Fuchs
- Radiation Biology Department, German Aerospace Center (DLR), Institute of Aerospace Medicine, Köln, Germany.,Institute of Electrical Engineering and Plasma Technology, Faculty of Electrical Engineering and Information Sciences, Ruhr University Bochum, Bochum, Germany
| | - Rob Van Houdt
- Microbiology Unit, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
| | - Natalie Leys
- Microbiology Unit, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
| | - Ilse Coninx
- Microbiology Unit, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | - Jon Ochoa
- ESTEC, Noordwijk, Netherlands.,Space Application Services NV/SA, Noordwijk, Netherlands
| | - Pia Sen
- Earth and Environmental Sciences Department, Rutgers University, Newark, NJ, United States
| | - James A J Watt
- School of Geosciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Jeannine Doswald-Winkler
- BIOTESC, Hochschule Luzern Technik & Architektur, Lucerne School of Engineering and Architecture, Hergiswil, Switzerland
| | - Magdalena Herová
- BIOTESC, Hochschule Luzern Technik & Architektur, Lucerne School of Engineering and Architecture, Hergiswil, Switzerland
| | - Bernd Rattenbacher
- BIOTESC, Hochschule Luzern Technik & Architektur, Lucerne School of Engineering and Architecture, Hergiswil, Switzerland
| | - Jennifer Wadsworth
- Exobiology Branch, NASA Ames Research Center, Moffett Field, CA, United States
| | - R Craig Everroad
- Exobiology Branch, NASA Ames Research Center, Moffett Field, CA, United States
| | | |
Collapse
|
4
|
Santomartino R, Waajen AC, de Wit W, Nicholson N, Parmitano L, Loudon CM, Moeller R, Rettberg P, Fuchs FM, Van Houdt R, Finster K, Coninx I, Krause J, Koehler A, Caplin N, Zuijderduijn L, Zolesi V, Balsamo M, Mariani A, Pellari SS, Carubia F, Luciani G, Leys N, Doswald-Winkler J, Herová M, Wadsworth J, Everroad RC, Rattenbacher B, Demets R, Cockell CS. No Effect of Microgravity and Simulated Mars Gravity on Final Bacterial Cell Concentrations on the International Space Station: Applications to Space Bioproduction. Front Microbiol 2020; 11:579156. [PMID: 33154740 PMCID: PMC7591705 DOI: 10.3389/fmicb.2020.579156] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/09/2020] [Indexed: 12/24/2022] Open
Abstract
Microorganisms perform countless tasks on Earth and they are expected to be essential for human space exploration. Despite the interest in the responses of bacteria to space conditions, the findings on the effects of microgravity have been contradictory, while the effects of Martian gravity are nearly unknown. We performed the ESA BioRock experiment on the International Space Station to study microbe-mineral interactions in microgravity, simulated Mars gravity and simulated Earth gravity, as well as in ground gravity controls, with three bacterial species: Sphingomonas desiccabilis, Bacillus subtilis, and Cupriavidus metallidurans. To our knowledge, this was the first experiment to study simulated Martian gravity on bacteria using a space platform. Here, we tested the hypothesis that different gravity regimens can influence the final cell concentrations achieved after a multi-week period in space. Despite the different sedimentation rates predicted, we found no significant differences in final cell counts and optical densities between the three gravity regimens on the ISS. This suggests that possible gravity-related effects on bacterial growth were overcome by the end of the experiment. The results indicate that microbial-supported bioproduction and life support systems can be effectively performed in space (e.g., Mars), as on Earth.
Collapse
Affiliation(s)
- Rosa Santomartino
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| | - Annemiek C Waajen
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| | - Wessel de Wit
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| | - Natasha Nicholson
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| | - Luca Parmitano
- European Space Research and Technology Centre (ESTEC), Noordwijk, Netherlands
| | - Claire-Marie Loudon
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| | - Ralf Moeller
- Radiation Biology Department, German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne (Köln), Germany
| | - Petra Rettberg
- Radiation Biology Department, German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne (Köln), Germany
| | - Felix M Fuchs
- Radiation Biology Department, German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne (Köln), Germany
| | - Rob Van Houdt
- Microbiology Unit, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
| | - Kai Finster
- Department of Biology - Microbiology, Aarhus University, Aarhus C, Denmark
| | - Ilse Coninx
- Microbiology Unit, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
| | - Jutta Krause
- European Space Research and Technology Centre (ESTEC), Noordwijk, Netherlands
| | - Andrea Koehler
- European Space Research and Technology Centre (ESTEC), Noordwijk, Netherlands
| | - Nicol Caplin
- European Space Research and Technology Centre (ESTEC), Noordwijk, Netherlands
| | - Lobke Zuijderduijn
- European Space Research and Technology Centre (ESTEC), Noordwijk, Netherlands
| | | | | | | | | | | | | | - Natalie Leys
- Microbiology Unit, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
| | | | - Magdalena Herová
- BIOTESC, Hochschule Luzern Technik und Architektur, Hergiswil, Switzerland
| | - Jennifer Wadsworth
- Exobiology Branch, NASA Ames Research Center, Moffet Field, CA, United States
| | - R Craig Everroad
- Exobiology Branch, NASA Ames Research Center, Moffet Field, CA, United States
| | - Bernd Rattenbacher
- BIOTESC, Hochschule Luzern Technik und Architektur, Hergiswil, Switzerland
| | - René Demets
- European Space Research and Technology Centre (ESTEC), Noordwijk, Netherlands
| | - Charles S Cockell
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
5
|
Häder DP, Hemmersbach R. Gravitaxis in Euglena. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 979:237-266. [DOI: 10.1007/978-3-319-54910-1_12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
6
|
Jung I, Guevorkian K, Valles JM. Trapping of swimming microorganisms at lower surfaces by increasing buoyancy. PHYSICAL REVIEW LETTERS 2014; 113:218101. [PMID: 25479523 DOI: 10.1103/physrevlett.113.218101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Indexed: 06/04/2023]
Abstract
Models suggest that mechanical interactions alone can trap swimming microorganisms at surfaces. Testing them requires a method for varying the mechanical interactions. We tuned contact forces between Paramecia and surfaces in situ by varying their buoyancy with nonuniform magnetic fields. Remarkably, increasing their buoyancy can lead to ∼100% trapping at lower surfaces. A model of Paramecia in surface contact passively responding to external torques quantitatively accounts for the data implying that interactions with a planar surface do not engage their mechanosensing network and illuminating how their trapping differs from other smaller microorganisms.
Collapse
Affiliation(s)
- Ilyong Jung
- Department of Physics, Brown University, Providence, Rhode Island 02912, USA
| | - Karine Guevorkian
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch F-67400, France
| | - James M Valles
- Department of Physics, Brown University, Providence, Rhode Island 02912, USA
| |
Collapse
|
7
|
Richter PR, Strauch SM, Ntefidou M, Schuster M, Daiker V, Nasir A, Haag FWM, Lebert M. Influence of different light-dark cycles on motility and photosynthesis of Euglena gracilis in closed bioreactors. ASTROBIOLOGY 2014; 14:848-858. [PMID: 25279932 PMCID: PMC4201281 DOI: 10.1089/ast.2014.1176] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 09/03/2014] [Indexed: 06/03/2023]
Abstract
Abstract The unicellular photosynthetic freshwater flagellate Euglena gracilis is a promising candidate as an oxygen producer in biological life-support systems. In this study, the capacity of Euglena gracilis to cope with different light regimes was determined. Cultures of Euglena gracilis in closed bioreactors were exposed to different dark-light cycles (40 W/m(2) light intensity on the surface of the 20 L reactor; cool white fluorescent lamps in combination with a 100 W filament bulb): 1 h-1 h, 2 h-2 h, 4 h-4 h, 6 h-6 h, and 8 h-16 h, respectively. Motility and oxygen development in the reactors were measured constantly. It was found that, during exposure to light-dark cycles of 1 h-1 h, 2 h-2 h, 4 h-4 h, and 6 h-6 h, precision of gravitaxis as well as the number of motile cells increased during the dark phase, while velocity increased in the light phase. Oxygen concentration did not yet reach a plateau phase. During dark-light cycles of 8 h-16 h, fast changes of movement behavior in the cells were detected. The cells showed an initial decrease of graviorientation after onset of light and an increase after the start of the dark period. In the course of the light phase, graviorientation increased, while motility and velocity decreased after some hours of illumination. In all light profiles, Euglena gracilis was able to produce sufficient oxygen in the light phase to maintain the oxygen concentration above zero in the subsequent dark phase.
Collapse
Affiliation(s)
- Peter R Richter
- Cell Biology Division, Gravitational Biology, Friedrich-Alexander-University Erlangen-Nuremberg , Erlangen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Hemmersbach R, Simon A, Waßer K, Hauslage J, Christianen PC, Albers PW, Lebert M, Richter P, Alt W, Anken R. Impact of a high magnetic field on the orientation of gravitactic unicellular organisms--a critical consideration about the application of magnetic fields to mimic functional weightlessness. ASTROBIOLOGY 2014; 14:205-15. [PMID: 24621307 PMCID: PMC3952527 DOI: 10.1089/ast.2013.1085] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 01/16/2014] [Indexed: 06/03/2023]
Abstract
The gravity-dependent behavior of Paramecium biaurelia and Euglena gracilis have previously been studied on ground and in real microgravity. To validate whether high magnetic field exposure indeed provides a ground-based facility to mimic functional weightlessness, as has been suggested earlier, both cell types were observed during exposure in a strong homogeneous magnetic field (up to 30 T) and a strong magnetic field gradient. While swimming, Paramecium cells were aligned along the magnetic field lines; orientation of Euglena was perpendicular, demonstrating that the magnetic field determines the orientation and thus prevents the organisms from the random swimming known to occur in real microgravity. Exposing Astasia longa, a flagellate that is closely related to Euglena but lacks chloroplasts and the photoreceptor, as well as the chloroplast-free mutant E. gracilis 1F, to a high magnetic field revealed no reorientation to the perpendicular direction as in the case of wild-type E. gracilis, indicating the existence of an anisotropic structure (chloroplasts) that determines the direction of passive orientation. Immobilized Euglena and Paramecium cells could not be levitated even in the highest available magnetic field gradient as sedimentation persisted with little impact of the field on the sedimentation velocities. We conclude that magnetic fields are not suited as a microgravity simulation for gravitactic unicellular organisms due to the strong effect of the magnetic field itself, which masks the effects known from experiments in real microgravity.
Collapse
Affiliation(s)
- Ruth Hemmersbach
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Anja Simon
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Kai Waßer
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Jens Hauslage
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Peter C.M. Christianen
- High Field Magnet Laboratory, Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Peter W. Albers
- High Field Magnet Laboratory, Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Michael Lebert
- Department of Biology, Friedrich-Alexander-University, Erlangen, Germany
| | - Peter Richter
- Department of Biology, Friedrich-Alexander-University, Erlangen, Germany
| | - Wolfgang Alt
- Theoretical Biology, University of Bonn, Bonn, Germany
| | - Ralf Anken
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| |
Collapse
|
9
|
Kiss JZ. Plant biology in reduced gravity on the Moon and Mars. PLANT BIOLOGY (STUTTGART, GERMANY) 2014; 16 Suppl 1:12-7. [PMID: 23889757 DOI: 10.1111/plb.12031] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 02/28/2013] [Indexed: 05/20/2023]
Abstract
While there have been numerous studies on the effects of microgravity on plant biology since the beginning of the Space Age, our knowledge of the effects of reduced gravity (less than the Earth nominal 1 g) on plant physiology and development is very limited. Since international space agencies have cited manned exploration of Moon/Mars as long-term goals, it is important to understand plant biology at the lunar (0.17 g) and Martian levels of gravity (0.38 g), as plants are likely to be part of bioregenerative life-support systems on these missions. First, the methods to obtain microgravity and reduced gravity such as drop towers, parabolic flights, sounding rockets and orbiting spacecraft are reviewed. Studies on gravitaxis and gravitropism in algae have suggested that the threshold level of gravity sensing is around 0.3 g or less. Recent experiments on the International Space Station (ISS) showed attenuation of phototropism in higher plants occurs at levels ranging from 0.l g to 0.3 g. Taken together, these studies suggest that the reduced gravity level on Mars of 0.38 g may be enough so that the gravity level per se would not be a major problem for plant development. Studies that have directly considered the impact of reduced gravity and microgravity on bioregenerative life-support systems have identified important biophysical changes in the reduced gravity environments that impact the design of these systems. The author suggests that the current ISS laboratory facilities with on-board centrifuges should be used as a test bed in which to explore the effects of reduced gravity on plant biology, including those factors that are directly related to developing life-support systems necessary for Moon and Mars exploration.
Collapse
Affiliation(s)
- J Z Kiss
- Department of Biology, University of Mississippi, University, MS, USA
| |
Collapse
|
10
|
Kiørboe T. Attack or attacked: the sensory and fluid mechanical constraints of copepods' predator-prey interactions. Integr Comp Biol 2013; 53:821-31. [PMID: 23613321 DOI: 10.1093/icb/ict021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Many animals are predator and prey at the same time. This dual position represents a fundamental dilemma because gathering food often leads to increased exposure to predators. The optimization of the tradeoff between eating and not being eaten depends strongly on the sensing, feeding, and mechanisms for mobility of the parties involved. Here, I describe the mechanisms of sensing, escaping predators, and capturing prey in marine pelagic copepods. I demonstrate that feeding tradeoffs vary with feeding mode, and I describe simple fluid mechanical models that are used to quantify these tradeoffs and review observations and experiments that support the assumptions and test the predictions. I conclude by presenting a mechanistically underpinned model that predicts optimal foraging behaviors and the resulting size-scaling and magnitude of copepods' clearance rates.
Collapse
Affiliation(s)
- Thomas Kiørboe
- Centre for Ocean Life, DTU-Aqua, Technical University of Denmark, Denmark
| |
Collapse
|
11
|
Kiss JZ, Millar KDL, Edelmann RE. Phototropism of Arabidopsis thaliana in microgravity and fractional gravity on the International Space Station. PLANTA 2012; 236:635-45. [PMID: 22481136 DOI: 10.1007/s00425-012-1633-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 03/22/2012] [Indexed: 05/21/2023]
Abstract
While there is a great deal of knowledge regarding plant growth and development in microgravity aboard orbiting spacecraft, there is little information available about these parameters in reduced or fractional gravity conditions (less than the nominal 1g on Earth). Thus, in these experiments using the European Modular Cultivation System on the International Space Station, we studied the interaction between phototropism and gravitropism in the WT and mutants of phytochrome A and B of Arabidopis thaliana. Fractional gravity and the 1 g control were provided by centrifuges in the spaceflight hardware, and unidirectional red and blue illumination followed a white light growth period in the time line of the space experiments. The existence of red-light-based positive phototropism in hypocotyls of seedlings that is mediated by phytochrome was confirmed in these microgravity experiments. Fractional gravity studies showed an attenuation of red-light-based phototropism in both roots and hypocotyls of seedlings occurring due to gravitational accelerations ranging from 0.l to 0.3 g. In contrast, blue-light negative phototropism in roots, which was enhanced in microgravity compared with the 1g control, showed a significant attenuation at 0.3 g. In addition, our studies suggest that the well-known red-light enhancement of blue-light-induced phototropism in hypocotyls is likely due to an indirect effect by the attenuation of gravitropism. However, red-light enhancement of root blue-light-based phototropism may occur via a more direct effect on the phototropism system itself, most likely through the phytochrome photoreceptors. To our knowledge, these experiments represent the first to examine the behavior of flowering plants in fractional or reduced gravity conditions.
Collapse
Affiliation(s)
- John Z Kiss
- Department of Botany, Miami University, Oxford, OH 45056, USA.
| | | | | |
Collapse
|
12
|
Häder DP, Lebert M. The Photoreceptor for Phototaxis in the Photosynthetic Flagellate Euglena gracilis. Photochem Photobiol 2008. [DOI: 10.1111/j.1751-1097.1998.tb09679.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
13
|
Häder DP, Richter P, Lebert M. Signal transduction in gravisensing of flagellates. ACTA ACUST UNITED AC 2006. [DOI: 10.1002/sita.200600104] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Hemmersbach R, Braun M. Gravity-sensing and gravity-related signaling pathways in unicellular model systems of protists and plants. ACTA ACUST UNITED AC 2006. [DOI: 10.1002/sita.200600106] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
15
|
Kitaya Y, Azuma H, Kiyota M. Effects of temperature, CO2/O2 concentrations and light intensity on cellular multiplication of microalgae, Euglena gracilis. ADVANCES IN SPACE RESEARCH : THE OFFICIAL JOURNAL OF THE COMMITTEE ON SPACE RESEARCH (COSPAR) 2005; 35:1584-8. [PMID: 16175686 DOI: 10.1016/j.asr.2005.03.039] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Microalgae culture is likely to play an important role in aquatic food production modules in bioregenerative systems for producing feeds for fish, converting CO2 to O2 and remedying water quality as well as aquatic higher plants. In the present study, the effects of culture conditions on the cellular multiplication of microalgae, Euglena gracilis, was investigated as a fundamental study to determine the optimum culture conditions for microalgae production in aquatic food production modules including both microalgae culture and fish culture systems. E. gracilis was cultured under conditions with five levels of temperatures (25-33 degrees C), three levels of CO2 concentrations (2-6%), five levels of O2 concentrations (10-30%), and six levels of photosynthetic photon flux (20-200 micromoles m-2 s-1). The number of Euglena cells in a certain volume of solution was monitored with a microscope under each environmental condition. The multiplication rate of the cells was highest at temperatures of 27-31 degrees C, CO2 concentration of 4%, O2 concentration of 20% and photosynthetic photon flux of about 100 micromoles m-2 s-1. The results demonstrate that E. gracilis could efficiently produce biomass and convert CO2 to O2 under relatively low light intensities in aquatic food production modules.
Collapse
Affiliation(s)
- Y Kitaya
- Graduate School of Agriculture and Biological Sciences, Osaka Prefecture University, Sakai, Osaka, Japan.
| | | | | |
Collapse
|
16
|
Galland P, Finger H, Wallacher Y. Gravitropism in Phycomyces: threshold determination on a clinostat centrifuge. JOURNAL OF PLANT PHYSIOLOGY 2004; 161:733-739. [PMID: 15266721 DOI: 10.1078/0176-1617-01082] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The absolute sensitivity of sporangiophores of Phycomyces blakesleeanus to centrifugal acceleration was determined on a clinostat centrifuge. The centrifuge provides centrifugal accelerations ranging from 10(-4) to 6 x g. The rotor of the centrifuge, which accommodates 96 culture vials with single sporangiophores, is clinostatted, that is, turning "head over", at slow speed (1 rev min(-1)) while it is running. The negative gravitropism of sporangiophores is characterized by two components: a polar angle, which is measured in the plane of bending, and an aiming-error angle, which indicates the deviation of the plane of bending from the vector of the centrifugal acceleration. Dose-response curves were generated for both angles with centrifugations lasting 3, 5, and 8 h. The threshold for the polar angle depends on the presence of statoliths, so-called octahedral protein crystals in the vacuoles. The albino strain C171 carAcarR (with crystals) has a threshold near 10(-2) x g while the albino strain C2 carAgeo-3 (without crystals) has a threshold of about 2 x 10(-1) x g. The threshold for the aiming error angle is ill defined and is between 10(-2) and 10(-1) x g. The threshold for the polar angle of the wild type NRRL 1555 (with crystals) is near 8 x 10(-2) x g.
Collapse
Affiliation(s)
- Paul Galland
- Fachbereich Biologie, Philipps-Universität, Lahnberge, D-35032 Marburg, Germany.
| | | | | |
Collapse
|
17
|
Schmidt W, Galland P. Optospectroscopic detection of primary reactions associated with the graviperception of Phycomyces. Effects of micro- and hypergravity. PLANT PHYSIOLOGY 2004; 135:183-192. [PMID: 15122026 PMCID: PMC429346 DOI: 10.1104/pp.103.033282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2003] [Revised: 12/28/2003] [Accepted: 01/21/2004] [Indexed: 05/24/2023]
Abstract
The graviperception of sporangiophores of the fungus Phycomyces blakesleeanus involves gravity-induced absorbance changes (GIACs) that represent primary responses of gravitropism (Schmidt and Galland, 2000). GIACs (DeltaA(460-665)) of sporangiophores were measured in vivo with a micro-dual wavelength spectrometer at 460 and 665 nm. Sporangiophores that were placed horizontally displayed an instant increase of the GIACs while the return to the vertical position elicited an instant decrease. The GIACs are specific for graviperception, because they were absent in a gravitropism mutant with a defective madJ gene. During parabola flights hypergravity (1.8 g) elicited a decrease of the GIACs, while microgravity (0 +/- 3 x 10 (-2) g) elicited an instant increase. Hypergravity that was generated in a centrifuge (1.5-6.5 g) elicited also a decrease of the GIACs that saturated at about 5 g. The GIACs have a latency of about 20 ms or shorter and are thus the fastest graviresponses ever measured for fungi, protists, and plants. The threshold for eliciting the GIACs is near 3 x 10 (-2) g, which coincides numerically with the threshold for gravitropic bending. In contrast to gravitropic bending, which requires long-term stimulation, GIACs can be elicited by stimuli as short as 20 to 100 ms, leading to an extremely low threshold dose (acceleration x time) of about 3 x 10 (-3) g s, a value, which is four orders of magnitude below the ones described for other organisms and which makes the GIACs of Phycomyces blakesleeanus the most sensitive gravi-response in literature.
Collapse
Affiliation(s)
- Werner Schmidt
- Fachbereich Biologie, Philipps-Universität, D-35032 Marburg, Germany
| | | |
Collapse
|
18
|
Schmidt W. Quickly changing acceleration forces (QCAFs) vibration analysis on the A300 ZERO-G. MICROGRAVITY SCIENCE AND TECHNOLOGY 2004; 15:42-48. [PMID: 15773021 DOI: 10.1007/bf02870951] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Experiments that are done under microgravity, e.g. during space or parabola flights, are invariably accompanied and affected by ubiquitous vibrations of the surroundings. Vibrations induce Quickly Changing Acceleration Forces (QCAFs) that interfere with the perception of the earth gravitational field. To investigate their impact on experiments under microgravity we monitored the vibrations of the airplane A300 ZERO-G during parabola flights and analyzed them in their spectral and frequency domains. Power spectra obtained with Fast-Fourier Transforms (FFT) display a complex pattern of various vibrations whose origin, relative phases and intensities remain unidentified. During the zero-g phases (parabolas), when the engines of the airplane are throttled, the vibrations still elicit residual QCAFs of at least +/- 1 g. By means of adequate damping procedures the QCAFs could, however, be reduced by approximately 95%.
Collapse
Affiliation(s)
- Werner Schmidt
- Fachbereich Biologie/Botanik der Universität Marburg, D-35032 Marburg.
| |
Collapse
|
19
|
Baker PW, Leff L. The effect of simulated microgravity on bacteria from the Mir space station. MICROGRAVITY SCIENCE AND TECHNOLOGY 2004; 15:35-41. [PMID: 15773020 DOI: 10.1007/bf02870950] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The effects of simulated microgravity on two bacterial isolates, Sphingobacterium thalpophilium and Ralstonia pickettii (formerly Burkholderia pickettii), originally recovered from water systems aboard the Mir space station were examined. These bacteria were inoculated into water, high and low concentrations of nutrient broth and subjected to simulated microgravity conditions. S. thalpophilium (which was motile and had flagella) showed no significant differences between simulated microgravity and the normal gravity control regardless of the method of enumeration and medium. In contrast, for R. pickettii (that was non-motile and lacked flagella), there were significantly higher numbers in high nutrient broth under simulated microgravity compared to normal gravity. Conversely, when R. pikkettii was inoculated into water (i.e., starvation conditions) significantly lower numbers were found under simulated microgravity compared to normal gravity. Responses to microgravity depended on the strain used (e.g., the motile strain exhibited no response to microgravity, while the non-motile strain did), the method of enumeration, and the nutrient concentration of the medium. Under oligotrophic conditions, non-motile cells may remain in geostationary orbit and deplete nutrients in their vicinity, while in high nutrient medium, resources surrounding the cell may be sufficient so that high growth is observed until nutrients becoming limiting.
Collapse
Affiliation(s)
- Paul W Baker
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA.
| | | |
Collapse
|
20
|
Hemmersbach R, Bräucker R. Gravity-related behaviour in ciliates and flagellates. ADVANCES IN SPACE BIOLOGY AND MEDICINE 2003; 8:59-75. [PMID: 12951693 DOI: 10.1016/s1569-2574(02)08015-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
21
|
Braucker R, Machemer H. CECILIA, a versatile research tool for cellular responses to gravity. MICROGRAVITY SCIENCE AND TECHNOLOGY 2002; 13:3-13. [PMID: 12206161 DOI: 10.1007/bf02872071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We describe a centrifuge designed and constructed according to current demands for a versatile instrument in cellular gravitational research, in particular protists (ciliates, flagellates). The instrument (called CECILIA, centrifuge for ciliates) is suited for videomonitoring, videorecording, and quantitative evaluation of data from large numbers of swimming cells in a ground-based laboratory or in a drop tower/drop shaft under microgravity conditions. The horizontal rotating platform holds up to six 8mm-camcorders and six chambers holding the experimental cells. Under hypergravity conditions (up to 15 g) chambers can be rotated about 2 axes to adjust the swimming space at right angles or parallel to the resulting gravity vector. Evaluations of cellular responses to central acceleration-- in the presence of gravitational 1 g--are used for extrapolation of cellular behaviour under hypogravity conditions. CECILIA is operated and monitored by computer using a custom-made software. Times and slopes of rising and decreasing acceleration, values and and quality of steady acceleration are supervised online. CECILIA can serve as an on-ground research instrument for precursor investigations of the behaviour of ciliates and flagellates under microgravity conditions such as long-term experiments in the International Space Station.
Collapse
Affiliation(s)
- Richard Braucker
- Institut fur Zoologie, Rheinische Friedrich-Wilhelms-Universitat, Bonn, Germany
| | | |
Collapse
|
22
|
Richter P, Lebert M, Tahedl H, Hader DP. Calcium is involved in the gravitactic orientation in colorless flagellates. JOURNAL OF PLANT PHYSIOLOGY 2001; 158:689-697. [PMID: 12481802 DOI: 10.1078/0176-1617-00002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The colorless flagellate Astasia longa shows a pronounced negative gravitaxis. The calcium fluorescence indicator Calcium Crimson was used to detect changes of the intracellular calcium concentration during gravitactical orientation. Astasia shows an increase of the fluorescence after a lag phase of about 10 s, a maximum after about 30 s and a decrease to the basic level within 60 s during gravitactic reorientation. The observed change in fluorescence corresponds to an almost doubling of the initial free calcium concentration. The influence of inhibitors, known to impair gravitaxis, on the calcium concentration of Astasia longa was tested. Addition of caffeine, an inhibitor of phosphodiesterase, increases, while addition of gadolinium, an inhibitor of mechanosensitive ion channels decreases the fluorescence signal. While gravitactic stimulation of caffeine-treated cells resulted in a kinetics of fluorescence intensity changes comparable to control cells the addition of gadolinium inhibited any calcium concentration change. Dynamic fluorescence imaging was used during a sounding rocket experiment (MAXUS 3 campaign). Different accelerations interrupted by microgravity intervals were applied to Astasia cells. The cells show an increase in the calcium signal upon acceleration and a decrease during the microgravity state. The results strongly reemphasize the working model of gravitaxis which is based on the activation of mechano-sensitive ion channels as one of the primary events in signal perception.
Collapse
Affiliation(s)
- P Richter
- Institut fur Botanik und Pharmazeutische Biologie, Friedrich-Alexander-Universitat, Erlangen, Germany
| | | | | | | |
Collapse
|
23
|
Hader DP, Lebert M. Graviperception and gravitaxis in algae. ADVANCES IN SPACE RESEARCH : THE OFFICIAL JOURNAL OF THE COMMITTEE ON SPACE RESEARCH (COSPAR) 2001; 27:861-870. [PMID: 11594369 DOI: 10.1016/s0273-1177(01)00149-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Photosynthetic flagellates are among the most intensely studied unicellular organisms in the field of graviperception and gravitaxis. While the phenomenon of graviorientation has been known for many decades, only recently was the molecular mechanism unveiled. Earlier hypotheses tried to explain the precise orientation by a passive buoy mechanism assuming the tail end to be heavier than the front. In the photosynthetic flagellate Euglena gracilis, the whole cell body is denser than the surrounding medium, pressing onto the lower cell membrane where it seems to activate mechanosensitive ion channels specific for calcium. The calcium entering the cells during reorientation can be visualized by the fluorescence probe, Calcium Crimson. Cyclic AMP is likewise involved in the molecular pathway. Inhibitors of calcium channels and ionophores impair gravitaxis while caffeine, a blocker of the phosphodiesterase, enhances the precision of orientation.
Collapse
Affiliation(s)
- D P Hader
- Institut fur Botanik and Pharmazeutische Biologie der Friedrich-Alexander-Universitat, Staudstr. 5, D-91058 Erlangen, Germany
| | | |
Collapse
|
24
|
Richter PR, Lebert M, Tahedl H, Hader DP. Physiological characterization of gravitaxis in Euglena gracilis and Astasia longa studied on sounding rocket flights. ADVANCES IN SPACE RESEARCH : THE OFFICIAL JOURNAL OF THE COMMITTEE ON SPACE RESEARCH (COSPAR) 2001; 27:983-988. [PMID: 11596644 DOI: 10.1016/s0273-1177(01)00163-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Euglena gracilis is a photosynthetic, unicellular flagellate found in eutrophic freshwater habitats. The organisms control their vertical position in the water column using gravi- and phototaxis. Recent experiments demonstrated that negative gravitaxis cannot be explained by passive buoyancy but by an active physiological mechanism. During space experiments, the threshold of gravitaxis was determined to be between 0.08 and 0.12 x g. A strong correlation between the applied acceleration and the intracellular cAMP and Ca2+ was observed. The results support the hypothesis, that the cell body of Euglena, which is denser than the surrounding medium exerts a pressure onto the lower membrane and activates mechanosensitive Ca2+ channels. Changes in the membrane potential and the cAMP concentration are most likely subsequent elements in a signal transduction chain, which results in reorientation strokes of the flagellum.
Collapse
Affiliation(s)
- P R Richter
- Institut fur Botanik und Pharmazeutische Biologie der Friedrich-Alexander-Universitat, Erlangen, Germany
| | | | | | | |
Collapse
|
25
|
Hemmersbach R, Bromeis B, Block I, Braucker R, Krause M, Freiberger N, Stieber C, Wilczek M. Paramecium--a model system for studying cellular graviperception. ADVANCES IN SPACE RESEARCH : THE OFFICIAL JOURNAL OF THE COMMITTEE ON SPACE RESEARCH (COSPAR) 2001; 27:893-898. [PMID: 11594373 DOI: 10.1016/s0273-1177(01)00155-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Experiments under varied gravitational accelerations as well as in density-adjusted media showed that sensation of gravity in protists may be linked to the known principles of mechanosensation. Paramecium, a ciliate with clear graviresponses (gravitaxis and gravikinesis) is an ideal model system to prove this hypothesis since the ciliary activity and thus the swimming behaviour is controlled by the membrane potential. It has also been assumed that the cytoplasmic mass causes a distinct stimulation of the bipolarly distributed mechano-sensitive K+ and Ca2+ ion channels in the plasma membrane in dependence of the spatial orientation of the cell. In order to prove this hypothesis, different channel blockers are currently under investigation. Gadolinium did not inhibit gravitaxis in Paramecium, showing that it does not specifically block gravireceptors. Further studies concentrated on the question of whether second messengers are involved in the gravity signal transduction chain. Exposure to 5 g for up to 10 min led to a significant increase in cAMP.
Collapse
Affiliation(s)
- R Hemmersbach
- Institute of Aerospace Medicine, DLR, Cologne, Germany
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Richter P, Lebert M, Korn R, Hader DP. Possible involvement of the membrane potential in the gravitactic orientation of Euglena gracilis. JOURNAL OF PLANT PHYSIOLOGY 2001; 158:35-39. [PMID: 12088030 DOI: 10.1078/0176-1617-00194] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Euglena gracilis, a unicellular photosynthetic flagellate, uses light and gravity as environmental hints to reach and stay in regions optimal for growth and reproduction. The current model of gravitaxis (the orientation with respect to the earth's gravitational field) is based on the specific density difference between cell body and medium. The resulting sedimentation of the cell body applies a force to the lower membrane. This force activates mechano-sensitive ion channels. The resulting ion flux changes the membrane potential, which in turn triggers reorientational movements of the trailing flagellum. One possibility for recording the predicted membrane potential changes during reorientation is the use of potential-sensitive dyes, such as Oxonol VI. The absorption changes of the dye indicating potential changes were recorded with a custom-made photometer, which allows a high precision measurement with a high temporal resolution. After a gravitactic stimulation, a short period of hyperpolarization was detected, followed by a massive depolarization of the cell. The membrane potential returned to initial values after a period of approximately 200 s. Parallel measurements of the precision of orientation and the membrane potential showed a close relationship between both phenomena. The obtained results support the current model of gravitaxis of Euglena gracilis.
Collapse
Affiliation(s)
- P Richter
- Institut fur Botanik und Pharmazeutische Biologie, Lehrstuhl fur Botanik 1, Erlangen, Germany
| | | | | | | |
Collapse
|
27
|
Abstract
Protozoa are eukaryotic cells and represent suitable model systems to study the mechanisms of gravity perception and signal transduction due to their clear gravity-induced responses (gravitaxis and gravikinesis). Among protists, parallel evolution for graviperception mechanisms have been identified: either sensing by distinct stato-organelles (e.g., the Müller vesicles of the ciliate Loxodes) or by sensing the density difference between the whole cytoplasm and the extracellular medium (as proposed for Paramecium and Euglena). These two models are supported by experiments in density-adjusted media, as the gravitaxis of Loxodes was not affected, whereas the orientation of Paramecium and Euglena was completely disturbed. Both models include the involvement of ion channels in the cell membrane. Diverse experiments gave new information on the mechanism of graviperception in unicellular systems, such as threshold values in the range of 10% of gravity, relaxation of the responses after removal of the stimulus, and no visible adaptation phenomena during exposure to hypergravity or microgravity conditions for up to 12 days.
Collapse
Affiliation(s)
- R Hemmersbach
- Institute of Aerospace Medicine, German Aerospace Research Establishment, 51170 Köln Institute for Botany and Pharmaceutical Biology, University of Erlangen, Germany.
| | | |
Collapse
|
28
|
Hemmersbach R, Volkmann D, Hader DP. Graviorientation in protists and plants. JOURNAL OF PLANT PHYSIOLOGY 1999; 154:1-15. [PMID: 11542656 DOI: 10.1016/s0176-1617(99)80311-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Gravitaxis, gravikinesis, and gravitropism are different graviresponses found in protists and plants. The phenomena have been intensively studied under variable stimulations ranging from microgravity to hypergravity. A huge amount of information is now available, e.g. about the time course of these events, their adaptation capacity, thresholds, and interaction between gravity and other environmental stimuli. There is growing evidence that a pure physical mechanism can be excluded for orientation of protists in the gravity field. Similarly, a physiological signal transduction chain has been postulated in plants. Current investigations focus on the question whether gravity is perceived by intracellular gravireceptors (e.g. the Muller organelle of the ciliate Loxodes, barium sulfate vacuoles in Chara rhizoids or starch statoliths in higher plants) or whether the whole cell acts as a sedimenting body exerting pressure on the lower membrane. Behavioral studies in density adjusted media, effects of inhibitors of mechano-sensitive ion channels or manipulations of the proposed gravireceptor structures revealed that both mechanisms have been developed in protists and plants. The threshold values for graviresponses indicate that even 10% of the normal gravitational field can be detected, which demands a focusing and amplifying system such as the cytoskeleton and second messengers.
Collapse
Affiliation(s)
- R Hemmersbach
- Institute of Aerospace Medicine, DLR (German Aerospace Center), Koln Germany
| | | | | |
Collapse
|
29
|
Hader DP. Gravitaxis in unicellular microorganisms. ADVANCES IN SPACE RESEARCH : THE OFFICIAL JOURNAL OF THE COMMITTEE ON SPACE RESEARCH (COSPAR) 1999; 24:843-850. [PMID: 11542630 DOI: 10.1016/s0273-1177(99)00965-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Orientation of organisms with respect to the gravitational field of the Earth has been studied for more than 100 years in a number of unicellular microorganisms including flagellates and ciliates. Several hypotheses have been developed how the weak stimulus is perceived. Intracellular statoliths have been found to be involved in gravitaxis of Loxodes, while no specialized organelles have been detected in other ciliates, e.g. Paramecium. Also in the slime mold Physarum no specialized gravireceptors have been identified yet. In the flagellate Euglena gracilis the whole cell body, which is denser than the surrounding medium, seems to act as a statolith pressing onto the lower membrane where it activates mechanosensitive ion channels. Similar results were obtained for the ciliate Paramecium. In contrast to the flagellate Euglena, several ciliates have been found to show gravikinesis, which is defined as a dependence of the swimming velocity on the direction of movement in the gravity field.
Collapse
Affiliation(s)
- D P Hader
- Institut fur Botanik und Pharmazeutische Biologie der Friedrich-Alexander-Universitat, Erlangen, Germany
| |
Collapse
|
30
|
Hader DP, Lebert M, Richter P. Gravitaxis and graviperception in Euglena gracilis. ADVANCES IN SPACE RESEARCH : THE OFFICIAL JOURNAL OF THE COMMITTEE ON SPACE RESEARCH (COSPAR) 1998; 21:1277-1284. [PMID: 11541382 DOI: 10.1016/s0273-1177(97)00399-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Gravitactic orientation in the flagellate Euglena gracilis is mediated by an active physiological receptor rather than a passive alignment of the cells. During a recent space flight on the American shuttle Columbia the cells were subjected to different accelerations between 0 and 1.5 x g and tracked by computerized real-time image analysis. The dependence of orientation on acceleration followed a sigmoidal curve with a threshold at < or = 0.16 x g and a saturation at about 0.32 x g. No adaptation of the cells to the conditions of weightlessness was observed over the duration of the space mission (12 days). Under terrestrial conditions graviorientation was eliminated when the cells were suspended in a medium the density of which (Ficoll) equaled that of the cell body (1.04 g/ml) and was reversed at higher densities indicating that the whole cytoplasm exerts a pressure on the respective lower membrane. There it probably activates stretch-sensitive calcium specific ion channels since gravitaxis can be affected by gadolinium which is a specific inhibitor of calcium transport in these structures. The sensory transduction chain could involve modulation of the membrane potential since ion channel blockers, ionophores and ATPase inhibitors impair graviperception.
Collapse
Affiliation(s)
- D P Hader
- Institut fur Botanik and Pharmazeutische Biologie der Friedrich-Alexander-Universitat, Erlangen, Germany
| | | | | |
Collapse
|
31
|
Marco R, Benguría A, Sánchez J, de Juan E. Effects of the space environment on Drosophila melanogaster development. Implications of the IML-2 experiment. J Biotechnol 1996; 47:179-89. [PMID: 8987566 DOI: 10.1016/0168-1656(96)01408-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
One hundred and sixty Drosophila females laid several thousands of embryos during the 14.5 days of the IML-2 spaceflight. The progeny were either recovered frozen (embryos at final stages of development and larvae), or maintained alive developing further until adulthood. All embryos, larvae, pupae and imagoes recovered were normal in morphology and function. Results from earlier experiments were reproduced in IML-2 with a better experimental design. We confirm that in Space there is a stimulation of oogenesis and that development is slightly delayed when compared to that of synchronous parallel ground controls. Nevertheless, it is clear from the accompanying 1 x g flight control centrifuge and from the 1.4 x g ground centrifuge samples, that centrifugation itself can produce similar effects, emphasizing the importance of reevaluating the role of the 1 x g on-flight controls. The results emphasize the apparent paradox that simple cellular model systems in microgravity show alterations in many fundamental processes such as those involved in cell signalling, while development, relying heavily on these key cellular mechanisms can proceed quite normally in the absence of gravity. The effects on development are small and more the consequence of a reaction to the abnormal Space environment in general than a specific effect of microgravity.
Collapse
Affiliation(s)
- R Marco
- Departamento de Bioquimica UAM, Facultad de Medicina de la Universidad Autónoma de Madrid, Spain.
| | | | | | | |
Collapse
|