1
|
Bamunusinghe D, Liu Q, Plishka R, Dolan MA, Skorski M, Oler AJ, Yedavalli VRK, Buckler-White A, Hartley JW, Kozak CA. Recombinant Origins of Pathogenic and Nonpathogenic Mouse Gammaretroviruses with Polytropic Host Range. J Virol 2017; 91:e00855-17. [PMID: 28794032 PMCID: PMC5640873 DOI: 10.1128/jvi.00855-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 07/26/2017] [Indexed: 01/06/2023] Open
Abstract
Ecotropic, xenotropic, and polytropic mouse leukemia viruses (E-, X-, and P-MLVs) exist in mice as infectious viruses and endogenous retroviruses (ERVs) inserted into mouse chromosomes. All three MLV subgroups are linked to leukemogenesis, which involves generation of recombinants with polytropic host range. Although P-MLVs are deemed to be the proximal agents of disease induction, few biologically characterized infectious P-MLVs have been sequenced for comparative analysis. We analyzed the complete genomes of 16 naturally occurring infectious P-MLVs, 12 of which were typed for pathogenic potential. We sought to identify ERV progenitors, recombinational hot spots, and segments that are always replaced, never replaced, or linked to pathogenesis or host range. Each P-MLV has an E-MLV backbone with P- or X-ERV replacements that together cover 100% of the recombinant genomes, with different substitution patterns for X- and P-ERVs. Two segments are always replaced, both coding for envelope (Env) protein segments: the N terminus of the surface subunit and the cytoplasmic tail R peptide. Viral gag gene replacements are influenced by host restriction genes Fv1 and Apobec3 Pathogenic potential maps to the env transmembrane subunit segment encoding the N-heptad repeat (HR1). Molecular dynamics simulations identified three novel interdomain salt bridges in the lymphomagenic virus HR1 that could affect structural stability, entry or sensitivity to host immune responses. The long terminal repeats of lymphomagenic P-MLVs are differentially altered by recombinations, duplications, or mutations. This analysis of the naturally occurring, sometimes pathogenic P-MLV recombinants defines the limits and extent of intersubgroup recombination and identifies specific sequence changes linked to pathogenesis and host interactions.IMPORTANCE During virus-induced leukemogenesis, ecotropic mouse leukemia viruses (MLVs) recombine with nonecotropic endogenous retroviruses (ERVs) to produce polytropic MLVs (P-MLVs). Analysis of 16 P-MLV genomes identified two segments consistently replaced: one at the envelope N terminus that alters receptor choice and one in the R peptide at the envelope C terminus, which is removed during virus assembly. Genome-wide analysis shows that nonecotropic replacements in the progenitor ecotropic MLV genome are more extensive than previously appreciated, covering 100% of the genome; contributions from xenotropic and polytropic ERVs differentially alter the regions responsible for receptor determination or subject to APOBEC3 and Fv1 restriction. All pathogenic viruses had modifications in the regulatory elements in their long terminal repeats and differed in a helical segment of envelope involved in entry and targeted by the host immune system. Virus-induced leukemogenesis thus involves generation of complex recombinants, and specific replacements are linked to pathogenesis and host restrictions.
Collapse
Affiliation(s)
- Devinka Bamunusinghe
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Qingping Liu
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Ronald Plishka
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Michael A Dolan
- Bioinformatics and Computational Biosciences Branch, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Matthew Skorski
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Andrew J Oler
- Bioinformatics and Computational Biosciences Branch, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Venkat R K Yedavalli
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Alicia Buckler-White
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Janet W Hartley
- Laboratory of Immunopathology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Christine A Kozak
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| |
Collapse
|
2
|
No evidence for xenotropic murine leukemia-related virus infection in Sweden using internally controlled multiepitope suspension array serology. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:1399-410. [PMID: 22787191 DOI: 10.1128/cvi.00391-12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Many syndromes have a large number of differential diagnoses, a situation which calls for multiplex diagnostic systems. Myalgic encephalomyelitis (ME), also named chronic fatigue syndrome (CFS), is a common disease of unknown etiology. A mouse retrovirus, xenotropic murine leukemia-related virus (XMRV), was found in ME/CFS patients and blood donors, but this was not corroborated. However, the paucity of serological investigations on XMRV in humans prompted us to develop a serological assay which cover many aspects of XMRV antigenicity. It is a novel suspension array method, using a multiplex IgG assay with nine recombinant proteins from the env and gag genes of XMRV and 38 peptides based on known epitopes of vertebrate gammaretroviruses. IgG antibodies were sought in 520 blood donors and 85 ME/CFS patients and in positive- and negative-control sera from animals. We found no differences in seroreactivity between blood donors and ME/CFS patients for any of the antigens. This did not support an association between ME/CFS and XMRV infection. The multiplex serological system had several advantages: (i) biotinylated protein G allowed us to run both human and animal sera, which is essential because of a lack of XMRV-positive humans; (ii) a novel quality control was a pan-peptide positive-control rabbit serum; and (iii) synthetic XMRV Gag peptides with degenerate positions covering most of the variation of murine leukemia-like viruses did not give higher background than nondegenerate analogs. The principle may be used for creation of variant tolerant peptide serologies. Thus, our system allows rational large-scale serological assays with built-in quality control.
Collapse
|
3
|
Lin Z, Puetter A, Coco J, Xu G, Strong MJ, Wang X, Fewell C, Baddoo M, Taylor C, Flemington EK. Detection of murine leukemia virus in the Epstein-Barr virus-positive human B-cell line JY, using a computational RNA-Seq-based exogenous agent detection pipeline, PARSES. J Virol 2012; 86:2970-7. [PMID: 22238296 PMCID: PMC3302299 DOI: 10.1128/jvi.06717-11] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 12/28/2011] [Indexed: 11/20/2022] Open
Abstract
Many cell lines commonly used for biological studies have been found to harbor exogenous agents such as the human tumor viruses Epstein-Barr virus (EBV) and human papillomavirus. Nevertheless, broad-based, unbiased approaches to globally assess the presence of ectopic organisms within cell model systems have not previously been available. We reasoned that high-throughput sequencing should provide unparalleled insights into the microbiomes of tissue culture cell systems. Here we have used our RNA-seq analysis pipeline, PARSES (Pipeline for Analysis of RNA-Seq Exogenous Sequences), to investigate the presence of ectopic organisms within two EBV-positive B-cell lines commonly used by EBV researchers. Sequencing data sets from both the Akata and JY B-cell lines were found to contain reads for EBV, and the JY data set was found to also contain reads from the murine leukemia virus (MuLV). Further investigation revealed that MuLV transcription in JY cells is highly active. We also identified a number of MuLV alternative splicing events, and we uncovered evidence of APOBEC3G (apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like 3G)-dependent DNA editing. Finally, reverse transcription-PCR analysis showed the presence of MuLV in three other human B-cell lines (DG75, Ramos, and P3HR1 Cl.13) commonly used by investigators in the Epstein-Barr virus field. We believe that a thorough examination of tissue culture microbiomes using RNA-seq/PARSES-like approaches is critical for the appropriate utilization of these systems in biological studies.
Collapse
Affiliation(s)
- Zhen Lin
- Tulane University Health Sciences Center and Tulane Cancer Center, New Orleans, Louisiana, USA
| | - Adriane Puetter
- Tulane University Health Sciences Center and Tulane Cancer Center, New Orleans, Louisiana, USA
| | - Joseph Coco
- University of New Orleans, New Orleans, Louisiana, USA
| | - Guorong Xu
- University of New Orleans, New Orleans, Louisiana, USA
| | - Michael J. Strong
- Tulane University Health Sciences Center and Tulane Cancer Center, New Orleans, Louisiana, USA
| | - Xia Wang
- Tulane University Health Sciences Center and Tulane Cancer Center, New Orleans, Louisiana, USA
| | - Claire Fewell
- Tulane University Health Sciences Center and Tulane Cancer Center, New Orleans, Louisiana, USA
| | - Melody Baddoo
- Tulane University Health Sciences Center and Tulane Cancer Center, New Orleans, Louisiana, USA
| | | | - Erik K. Flemington
- Tulane University Health Sciences Center and Tulane Cancer Center, New Orleans, Louisiana, USA
| |
Collapse
|
4
|
Voisin V, Rassart E. Complete genome sequences of the two viral variants of the Graffi MuLV: Phylogenetic relationship with other murine leukemia retroviruses. Virology 2007; 361:335-47. [PMID: 17208267 DOI: 10.1016/j.virol.2006.10.045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2006] [Revised: 10/03/2006] [Accepted: 10/28/2006] [Indexed: 11/15/2022]
Abstract
A detailed phylogenetic analysis of two variants of the Graffi murine retrovirus, GV-1.2 and GV-1.4, showed that they are closely related to SRS 19-6 and Moloney MuLVs. Two stretches of sequence testify to the divergence between Graffi and SRS 19-6 MuLVs, one corresponding to a recombination event of Graffi MuLV with a xenotropic virus. Moloney MuLV was found more distant, particularly in the GAG region. Our study encompasses every class of MuLVs (ecotropic, amphotropic, xenotropic, polytropic) with some focus on exogenous ecotropic viruses and further adds to previous phylogenetic studies. Graffi, SRS 19-6, Moloney, Friend and Rauscher MuLVs form a cluster that appears to share a common ancestor with the Casitas-amphotropic and -ecotropic MuLVs but are more distant to the Akv-type and xenotropic MuLVs. The analysis also revealed that the ENV region of HEMV, the prototype of the MuLV ancestor, was closely related to the corresponding region of Cas-Br-E.
Collapse
Affiliation(s)
- Véronique Voisin
- Laboratoire de biologie moléculaire, Département des sciences biologiques, Université du Québec à Montréal, Case Postale 8888 Succursale Centre-ville, Montréal, Canada H3C-3P8
| | | |
Collapse
|
5
|
Pothlichet J, Mangeney M, Heidmann T. Mobility and integration sites of a murine C57BL/6 melanoma endogenous retrovirus involved in tumor progression in vivo. Int J Cancer 2006; 119:1869-77. [PMID: 16708391 DOI: 10.1002/ijc.22066] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Tumor development is a multistep process in which both genetic and epigenetic events cooperate for the emergence of a malignant clone with metastatic properties. The possibility that endogenous retroviruses promote the expansion of a neoplastic clone by subverting immunosurveillance has been proposed and recently demonstrated in the case of the B16 murine melanoma, which spontaneously express the melanoma-associated retrovirus (MelARV). Indeed, knocking down, by RNA interference, this endogenous retrovirus resulted in the rejection of the tumor cells in immunocompetent mice, without any alteration of their transformed phenotype. Here, we characterize the MelARV proviruses present in the B16 melanoma. Complete sequencing of the viral genomic RNA and characterization of the integration sites within both the B16 tumor cells and a subline selected in vivo for increased metastatic activity disclosed mobility of the element with new proviral insertions targeting critical genes and altering their transcriptional profile. The results show that MelARV can act both at the genetic level, inducing mutations by insertion, and at the epigenetic level, promoting immunosuppression of the host. These properties may as well be relevant to human tumors, such as germline tumors and melanoma, where endogenous retroviruses are active.
Collapse
Affiliation(s)
- Julien Pothlichet
- Unité des Rétrovirus Endogènes et Eléments Rétroïdes des Eucaryotes Supérieurs, CNRS UMR 8122, Institut Gustave Roussy, Villejuif, France
| | | | | |
Collapse
|
6
|
Urisman A, Molinaro RJ, Fischer N, Plummer SJ, Casey G, Klein EA, Malathi K, Magi-Galluzzi C, Tubbs RR, Ganem D, Silverman RH, DeRisi JL. Identification of a novel Gammaretrovirus in prostate tumors of patients homozygous for R462Q RNASEL variant. PLoS Pathog 2006; 2:e25. [PMID: 16609730 PMCID: PMC1434790 DOI: 10.1371/journal.ppat.0020025] [Citation(s) in RCA: 472] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2005] [Accepted: 02/23/2006] [Indexed: 11/26/2022] Open
Abstract
Ribonuclease L (RNase L) is an important effector of the innate antiviral response. Mutations or variants that impair function of RNase L, particularly R462Q, have been proposed as susceptibility factors for prostate cancer. Given the role of this gene in viral defense, we sought to explore the possibility that a viral infection might contribute to prostate cancer in individuals harboring the R462Q variant. A viral detection DNA microarray composed of oligonucleotides corresponding to the most conserved sequences of all known viruses identified the presence of gammaretroviral sequences in cDNA samples from seven of 11 R462Q-homozygous (QQ) cases, and in one of eight heterozygous (RQ) and homozygous wild-type (RR) cases. An expanded survey of 86 tumors by specific RT-PCR detected the virus in eight of 20 QQ cases (40%), compared with only one sample (1.5%) among 66 RQ and RR cases. The full-length viral genome was cloned and sequenced independently from three positive QQ cases. The virus, named XMRV, is closely related to xenotropic murine leukemia viruses (MuLVs), but its sequence is clearly distinct from all known members of this group. Comparison of gag and pol sequences from different tumor isolates suggested infection with the same virus in all cases, yet sequence variation was consistent with the infections being independently acquired. Analysis of prostate tissues from XMRV-positive cases by in situ hybridization and immunohistochemistry showed that XMRV nucleic acid and protein can be detected in about 1% of stromal cells, predominantly fibroblasts and hematopoietic elements in regions adjacent to the carcinoma. These data provide to our knowledge the first demonstration that xenotropic MuLV-related viruses can produce an authentic human infection, and strongly implicate RNase L activity in the prevention or clearance of infection in vivo. These findings also raise questions about the possible relationship between exogenous infection and cancer development in genetically susceptible individuals. Prostate cancer is the most frequent cancer and the second leading cause of cancer deaths in US men over the age of 50. Several genetic factors have been proposed as potential risk factors for the development of prostate cancer, including a viral defense gene called RNASEL. A common genetic variant in this gene, R462Q, was recently implicated in up to 13% of prostate cancer cases. Given the antiviral role of RNASEL, the authors sought to examine if a virus might be present in prostate cancers associated with the R462Q variant. Using a DNA microarray designed to detect all known viral families, the authors identified a novel virus, named XMRV, in a subset of prostate tumor samples. Polymerase chain reaction testing of 86 prostate tumors for the presence of XMRV revealed a strong association between the presence of the virus and being homozygous for the R462Q variant. Cloning and sequencing of the virus showed that XMRV is a close relative of several known xenotropic murine leukemia viruses. This report presents the first documented cases of human infection with a xenotropic retrovirus. Future work will address the potential connection between XMRV infection and the increased prostate cancer risk in patients with the R462Q RNASEL variant.
Collapse
Affiliation(s)
- Anatoly Urisman
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
| | - Ross J Molinaro
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Chemistry, Cleveland State University, Cleveland, Ohio, United States of America
| | - Nicole Fischer
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
| | - Sarah J Plummer
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Graham Casey
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Eric A Klein
- Glickman Urological Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Krishnamurthy Malathi
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Cristina Magi-Galluzzi
- Anatomic and Clinical Pathology, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Raymond R Tubbs
- Anatomic and Clinical Pathology, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Don Ganem
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
- Howard Hughes Medical Institute, University of California San Francisco, San Francisco, California, United States of America
| | - Robert H Silverman
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- * To whom correspondence should be addressed. E-mail: (JLD); (RHS)
| | - Joseph L DeRisi
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
- Howard Hughes Medical Institute, University of California San Francisco, San Francisco, California, United States of America
- * To whom correspondence should be addressed. E-mail: (JLD); (RHS)
| |
Collapse
|
7
|
Stevens A, Bock M, Ellis S, LeTissier P, Bishop KN, Yap MW, Taylor W, Stoye JP. Retroviral capsid determinants of Fv1 NB and NR tropism. J Virol 2004; 78:9592-8. [PMID: 15331691 PMCID: PMC514981 DOI: 10.1128/jvi.78.18.9592-9598.2004] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The specificity determinants for susceptibility to resistance by the Fv1 n and b alleles map to amino acid 110 of the murine leukemia virus CA protein. To study the interaction between Fv1 and CA, we examined changes in CA resulting in the loss of susceptibility to Fv1 resistance in naturally occurring NB- and NR-tropic viruses. A variety of amino acid changes affecting Fv1 tropism were identified, at CA positions 82, 92 to 95, 105, 114, and 117, and they all were mapped to the apparent exterior of virion-associated CA. These amino acids may form a binding surface for Fv1.
Collapse
Affiliation(s)
- Anthony Stevens
- Division of Virology, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Evans LH, Lavignon M, Taylor M, Alamgir ASM. Antigenic subclasses of polytropic murine leukemia virus (MLV) isolates reflect three distinct groups of endogenous polytropic MLV-related sequences in NFS/N mice. J Virol 2003; 77:10327-38. [PMID: 12970417 PMCID: PMC228382 DOI: 10.1128/jvi.77.19.10327-10338.2003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Polytropic murine leukemia viruses (MLVs) are generated by recombination of ecotropic MLVs with members of a family of endogenous proviruses in mice. Previous studies have indicated that polytropic MLV isolates comprise two mutually exclusive antigenic subclasses, each of which is reactive with one of two monoclonal antibodies termed MAb 516 and Hy 7. A major determinant of the epitopes distinguishing the subclasses mapped to a single amino acid difference in the SU protein. Furthermore, distinctly different populations of the polytropic MLV subclasses are generated upon inoculation of different ecotropic MLVs. Here we have characterized the majority of endogenous polytropic MLV-related proviruses of NFS/N mice. Most of the proviruses contain intact sequences encoding the receptor-binding region of the SU protein and could be distinguished by sequence heterogeneity within that region. We found that the endogenous proviruses comprise two major groups that encode the major determinant for Hy 7 or MAb 516 reactivity. The Hy 7-reactive proviruses correspond to previously identified polytropic proviruses, while the 516-reactive proviruses comprise the modified polytropic proviruses as well as a third group of polytropic MLV-related proviruses that exhibit distinct structural features. Phylogenetic analyses indicate that the latter proviruses reflect features of phylogenetic intermediates linking xenotropic MLVs to the polytropic and modified polytropic proviruses. These studies elucidate the relationships of the antigenic subclasses of polytropic MLVs to their endogenous counterparts, identify a new group of endogenous proviruses, and identify distinguishing characteristics of the proviruses that should facilitate a more precise description of their expression in mice and their participation in recombination to generate recombinant viruses.
Collapse
Affiliation(s)
- Leonard H Evans
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana 59840, USA.
| | | | | | | |
Collapse
|
9
|
Gaur A, Green WR. Analysis of the helper virus in murine retrovirus-induced immunodeficiency syndrome: evidence for immunoselection of the dominant and subdominant CTL epitopes of the BM5 ecotropic virus. Viral Immunol 2003; 16:203-12. [PMID: 12828871 DOI: 10.1089/088282403322017938] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In genetically susceptible strains, such as C57BL/6 (B6) mice, LP-BM5 causes murine AIDS (MAIDS). LP-BM5 is a complex mixture of murine leukemia viruses (MuLV) that includes replication competent ecotropic (BM5eco) and mink cell focus inducing (MCF), and replication defective (BM5d) MuLV. At present, for the BM5eco virus, sequence information on only the gag region is available. In this paper, we describe for the first time the sequencing of the entire BM5eco viral genome as well as analysis of homology with two other previously sequenced and well-characterized MuLVs, Emv-11 and Emv-2, the latter constituting the parental virus for BM5eco. We propose that the detailed sequence comparisons herein provide cogent evidence that BM5eco utilizes variations in cytotoxic T lymphocytes (CTL) epitopes as an immune escape mechanism. This CTL evasion mechanism may contribute substantially to the underlying prototypic susceptibility of B6 mice to LP-BM5-induced MAIDS.
Collapse
Affiliation(s)
- Arti Gaur
- Department of Microbiology and Immunology, and the Norris Cotton Cancer Center, Dartmouth Medical School, Lebanon, New Hampshire 03756, USA
| | | |
Collapse
|
10
|
Jung YT, Lyu MS, Buckler-White A, Kozak CA. Characterization of a polytropic murine leukemia virus proviral sequence associated with the virus resistance gene Rmcf of DBA/2 mice. J Virol 2002; 76:8218-24. [PMID: 12134027 PMCID: PMC155147 DOI: 10.1128/jvi.76.16.8218-8224.2002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The DBA/2 mouse Rmcf gene is responsible for in vivo and in vitro resistance to infection by the polytropic mink cell focus-forming (MCF) virus subgroup of murine leukemia viruses (MLVs). Previous studies suggested that Rmcf resistance is mediated by expression of an interfering MCF MLV envelope (Env) gene. To characterize this env gene, we examined resistance in crosses between Rmcf(r) DBA/2 mice and Mus castaneus, a species that lacks endogenous MCF env sequences. In backcross progeny, inheritance of Rmcf resistance correlated with inheritance of a specific endogenous MCF virus env-containing 4.6-kb EcoRI fragment. This fragment was present in the DBA/2N substrain with Rmcf-mediated resistance but not in virus-susceptible DBA/2J substrain mice. This fragment contains a provirus with a 5' long terminal repeat and the 5' half of env; the gag and pol genes have been partially deleted. The Env sequence is identical to that of a highly immunogenic viral glycoprotein expressed in the DBA/2 cell line L5178Y and closely resembles the env genes of modified polytropic proviruses. The coding sequence for the full-length Rmcf Env surface subunit was amplified from DNAs from virus-resistant backcross mice and was cloned into an expression vector. NIH 3T3 and BALB 3T3 cells stably transfected with this construct showed significant resistance to infection by MCF MLV but not by amphotropic MLV. This study identifies an Rmcf-linked MCF provirus and indicates that, like the ecotropic virus resistance gene Fv4, Rmcf may mediate resistance through an interference mechanism.
Collapse
Affiliation(s)
- Yong Tae Jung
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892-0460, USA
| | | | | | | |
Collapse
|
11
|
Lee KF, Kwok KL, Yeung WS. Suppression subtractive hybridization identifies genes expressed in oviduct during mouse preimplantation period. Biochem Biophys Res Commun 2000; 277:680-5. [PMID: 11062013 DOI: 10.1006/bbrc.2000.3736] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fertilization and development of mouse embryos occur in the ampullae of oviduct. Various growth factors and embryotrophic factors produced by the oviductal cells have been demonstrated to enhance embryo development in vitro. As a step towards understanding the genetic changes of mouse oviduct during mouse embryos preimplantation period, we adopted suppression subtractive hybridization (SSH) to establish four subtracted cDNA libraries to identify (1) oviduct-expressing genes, and (2) genes that may support embryo development in vivo. Using this method, we isolated 82, 88, 99, and 109 clones from four mouse libraries prepared from 0 (day 0), 24 (day 1), 48 (day 2), and 72 h (day 3) post-human chorionic gonadotropin (hCG) treated mice. Reverse dot-blot analysis confirmed that 25 (day 0), 24 (day 1), 40 (day 2), and 29 (day 3) clones were highly expressed in mouse oviduct when compared to other tissues. DNA sequence analysis identified genes encoding mouse oviduct-specific glycoprotein (MOGP), actin-binding protein 280, and several viral genes. Northern analysis confirmed that the genes were mainly expressed in oviduct, with some viral genes also expressed in uterus. About 9% of these oviduct expressing clones (11/118) were novel. We further demonstrated that one of the novel clones ODEG0-17 was expressed in the oviduct during early embryo preimplantation period and rarely in other tissues by RT-PCR. Our results show that SSH is a powerful method applicable to identifying tissue-specific transcripts on fertilization and development.
Collapse
Affiliation(s)
- K F Lee
- Department of Obstetrics and Gynaecology, University of Hong Kong, Hong Kong, People's Republic of China.
| | | | | |
Collapse
|
12
|
Mang R, Goudsmit J, van der Kuyl AC. Novel endogenous type C retrovirus in baboons: complete sequence, providing evidence for baboon endogenous virus gag-pol ancestry. J Virol 1999; 73:7021-6. [PMID: 10400802 PMCID: PMC112789 DOI: 10.1128/jvi.73.8.7021-7026.1999] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A complete endogenous type C viral genome has been isolated from a baboon genomic library. The provirus, Papio cynocephalus endogenous retrovirus (PcEV), is 8,572 nucleotides long, and 38 to 59 proviral copies per baboon genome are found. The PcEV provirus possesses the typical simple retroviral gene organization, including two long terminal repeats and genes encoding gag, pol, and env proteins. The open reading frames for gag-pol and env are complete but have premature stop codons or frameshift mutations. The primer binding site of PcEV is complementary to tRNAGly. The gag and pol genes of PcEV are closely related to those of the baboon endogenous virus (BaEV). The env coding region of PcEV is related to the env genes of type C retroviruses. This suggests that PcEV is one of the ancestors of BaEV contributing the type C gag-pol genome fragment to the type C/D recombinant virus BaEV. Earlier it was shown that another endogenous type D virus (simian endogenous retrovirus) provided the env gene for BaEV (A. C. van der Kuyl et al., J. Virol. 71:3666-3676, 1997).
Collapse
Affiliation(s)
- R Mang
- Department of Human Retrovirology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | | | | |
Collapse
|
13
|
Laassri M, Gul'ko L, Vinokurova S, Kisseljova N, Veiko V, Kisseljov F. Cloning of E6 and E7 genes of human papilloma virus type 18 and transformation potential of E7 gene and its mutants. Virus Genes 1999; 18:139-49. [PMID: 10403700 DOI: 10.1023/a:1008020719309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
E6 and E7 genes of human papilloma virus type 18 have been subcloned from plasmid pC7, carrying an insert of DNA from squamous cell carcinoma of cervix. Both genes in comparison to prototype variant contain one mutation that changes asparagine to leucine. In the case of E6 gene this mutation is mapped in codon 129, in the case of E7 the same change AAC to AAA mapped in codon 92. In addition both genes contain few point mutations that do not change the aminoacid sequences of the protein. Two mutants of E7 gene have been constructed by site directed mutagenesis based on PCR technology-one in codon 10 (change Asp to Asn) and one in codon 24 (change Asp to Gly). The first type of mutation did not influence the transformation potential of the E7 gene in comparison to the parental one with mutation in codon 92. The mutation in codon 24 (region responsible for the interaction with Rb protein) eliminate the transformation potential of the gene. The cells transformed with E7 mutants in codons 10 and 92 were tumorigenic for syngenic rats.
Collapse
Affiliation(s)
- M Laassri
- Institute of Carcinogenesis, Cancer Research Center, Moscow State Research Institute of Genetics and Selection of Microorganisms
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
The complete nucleotide sequence of the genome of Solid-type Reticulum cell Sarcoma 19-6 murine leukemia virus (SRS 19-6 MuLV) was determined. This virus was isolated in mainland China from laboratory mice that had been separated from western mice since the 1930s. The genome is 8,256 nucleotides in length and exhibits a genetic organization characteristic of replication competent MuLVs. Phylogenies constructed from reverse transcriptase (RT) domains showed that SRS 19-6 MuLV is closely related to other MuLV-related retroviruses; however, it has clearly diverged from previously isolated MuLVs. Comparative sequence analysis of the env sequences indicated that SRS 19-6 MuLV encodes a surface (SU) glycoprotein that is related to other ecotropic MuLVs in the VR-A and VR-B variable regions. However, SRS 19-6 MuLV env glycoprotein was distinct from all other MuLVs (ecotropic and non-ecotropic) in the proline-rich hypervariable region. No evidence for recombination with endogenous MuLV env sequences in generation of SRS 19-6 MuLV was observed. Comparisons of long terminal repeat (LTR) sequences revealed that the GV 1.4 molecular clone of Graffi MuLV contained 96% sequence identity to SRS 19-6 MuLV's LTR with 99% identity when comparisons were restricted to the U3 regions of the two viruses. The consensus enhancer binding motifs contained in the U3 regions of the two viruses were nearly identical. Nevertheless the two viruses have previously been shown to induce distinct patterns of disease. Comparisons between 196 and Graffi GV1.4 MuLVs may provide insights into the mechanisms of disease specificity induced by MuLVs.
Collapse
Affiliation(s)
- L M Bundy
- Department of Molecular Biology and Biochemistry, University of California at Irvine 92697, USA
| | | |
Collapse
|
15
|
Kayman SC, Park H, Saxon M, Pinter A. The hypervariable domain of the murine leukemia virus surface protein tolerates large insertions and deletions, enabling development of a retroviral particle display system. J Virol 1999; 73:1802-8. [PMID: 9971757 PMCID: PMC104419 DOI: 10.1128/jvi.73.3.1802-1808.1999] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/1998] [Accepted: 12/04/1998] [Indexed: 11/20/2022] Open
Abstract
The surface proteins (SU) of murine type-C retroviruses have a central hypervariable domain devoid of cysteine and rich in proline. This 41-amino-acid region of Friend ecotropic murine leukemia virus SU was shown to be highly tolerant of insertions and deletions. Viruses in which either the N-terminal 30 amino acids or the C-terminal 22 amino acids of this region were replaced by the 7-amino-acid sequence ASAVAGA were fully infectious. Insertions of this 7-amino-acid sequence at the N terminus, center, and the C terminus of the hypervariable domain had little effect on envelope protein (Env) function, while this insertion at a position 10 amino acids following the N terminus partially destabilized the association between the SU and transmembrane subunits of Env. Large, complex domains (either a 252-amino-acid single-chain antibody binding domain [scFv] or a 96-amino-acid V1/V2 domain of HIV-1 SU containing eight N-linked glycosylation sites and two disulfides) did not interfere with Env function when inserted in the center or C-terminal portions of the hypervariable domain. The scFv domain inserted into the C-terminal region of the hypervariable domain was shown to mediate binding of antigen to viral particles, demonstrating that it folded into the active conformation and was displayed on the surface of the virion. Both positive and negative enrichment of virions expressing the V1/V2 sequence were achieved by using a monoclonal antibody specific for a conformational epitope presented by the inserted sequence. These results indicated that the hypervariable domain of Friend ecotropic SU does not contain any specific sequence or structure that is essential for Env function and demonstrated that insertions into this domain can be used to extend particle display methodologies to complex protein domains that require expression in eukaryotic cells for glycosylation and proper folding.
Collapse
Affiliation(s)
- S C Kayman
- Laboratory of Retroviral Biology, Public Health Research Institute, New York, New York 10016, USA.
| | | | | | | |
Collapse
|
16
|
Antoine M, Wegmann B, Kiefer P. Envelope and long terminal repeat sequences of an infectious murine leukemia virus from a human SCLC cell line: implications for gene transfer. Virus Genes 1998; 17:157-68. [PMID: 9857989 DOI: 10.1023/a:1008020808314] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Development of methods for gene transfer into specific cell types or tissues is important for experimental research as well as clinical therapeutical approaches. We report here the cloning and characterization of the envelope (env) gene and the U3 region of a retrovirus from an infected human Small Cell Lung Cancer (SCLC) cell line. The replication of this murine retrovirus is also fully supported by other lung cancer cell lines of different histological origin. We present evidence that a long terminal repeat (LTR)-beta-galactosidase (beta-Gal) reporter construct performed as well as an analogous cytomegalovirus (CMV) promoter beta-Gal construct in the human lung epithelial cell line A549 and in the human larynx carcinoma cell line HEp2.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Blotting, Northern
- Blotting, Southern
- Carcinoma, Small Cell
- Cloning, Molecular
- Gene Transfer Techniques
- Genes, Reporter
- Genes, env/genetics
- Humans
- Leukemia Virus, Murine/genetics
- Leukemia Virus, Murine/physiology
- Lung Neoplasms
- Mice
- Molecular Sequence Data
- Promoter Regions, Genetic
- Terminal Repeat Sequences/genetics
- Tumor Cells, Cultured
- Viral Envelope Proteins/chemistry
- Viral Envelope Proteins/genetics
- Virus Replication
- beta-Galactosidase/metabolism
Collapse
Affiliation(s)
- M Antoine
- Ruhr-Universität Bochum, Medizinische Fakultät, Institut für Hygiene und Mikrobiologie, Abteilung für Med. Mikrobiol. und Virologie, Gebäude, Germany
| | | | | |
Collapse
|
17
|
Ossendorp F, Eggers M, Neisig A, Ruppert T, Groettrup M, Sijts A, Mengedë E, Kloetzel PM, Neefjes J, Koszinowski U, Melief C. A single residue exchange within a viral CTL epitope alters proteasome-mediated degradation resulting in lack of antigen presentation. Immunity 1996; 5:115-24. [PMID: 8769475 DOI: 10.1016/s1074-7613(00)80488-4] [Citation(s) in RCA: 154] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
CTL epitope (KSPWFTTL) encoded by AKV/MCF type of murine leukemia virus (MuLV) differs from the sequence in Friend/Moloney/Rauscher (FMR) type in one residue (RSPWFTTL). CTL experiments indicated defective processing of the FMR peptide in tumor cells. Proteasome-mediated digestion of AKV/MCF-type 26-mer peptides resulted in the early generation and higher levels of epitope-containing fragments than digestion of FMR-type peptides, explained by prominent cleavage next to R in the FMR sequence. The fragments were identified as 10- and 11-mer peptides and were efficiently translocated by TAP. The naturally presented AKV/MCF peptide is the 8-mer, indicating ER peptide trimming. In conclusion, a single residue exchange can cause CTL epitope destruction by specific proteasomal cleavage.
Collapse
MESH Headings
- ATP-Binding Cassette Transporters/metabolism
- Amino Acid Sequence
- Animals
- Antigen Presentation/drug effects
- Antigens, Viral, Tumor/immunology
- Antigens, Viral, Tumor/metabolism
- Cysteine Endopeptidases/pharmacology
- Epitopes/drug effects
- Epitopes/immunology
- Epitopes/metabolism
- Glycoproteins/genetics
- Glycoproteins/physiology
- Kinetics
- Leukemia Virus, Murine/immunology
- Leukemia Virus, Murine/metabolism
- Mice
- Mice, Inbred C57BL
- Molecular Sequence Data
- Multienzyme Complexes/pharmacology
- Peptide Fragments/immunology
- Peptide Fragments/metabolism
- Proteasome Endopeptidase Complex
- T-Lymphocytes, Cytotoxic/enzymology
- T-Lymphocytes, Cytotoxic/immunology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- F Ossendorp
- Department of Immunohematology, Academic Hospital Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|