1
|
Ghalichi F, Ostadrahimi A, Saghafi-Asl M. Vanadium and diabetic dyslipidemia: A systematic review of animal studies. J Trace Elem Med Biol 2022; 71:126955. [PMID: 35303513 DOI: 10.1016/j.jtemb.2022.126955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/15/2022] [Accepted: 02/15/2022] [Indexed: 10/19/2022]
Abstract
BACKGROUND Diabetic dyslipidemia is caused by hyperglycemia and excessive mobilization of storage lipids, leading to increasing concentrations of triglycerides and total cholesterol. Due to the insulin-mimetic or insulin-enhancer features of vanadium, it has been recognized as a regulator of cell metabolism with hypoglycemic and hypolipidemic properties. The purpose of the current animal systematic review was to evaluate the effect of vanadium administration on diabetic dyslipidemia in diabetic animals. METHODS This is, to our knowledge, the first systematic review with the aim of investigating the relationship between vanadium and diabetic dyslipidemia among diabetes induced animals. Searches were performed in PubMed, Scopus, and web of science databases for animal studies examining the effect of vanadium on diabetic dyslipidemia in diabetic animals. RESULTS Of 124 full-text articles assessed, 48 animal studies were included in the present study with minor risk of bias. The majority of the studies confirmed the beneficial effects of different vanadium compounds in at least one of the parameters of lipid profile, especially regarding triglyceride and total cholesterol. CONCLUSION Current findings lend support to assess the long-term effects of different forms and doses of vanadium on lipid profile through well-designed clinical trials.
Collapse
Affiliation(s)
- Faezeh Ghalichi
- Department of Clinical Nutrition, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences (TBZMED), Tabriz, Iran
| | - Alireza Ostadrahimi
- Department of Clinical Nutrition, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences (TBZMED), Tabriz, Iran
| | - Maryam Saghafi-Asl
- Nutrition Research Center, Department of Clinical Nutrition, Faculty of Nutrition & Food Sciences, Tabriz university of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Abstract
Ultra-trace elements or occasionally beneficial elements (OBE) are the new categories of minerals including vanadium (V). The importance of V is attributed due to its multifaceted biological roles, i.e., glucose and lipid metabolism as an insulin-mimetic, antilipemic and a potent stress alleviating agent in diabetes when vanadium is administered at lower doses. It competes with iron for transferrin (binding site for transportation) and with lactoferrin as it is secreted in milk also. The intracellular enzyme protein tyrosine phosphatase, causing the dephosphorylation at beta subunit of the insulin receptor, is inhibited by vanadium, thus facilitating the uptake of glucose inside the cell but only in the presence of insulin. Vanadium could be useful as a potential immune-stimulating agent and also as an antiinflammatory therapeutic metallodrug targeting various diseases. Physiological state and dose of vanadium compounds hold importance in causing toxicity also. Research has been carried out mostly on laboratory animals but evidence for vanadium importance as a therapeutic agent are available in humans and large animals also. This review examines the potential biochemical and molecular role, possible kinetics and distribution, essentiality, immunity, and toxicity-related study of vanadium in a biological system.
Collapse
Affiliation(s)
| | - Veena Mani
- National Dairy Research Institute, Karnal, Haryana, India
| | | |
Collapse
|
3
|
Fedorova EV, Buriakina AV, Vorob'eva NM, Baranova NI. [The vanadium compounds: chemistry, synthesis, insulinomimetic properties]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2014; 60:416-29. [PMID: 25249525 DOI: 10.18097/pbmc20146004416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The review considers the biological role of vanadium, its participation in various processes in humans and other mammals, and the anti-diabetic effect of its compounds. Vanadium salts have persistent hypoglycemic and antihyperlipidemic effects and reduce the probability of secondary complications in animals with experimental diabetes. The review contains a detailed description of all major synthesized vanadium complexes having antidiabetic activity. Currently, vanadium complexes with organic ligands are more effective and safer than the inorganic salts. Despite the proven efficacy of these compounds as the anti-diabetic agents in animal models, only one organic complex of vanadium is currently under the second phase of clinical trials. All of the considered data suggest that vanadium compound are a new promising class of drugs in modern pharmacotherapy of diabetes.
Collapse
|
4
|
Clark TA, Deniset JF, Heyliger CE, Pierce GN. Alternative therapies for diabetes and its cardiac complications: role of vanadium. Heart Fail Rev 2014; 19:123-32. [PMID: 23430125 DOI: 10.1007/s10741-013-9380-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
It is now well known that a cardiomyopathic state accompanies diabetes mellitus. Although insulin injections and conventional hypoglycemic drug therapy have been of invaluable help in reducing cardiac damage and dysfunction in diabetes, cardiac failure continues to be a common cause of death in the diabetic population. The use of alternative medicine to maintain health and treat a variety of diseases has achieved increasing popularity in recent years. The goal of alternative therapies in diabetic patients has been to lower circulating blood glucose levels and thereby treat diabetic complications. This paper will focus its discussion on the role of vanadium on diabetes and the associated cardiac dysfunction. Careful administration of a variety of forms of vanadium has produced impressive long-lasting control of blood glucose levels in both Type 1 and Type 2 diabetes in animals. This has been accompanied by, in many cases, a complete correction of the diabetic cardiomyopathy. The oral delivery of vanadium as a vanadate salt in the presence of tea has produced particularly impressive hypoglycemic effects and a restoration of cardiac function. This intriguing approach to the treatment of diabetes and its complications, however, deserves further intense investigation prior to its use as a conventional therapy for diabetic complications due to the unknown long-term effects of vanadium accumulation in the heart and other organs of the body.
Collapse
Affiliation(s)
- Tod A Clark
- Department of Surgery, Faculty of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | | | | | | |
Collapse
|
5
|
Abstract
It is now well known that a cardiomyopathic state accompanies diabetes mellitus. Although insulin injections and conventional hypoglycemic drug therapy have been of invaluable help in reducing cardiac damage and dysfunction in diabetes, cardiac failure continues to be a common cause of death in the diabetic population. The use of alternative medicine to maintain health and treat a variety of diseases has achieved increasing popularity in recent years. The goal of alternative therapies in diabetic patients has been to lower circulating blood glucose levels and thereby treat diabetic complications. This paper will focus its discussion on the role of vanadium on diabetes and the associated cardiac dysfunction. Careful administration of a variety of forms of vanadium has produced impressive long-lasting control of blood glucose levels in both Type 1 and Type 2 diabetes in animals. This has been accompanied by, in many cases, a complete correction of the diabetic cardiomyopathy. The oral delivery of vanadium as a vanadate salt in the presence of tea has produced particularly impressive hypoglycemic effects and a restoration of cardiac function. This intriguing approach to the treatment of diabetes and its complications, however, deserves further intense investigation prior to its use as a conventional therapy for diabetic complications due to the unknown long-term effects of vanadium accumulation in the heart and other organs of the body.
Collapse
Affiliation(s)
- Tod A Clark
- Department of Surgery, Faculty of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | | | | | | |
Collapse
|
6
|
Affiliation(s)
- Katja Dralle Mjos
- Medicinal Inorganic Chemistry Group, Department of Chemistry, The University of British Columbia , 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | | |
Collapse
|
7
|
Sebai H, Selmi S, Rtibi K, Souli A, Gharbi N, Sakly M. Lavender (Lavandula stoechas L.) essential oils attenuate hyperglycemia and protect against oxidative stress in alloxan-induced diabetic rats. Lipids Health Dis 2013; 12:189. [PMID: 24373672 PMCID: PMC3880178 DOI: 10.1186/1476-511x-12-189] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 12/21/2013] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND The present study described the phytochemical profile of Lavandula stoechas essential oils, collected in the area of Ain-Draham (North-West of Tunisia), as well as their protective effects against alloxan-induced diabetes and oxidative stress in rat. METHODS Essential oils samples were obtained from the aerial parts of the plant by hydrodistillation and analyzed by GC-MS. Rats were divided into four groups: Healthy Control (HC); Diabetic Control (DC); Healthy + Essential Oils (H + EO) and Diabetic + Essential Oils (D + EO).Antidiabetic and antioxidant activities were evaluated after subacute intraperitoneally injection of Lavandula stoechas essential oils (50 mg/kg b.w., i.p.) to rats during 15 days. RESULTS The principal compounds detected are: D-Fenchone (29.28%), α-pinene (23.18%), Camphor (15.97%), Camphene (7.83%), Eucapur (3.29%), Limonene, (2.71%) Linalool, (2.01%) Endobornyl Acetate (1.03%). The essential oils also contained smaller percentages of Tricyclene, Cymene, Delta-Cadinene, Selina-3,7(11)-diene. Furthermore, we found that Lavandula stoechas essential oils significantly protected against the increase of blood glucose as well as the decrease of antioxidant enzyme activities induced by aloxan treatment. Subacute essential oils treatment induced a decrease of lipoperoxidation as well as an increase of antioxidant enzyme activities. CONCLUSIONS These findings suggested that lavandula stoechas essential oils protected against diabetes and oxidative stress induced by alloxan treatment. These effects are in partly due to its potent antioxidant properties.
Collapse
Affiliation(s)
| | - Slimen Selmi
- Département des Sciences de la Vie, Laboratore de Physiologie Animale, Faculté des Sciences de Tunis, Tunis 1060, Tunisia.
| | | | | | | | | |
Collapse
|
8
|
Fedorova EV, Buryakina AV, Vorobieva NM, Baranova NI. The vanadium compounds: Chemistry, synthesis, insulinomimetic properties. BIOCHEMISTRY MOSCOW-SUPPLEMENT SERIES B-BIOMEDICAL CHEMISTRY 2013. [DOI: 10.1134/s1990750813040021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Hou SZ, Chen SX, Huang S, Jiang DX, Zhou CJ, Chen CQ, Liang YM, Lai XP. The hypoglycemic activity of Lithocarpus polystachyus Rehd. leaves in the experimental hyperglycemic rats. JOURNAL OF ETHNOPHARMACOLOGY 2011; 138:142-149. [PMID: 21924344 DOI: 10.1016/j.jep.2011.08.067] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 08/14/2011] [Accepted: 08/29/2011] [Indexed: 05/31/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Leaves of Lithocarpus polystachyus Rehd. are used for the treatment of disorders such as diabetes, hypertension, and epilepsy in folk medicine of South China. The possible antidiabetic effects of the leaves were investigated in experimental type 2 and type 1 diabetic rats. MATERIALS AND METHODS Type 2 diabetic rats received orally three different extracts of Lithocarpus polystachyus Rehd. leaves for 4 weeks (aqueous extract [ST-1], ethanol extract [ST-2], flavonoid-rich fraction [ST-3]). At the end of the experiment biochemical parameters were tested and livers and pancreases were excised for histological study. After the comparison of the pharmacological test results of the three extracts, the one which showed the best bioactivity was further studied to confirm its antidiabetes effect on both type 2 and type 1 diabetic rats. RESULTS Compared to ST-1 and ST-2, ST-3 had better effects on regulation of blood glucose, glycosylated serum protein, cholesterol, triglyceride, malondialdehyde, superoxide dismutase and attenuation of liver injury in type 2 diabetic rats (p<0.01 or p<0.05). ST-3 administration for four weeks also significantly reduced the fasting serum insulin and C-peptide level and improved the insulin tolerance (p<0.05). In type 1 diabetic rats, ST-3 supplement for three weeks caused significant reduction in fasting blood glucose, total cholesterol, triglyceride, urea nitrogen, creatinine and liver mass, along with significantly inhibiting the decline of insulin level compared to diabetic control (p<0.05 or p<0.01). CONCLUSION The flavonoid-rich fraction of Lithocarpus polystachyus Rehd. leaves (ST-3) had better beneficial effect than that of the ethanol or aqueous extract in experimental diabetic rats, which means that the bioactivity of the herbal leaves is probably due to the presence of flavonoids. The results also strongly suggest that the antidiabetic effect of ST-3 was possibly through multiple mechanisms of action including blood lipid and antioxidant mediation. The results indicated that the aqueous flavonoid-rich fraction of Lithocarpus polystachyus Rehd. leaves possessed significant protective activity in type 2 and type 1 diabetes.
Collapse
Affiliation(s)
- Shao-Zhen Hou
- School of Chinese Pharmaceutical Science, Guangzhou University of Chinese Medicine, University Town, Guangzhou 510006, China
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Lodyga-Chruscinska E, Micera G, Garribba E. Complex Formation in Aqueous Solution and in the Solid State of the Potent Insulin-Enhancing VIVO2+ Compounds Formed by Picolinate and Quinolinate Derivatives. Inorg Chem 2011; 50:883-99. [DOI: 10.1021/ic101475x] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Elzbieta Lodyga-Chruscinska
- Institute of General Food Chemistry, Technical University of Lodz, ul. Stefanowskiego 4/10, PL-90924, Lodz, Poland
| | - Giovanni Micera
- Dipartimento di Chimica e Centro Interdisciplinare per lo Sviluppo della Ricerca Biotecnologica e per lo Studio della Biodiversità della Sardegna, Università di Sassari, Via Vienna 2, I-07100 Sassari, Italy
| | - Eugenio Garribba
- Dipartimento di Chimica e Centro Interdisciplinare per lo Sviluppo della Ricerca Biotecnologica e per lo Studio della Biodiversità della Sardegna, Università di Sassari, Via Vienna 2, I-07100 Sassari, Italy
| |
Collapse
|
11
|
Gorodetskiĭ VK, Tochilkin AI, Beliaeva NF, Kovel'man IR, Korovkin BF. [Synthesis and hypoglycemic activity of bis(L-malato)oxovanadium(IV)]. BIOMEDITSINSKAIA KHIMIIA 2011; 57:133-7. [PMID: 21516785 DOI: 10.18097/pbmc20115701133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In order to create new oral vanadyl organic complexes-based drugs for the treatment of diabetes mellitus biligand vanadyl derivative of L-malic acid (bis(L-malato)oxovanadium(IV) was prepared and its potential as a novel hypoglycemic agent was studied in the streptozotocin-diabetic rats. We show that the oral administration of bis(L-malato)oxovanadium(IV) with drink water significantly reduced glucose concentration in blood and urine, as well as the level of glycated proteins in the streptozotocin-diabetic rats.
Collapse
|
12
|
Islam MN, Kumbhar AA, Kumbhar AS, Zeller M, Butcher RJ, Dusane MB, Joshi BN. Bis(maltolato)vanadium(III)-Polypyridyl Complexes: Synthesis, Characterization, DNA Cleavage, and Insulin Mimetic Activity. Inorg Chem 2010; 49:8237-46. [DOI: 10.1021/ic9025359] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | - Matthias Zeller
- Department of Chemistry, Youngstown State University, Youngstown, Ohio 44555
| | | | - Menakshi Bhat Dusane
- Institute of Bioinformatics and Biotechnology, University of Pune, Pune-411007, India
| | - Bimba N. Joshi
- Institute of Bioinformatics and Biotechnology, University of Pune, Pune-411007, India
| |
Collapse
|
13
|
Antidiabetic effects of sage (Salvia officinalis L.) leaves in normal and streptozotocin-induced diabetic rats. Diabetes & Metabolic Syndrome: Clinical Research & Reviews 2009. [DOI: 10.1016/j.dsx.2008.10.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Roess DA, Smith SML, Winter P, Zhou J, Dou P, Baruah B, Trujillo AM, Levinger NE, Yang X, Barisas BG, Crans DC. Effects of vanadium-containing compounds on membrane lipids and on microdomains used in receptor-mediated signaling. Chem Biodivers 2008; 5:1558-1570. [PMID: 18729092 DOI: 10.1002/cbdv.200890144] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
There is increasing evidence for the involvement of plasma membrane microdomains in insulin receptor function. Moreover, disruption of these structures, which are typically enriched in sphingomyelin and cholesterol, results in insulin resistance. Treatment strategies for insulin resistance include the use of vanadium (V) compounds which have been shown in animal models to enhance insulin responsiveness. One possible mechanism for insulin-enhancing effects might involve direct effects of V compounds on membrane lipid organization. These changes in lipid organization promote the partitioning of insulin receptors and other receptors into membrane microdomains where receptors are optimally functional. To explore this possibility, we have used several strategies involving V complexes such as [VO(2)(dipic)](-) (pyridin-2,6-dicarboxylatodioxovanadium(V)), decavanadate (V(10)O(28)(6-), V(10)), BMOV (bis(maltolato)oxovanadium(IV)), and [VO(saltris)](2) (2-salicylideniminato-2-(hydroxymethyl)-1,3-dihydroxypropane-oxovanadium(V)). Our strategies include an evaluation of interactions between V-containing compounds and model lipid systems, an evaluation of the effects of V compounds on lipid fluidity in erythrocyte membranes, and studies of the effects of V-containing compounds on signaling events initiated by receptors known to use membrane microdomains as signaling platforms.
Collapse
Affiliation(s)
- Deborah A Roess
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523-1872, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Dimo T, Rakotonirina SV, Tan PV, Azay J, Dongo E, Kamtchouing P, Cros G. Effect of Sclerocarya birrea (Anacardiaceae) stem bark methylene chloride/methanol extract on streptozotocin-diabetic rats. JOURNAL OF ETHNOPHARMACOLOGY 2007; 110:434-8. [PMID: 17141993 DOI: 10.1016/j.jep.2006.10.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2005] [Revised: 08/29/2006] [Accepted: 10/12/2006] [Indexed: 05/12/2023]
Abstract
Sclerocarya birrea (Anacardiaceae) is used as a traditional treatment of diabetes in Cameroon. In this study, we investigated the possible antidiabetic effect of the stem bark extract in diabetic rats. Diabetes was induced by intravenous injection of streptozotocin (STZ, 55 mg/kg) to male Wistar rats. Experimental animals (six per group), were treated by oral administration of plant extract (150 and 300 mg/kg body weight) and metformin (500 mg/kg; reference drug) for comparison, during 21 days. The stem bark methanol/methylene chloride extract of Sclerocarya birrea exhibited at termination, a significant reduction in blood glucose and increased plasma insulin levels in diabetic rats. The extract also prevented body weight loss in diabetic rats. The effective dose of the plant extract (300 mg/kg) tended to reduce plasma cholesterol, triglyceride and urea levels toward the normal levels. Four days after diabetes induction, an oral glucose tolerance test (OGTT) was also performed in experimental diabetic rats. The results showed a significant improvement in glucose tolerance in rats treated with Sclerocarya birrea extract. Metformin, a known antidiabetic drug (500 mg/kg), significantly decreased the integrated area under the glucose curve. These data indicate that Sclerocarya birrea treatment may improve glucose homeostasis in STZ-induced diabetes which could be associated with stimulation of insulin secretion.
Collapse
Affiliation(s)
- Théophile Dimo
- Department of Animal Biology and Physiology, University of Yaounde I, P.O. Box 812, Yaounde, Cameroon.
| | | | | | | | | | | | | |
Collapse
|
16
|
Jelikić-Stankov M, Uskoković-Marković S, Holclajtner-Antunović I, Todorović M, Djurdjević P. Compounds of Mo, V and W in biochemistry and their biomedical activity. J Trace Elem Med Biol 2007; 21:8-16. [PMID: 17317520 DOI: 10.1016/j.jtemb.2006.11.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2006] [Accepted: 11/13/2006] [Indexed: 10/23/2022]
Abstract
Molybdenum, vanadium and tungsten compounds are widely applied as analytical reagents for determination of numerous pharmacologically active substances and different biochemical parameters. Recent data from the available literature pointed to a very potent biomedical activity of compounds containing these trace elements. The present paper represents a survey on the structure and chemical properties of these compounds, as well as on their biological activity, mostly based on their interaction with cations of biomolecules, such as phospholipids and proteins. Besides, their potent inhibitory effects on cellular targets, bacterial and viral DNA and RNA polymerases will be discussed, as well. Numerous authors clearly demonstrated the antiviral (especially anti-HIV), anticoagulant and antineoplastic properties of the compounds containing the above trace elements. It has been also shown that these compounds act on some cellular enzymatic systems leading to the normalisation of blood pressure, blood glucose and serum lipid levels. Also, compounds of these trace elements represent potent antiobesity agents and express hepatoprotective and antioxidative stress activity.
Collapse
|
17
|
Garribba E, Micera G, Lodyga-Chruscinska E, Sanna D. Oxovanadium(IV) Complexes with Pyrazinecarboxylic Acids:The Coordinating Properties of Ligands with the (Naromatic, COO–) Donor Set. Eur J Inorg Chem 2006. [DOI: 10.1002/ejic.200600230] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
18
|
Majithiya JB, Balaraman R, Giridhar R, Yadav MR. Effect of bis[curcumino]oxovanadium complex on non-diabetic and streptozotocin-induced diabetic rats. J Trace Elem Med Biol 2005; 18:211-7. [PMID: 15966569 DOI: 10.1016/j.jtemb.2004.12.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The effect of the vanadium complex bis[curcumino]oxovanadium (BCOV) on blood glucose level, serum lipid levels, blood pressure and vascular reactivity were studied in non-diabetic and streptozotocin-induced diabetic (STZ-diabetic) rats and compared to that of vanadyl sulfate. Blood glucose level, serum lipid levels, and blood pressure were significantly increased in STZ-diabetic rats. Vascular reactivity to various agonists such as noradrenaline and acetylcholine were significantly increased in STZ-diabetic rats. Blood glucose and serum lipid levels were restored to normal in STZ-diabetic animals treated with vanadyl sulfate at a concentration of 0.5 mmol/kg/day (p.o.). However, vanadyl sulfate at a concentration of 0.2 mmol/kg/day (p.o.) did not produce any significant change in blood glucose and lipid levels. There was no significant effect of vanadyl sulfate (0.2 or 0.5 mmol/kg/day) treatment on blood pressure and vascular reactivity in STZ-diabetic rats. Vanadyl sulfate significantly reduced the body weight of non-diabetic and STZ-diabetic rats. Moreover, it also caused severe diarrhea in both groups of animals. Treatment with BCOV (0.05, 0.1 and 0.2mmol/kg/day, p.o.) significantly decreased blood glucose level and serum lipids in STZ-diabetic rats. Furthermore, administration of BCOV to STZ-diabetic rats restored the blood pressure and vascular reactivity to agonists to normal. There was no significant change in the body weight of BCOV treated non-diabetic and STZ-diabetic rats. Diarrhea was not observed in both BCOV treated groups. In conclusion, the present study shows that the vanadium complex BCOV has antidiabetic and hypolipedimic effects. In addition, it improves the cardiovascular complications associated with diabetes.
Collapse
Affiliation(s)
- Jayesh B Majithiya
- Pharmacy Department, Faculty of Technology and Engineering, M.S. University of Baroda, Kalabhavan, Baroda-390001, Gujarat, India.
| | | | | | | |
Collapse
|
19
|
Sakurai H, Yasui H, Adachi Y. The therapeutic potential of insulin-mimetic vanadium complexes. Expert Opin Investig Drugs 2003; 12:1189-203. [PMID: 12831353 DOI: 10.1517/13543784.12.7.1189] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Throughout the world, the number of patients suffering from diabetes mellitus (DM) is increasing on a daily basis, probably due to change in lifestyle. DM is mainly classified as either insulin-dependent Type 1 or non-insulin-dependent Type 2, according to the definition of WHO. To treat DM, which has many severe complications, several types of insulin preparations and synthetic drugs for Type 1 and Type 2 DM, respectively, have been developed and are in clinical use. However, there are several problems concerning the insulin preparations and synthetic drugs, such as physical and mental pain due to daily insulin injections and defects involving side effects, respectively. Consequently, a new class of therapeutic agents is anticipated. For this purpose, vanadium-containing complexes are expected to treat or improve both types of DM by using unique characteristics of the transition metal. In this article, the current state of research on insulin-mimetic vanadium complexes are reviewed, with special focus on the paramagnetic vanadyl (+4 oxidation state of vanadium) complexes with different coordination modes. To analyse the blood glucose-lowering effects of the vanadyl complexes, new results on the organ distribution and pharmacokinetic analysis of the vanadyl state in the blood of rats are also described.
Collapse
Affiliation(s)
- Hiromu Sakurai
- Department of Analytical and Bioinorganic Chemistry, Kyoto Pharmaceutical University, 5 Nakauchicho, Misasagi, Yamashinaku, Kyoto 607-8414, Japan.
| | | | | |
Collapse
|
20
|
Elias H, Schwartze-Eidam S, Wannowius KJ. Kinetics and mechanism of ligand substitution in bis(N-alkylsalicylaldiminato)oxovanadium(IV) complexes. Inorg Chem 2003; 42:2878-85. [PMID: 12716179 DOI: 10.1021/ic020682m] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Conventional and stopped-flow spectrophotometry was used to to study the kinetics of ligand substitution in a number of bis(N-alkylsalicylaldiminato)oxovanadium(IV) complexes (=VO(R-X-sal)(2)) by 1,1,1- trifluoropentane-2,4-dione (=Htfpd) in acetone, according to the following reaction: VO(R-X-sal)(2) + 2Htfpd --> VO(tfpd)(2) + 2R-X-salH. The acronym R-X-salH refers to N-alkylsalicylaldimines with substituents X = H, Cl, Br, CH(3), and NO(2) in the 5-position of the salicylaldehyde ring and N-alkyl groups R = n-propyl, isopropyl, phenyl, and neopentyl. Under excess conditions ([Htfpd](0) >> [VO(R-X-sal)(2)](0)), substitution by Htfpd occurs in two observable steps, as characterized by pseudo-first-order rate constants k(obsd(1)) and k(obsd(2)). Both rate constants increase linearly with [Htfpd](0) according to k(obsd(1)) = k(s(1)) + k(1)[Htfpd](0) and k(obsd(2)) = k(s(2)) + k(2)[Htfpd](0), with k(s(1)) and k(s(2)) describing small contributions of solvent-initiated pathways. Depending on the nature of R and X, second-order rate constants k(1) and k(2) lie in the range 0.098-0.87 M(-1) s(-1) (k(1)) and 0.022-0.41 M(-1) s(-1) (k(2)) at 298 K. For ligand substitution in the system VO(n-propyl-sal)(2)/Htfpd, the activation parameters DeltaH++ = 35.8 +/- 2.8 kJ mol(-1) and DeltaS++ = -146 +/- 23 J K(-1) mol(-1) (k(1)) and DeltaH++ = 40.2 +/- 1.3 kJ mol(-1) and DeltaS++ = -142 +/- 11 J K(-1) mol(-1) (k(2)) were obtained. The Lewis acidity of the complexes VO(n-propyl-X-sal)(2) with X = H, Cl, Br, CH(3), and NO(2) was quantified spectrophotometrically by determination of equilibrium constant K(py), describing the formation of the adduct VO(n-propyl-X-sal)(2).pyridine. The adduct VO(tfpd)(2).n-propyl-salH, formed as product in the system VO(n-propyl-sal)(2)/Htfpd, was characterized by its dissociation constant, K(D) = (3.30 +/- 0.10) x 10(-3) M. The mechanism suggested for the two-step substitution process is based on initial formation of the adducts VO(R-X-sal)(2).Htfpd (step 1) and VO(R-X-sal)(tfpd).Htfpd (step 2).
Collapse
Affiliation(s)
- Horst Elias
- Eduard Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Petersenstrasse 18, D-64287 Darmstadt, Germany.
| | | | | |
Collapse
|
21
|
Semiz S, McNeill JH. Oral treatment with vanadium of Zucker fatty rats activates muscle glycogen synthesis and insulin-stimulated protein phosphatase-1 activity. Mol Cell Biochem 2002; 236:123-31. [PMID: 12190110 DOI: 10.1023/a:1016116700632] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Since the glucose-lowering effects of vanadium could be related to increased muscle glycogen synthesis, we examined the in vivo effects of vanadium and insulin treatment on glycogen synthase (GS) activation in Zucker fatty rats. The GS fractional activity (GSFA), protein phosphatase-1 (PP1), and glycogen synthase kinase-3 (GSK-3) activity were determined in fatty and lean rats following treatment with bis(maltolato)oxovanadium(IV) (BMOV) for 3 weeks (0.2 mmol/kg/day) administered in drinking water. Skeletal muscle was freeze-clamped before or following an insulin injection (5 U/kg i.v.). In both lean and fatty rats, muscle GSFA was significantly increased at 15 min following insulin stimulation. Vanadium treatment resulted in decreased insulin levels and improved insulin sensitivity in the fatty rats. Interestingly, this treatment stimulated muscle GSFA by 2-fold (p < 0.05) and increased insulin-stimulated PP1 activity by 77% (p < 0.05) in the fatty rats as compared to untreated rats. Insulin resistance, vanadium and insulin in vivo treatment did not affect muscle GSK-3beta activity in either fatty or lean rats. Therefore, an impaired insulin sensitivity in the Zucker fatty rats was improved following vanadium treatment, resulting in an enhanced muscle glucose metabolism through increased GS and insulin-stimulated PPI activity.
Collapse
Affiliation(s)
- Sabina Semiz
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
22
|
|
23
|
Krosniak M, Zachwieja Z, Filipek B, Zygmunt M, Grybos R. Effect of oxovanadium(IV) complexes on nondiabetic and streptozotocin-diabetic rats. Arch Pharm (Weinheim) 2001; 334:388-92. [PMID: 11852534 DOI: 10.1002/1521-4184(200112)334:12<388::aid-ardp388>3.0.co;2-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The effects of vanadium complexes with organic ligands, [VO(phen)2]SO4.3H2O, [VO(bpy)2]SO4.2H2O, and [VOCl2(Hmcp)2H2O], on blood glucose and plasma lipid levels were studied in nondiabetic and streptozotocin-diabetic rats and compared to that of [VO(mal)2] (the reference compound). The present results provide evidence that the compounds examined possess lower toxicity than [VO(mal)2]. One of the compounds examined, viz. [VO(bpy)2]SO4.2H2O, decreases, statistically significantly, the glucose level and a second one, viz. [VOCl2(Hmcp)2H2O], decreases, also significantly, the total cholesterol level.
Collapse
Affiliation(s)
- M Krosniak
- Department of Food Chemistry and Nutrition, School of Medicine, Jagiellonian University, Medyczna 9, Kraków 30-688, Poland.
| | | | | | | | | |
Collapse
|
24
|
Cam MC, Brownsey RW, McNeill JH. Mechanisms of vanadium action: insulin-mimetic or insulin-enhancing agent? Can J Physiol Pharmacol 2001. [PMID: 11077984 DOI: 10.1139/y00-053] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The demonstration that the trace element vanadium has insulin-like properties in isolated cells and tissues and in vivo has generated considerable enthusiasm for its potential therapeutic value in human diabetes. However, the mechanisms by which vanadium induces its metabolic effects in vivo remain poorly understood, and whether vanadium directly mimics or rather enhances insulin effects is considered in this review. It is clear that vanadium treatment results in the correction of several diabetes-related abnormalities in carbohydrate and lipid metabolism, and in gene expression. However, many of these in vivo insulin-like effects can be ascribed to the reversal of defects that are secondary to hyperglycemia. The observations that the glucose-lowering effect of vanadium depends on the presence of endogenous insulin whereas metabolic homeostasis in control animals appears not to be affected, suggest that vanadium does not act completely independently in vivo, but augments tissue sensitivity to low levels of plasma insulin. Another crucial consideration is one of dose-dependency in that insulin-like effects of vanadium in isolated cells are often demonstrated at high concentrations that are not normally achieved by chronic treatment in vivo and may induce toxic side effects. In addition, vanadium appears to be selective for specific actions of insulin in some tissues while failing to influence others. As the intracellular active forms of vanadium are not precisely defined, the site(s) of action of vanadium in metabolic and signal transduction pathways is still unknown. In this review, we therefore examine the evidence for and against the concept that vanadium is truly an insulin-mimetic agent at low concentrations in vivo. In considering the effects of vanadium on carbohydrate and lipid metabolism, we conclude that vanadium acts not globally, but selectively and by enhancing, rather than by mimicking the effects of insulin in vivo.
Collapse
Affiliation(s)
- M C Cam
- Division of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, The University of British Columbia,Vancouver, Canada
| | | | | |
Collapse
|
25
|
Sakurai H, Sano H, Takino T, Yasui H. An orally active antidiabetic vanadyl complex, bis(1-oxy-2-pyridinethiolato)oxovanadium(IV), with VO(S2O2) coordination mode; in vitro and in vivo evaluations in rats. J Inorg Biochem 2000; 80:99-105. [PMID: 10885469 DOI: 10.1016/s0162-0134(00)00045-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
According to Pearson's HSAB (hard and soft acids and bases) rule, the vanadyl ion is classified as a hard acid. However, vanadyl-cysteine methyl ester and dithiocarbamate complexes with VO(S2N2) and VO(S4) coordination modes, respectively, that contain bonds with a combination of hard acid (VO2+) and soft base (sulfur) have been found to form stable complexes and exhibit insulin-mimetic activities in in vitro and in vivo evaluations. Based on such observations, a purple bis(1-oxy-2-pyridinethiolato)oxovanadium(IV) (VO(OPT)) complex with VO(S2O2) coordination mode was prepared and found to have a strong insulin-mimetic activity in in vitro evaluation, which followed in vivo effectiveness on intraperitoneal injection and oral administration. Then, we examined the real-time ESR analysis of vanadyl species in the blood of live rats given VO(OPT) by use of the blood circulation monitoring-ESR method. The clearance of vanadyl species from the blood in terms of half-life (t(1/2)) was determined as 15 min in VO(OPT)-treated rats, while t(1/2) of VOSO4-treated rats was 5 min, indicating the long-term acting character of VO(OPT). On the basis of the results, VO(OPT) with VO(S2O2) coordination mode is proposed to be a potent orally active insulin-mimetic complex in treating insulin-dependent diabetes mellitus in experimental animals.
Collapse
Affiliation(s)
- H Sakurai
- Department of Analytical and Bioinorganic Chemistry, Kyoto Pharmaceutical University, Japan.
| | | | | | | |
Collapse
|
26
|
Abstract
The chemistry of vanadium compounds that can be taken orally is very timely since a vanadium(IV) compound, KP-102, is currently in clinical trials in humans, and the fact that human studies with inorganic salts have recently been reported. VO(acac)2 and VO(Et-acac)2 (where acac is acetylacetonato and Et-acac is 3-ethyl-2,4-pentanedionato) have long-term in vivo insulin mimetic effects in streptozotocin induced diabetic Wistar rats. Structural characterization of VO(acac)2 and two derivatives, VO(Me-acac)2 and VO(Et-acac)2, in the solid state and solution have begun to delineate the size limits of the insulin-like active species. Oral ammonium dipicolinatooxovanadium(V) is a clinically useful hypoglycemic agent in cats with naturally occurring diabetes mellitus. This compound is particularly interesting since it represents the first time that a well-characterized organic vanadium compound with the vanadium in oxidation state five has been found to be an orally effective hypoglycemic agent in animals.
Collapse
Affiliation(s)
- D C Crans
- Department of Chemistry, College of Natural Sciences, Colorado State University, Fort Collins 80523-1872, USA.
| |
Collapse
|
27
|
Affiliation(s)
- K H Thompson
- Medicinal Inorganic Chemistry Group, Chemistry Department, and Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
| | | | | |
Collapse
|
28
|
Badmaev V, Prakash S, Majeed M. Vanadium: a review of its potential role in the fight against diabetes. J Altern Complement Med 1999; 5:273-91. [PMID: 10381252 DOI: 10.1089/acm.1999.5.273] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The potential role of vanadium in human health is described as a building material of bones and teeth. However, another very interesting and promising application for vanadium in human health emerges from recent studies that evaluated the role of vanadium in the management of diabetes. Vanadium is present in a variety of foods that we commonly eat. Skim milk, lobster, vegetable oils, many vegetables, grains and cereals are rich source of vanadium (>1 ppm). Fruits, meats, fish, butter, cheese, and beverages are relatively poor sources of vanadium. The daily dietary intake in humans has been estimated to vary from 10 microg to 2 mg of elemental vanadium, depending on the environmental sources of this mineral in the air, water, and food of the particular region tested. In animals, vanadium has been shown essential (1-10 microg vanadium per gram of diet). There is only circumstantial evidence that vanadium is essential for humans. However, in doses ranging from 0.083 mmol/d to 0.42 mmol/d, vanadium has shown therapeutic potential in clinical studies with patients of both insulin-dependent diabetes mellitus (IDDM) and noninsulin-dependent diabetes mellitus (NIDDM) type. Although vanadium has a significant biological potential, it has a poor therapeutic index, and attempts have been made to reduce the dose of vanadium required for therapeutic effectiveness. Organic forms of vanadium, as opposed to the inorganic sulfate salt of vanadium, are recognized as safer, more absorbable, and able to deliver a therapeutic effect up to 50% greater than the inorganic forms. The goal is to provide vanadium with better gastrointestinal absorption, and in a form that is best able to produce the desired biological effects. As a result, numerous organic complexes of vanadium have been developed including bis(maltolato)oxovanadium (BMOV), bis(cysteinamide N-octyl)oxovanadium known as Naglivan, bis(pyrrolidine-N-carbodithioato)oxovanadium, vanadyl-cysteine methyl ester, and bis-glycinato oxovanadium (BGOV). The health benefits of vanadium and the safety and efficacy of the available vanadium supplements are discussed in this review.
Collapse
Affiliation(s)
- V Badmaev
- Sabinsa Corporation, Piscataway, New Jersey 08854, USA.
| | | | | |
Collapse
|
29
|
Tawa R, Uchida K, Taniyama J, Fujisawa Y, Fujimoto S, Nagaoka T, Kanamori K, Sakurai H. A new insulin-mimetic vanadyl complex, (N-pyridylmethylaspartate)oxovanadium(IV) with VO(N2O2) coordination mode, and evaluation of its effect on uptake of D-glucose by Ehrlich ascites tumour cells. J Pharm Pharmacol 1999; 51:119-24. [PMID: 10217308 DOI: 10.1211/0022357991772213] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Because it has been confirmed that the vanadyl(IV) ion and its complexes act as insulin mimetics, a new organic vanadyl complex, (N-pyridylmethylaspartate)oxovanadium (VOPASP) with VO(N2O2) coordination mode, was prepared. Development of a simple and rapid in-vitro assay is needed for recognition of potent insulin-mimetic complexes. Treatment of Ehrlich ascites tumour cells with 2-deoxyglucose in the presence of vanadyl sulphate, or other vanadyl complexes with the same coordination mode (VOPASP, bis(picolinate)oxovanadium (VOPA) and bis(6-methyl picolinate)oxovanadium (VOMPA)), in the presence of 2-deoxy-D-[1-3H]glucose ([3H]deoxyglucose), resulted in concentration-dependent uptake of 2-deoxyglucose by the cells. The responses of the cells to the vanadyl complexes were reflected, in part, by results obtained from the free fatty acid-releasing assay using rat adipocytes. These results show that the in-vitro assay with Ehrlich ascites tumour cells provides an accurate and rapid assessment of glucose uptake by the cells. The assay is proposed as a means of predicting the insulin-mimetic activity of the vanadyl complexes and for studying the mechanism of action of the complexes.
Collapse
Affiliation(s)
- R Tawa
- Department of Analytical and Bioinorganic Chemistry, Kyoto Pharmaceutical University, Japan
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Vanadium is an ultratrace element, widely distributed in nature, yet with no presently known specific physiological function in mammals. The apparent role of vanadium in regulation of intracellular signaling, as a cofactor of enzymes essential in energy metabolism, and as a possible therapeutic agent in diabetes is of increasing interest as more and more research reports present evidence of vanadium's potentially unique biological function. In this mini-review, the author summarizes current knowledge of the bioinorganic chemistry of vanadium, the basic features of diabetes mellitus and its metabolic sequelae, and the in vitro and in vivo effects of both inorganic and organically-chelated vanadium compounds. Results of clinical trials to date, as well as kinetic studies of tissue uptake are covered. Examples of ways to enhance the positive effects of vanadium as an oral therapeutic adjunct in diabetic control, while minimizing potential toxicity, are compared with regard to desirable features and possible drawbacks.
Collapse
Affiliation(s)
- K H Thompson
- Medicinal Inorganic Chemistry Group, The University of British Columbia, Vancouver, Canada.
| |
Collapse
|
31
|
Abstract
Insulin resistance of skeletal muscle is fundamental to both syndrome X and its frequent sequel, type II diabetes. In these disorders, excessive exposure of muscle to free fatty acids (FFAs) and their metabolic derivatives appears to play a prominent role in the induction of insulin resistance. Recent evidence suggests that activation of novel isoforms of protein kinase C (PKC) by diacylglycerol may mediate at least part of the adverse impact of FFAs on muscle insulin sensitivity. Vitamin E and fish oil omega-3s, by promoting the activity of diacylglycerol kinase and inhibiting that of phosphatidate phosphohydrolase, should reduce diacylglycerol levels, thus accounting for their documented favorable impact on insulin sensitivity. Thiazolidinediones such as troglitazone, on the other hand, appear to intervene in the signaling pathway whereby PKC down-regulates insulin function. The insulin-sensitizing activity of chromium picolinate may be attributable, at least in part, to increased expression of insulin receptors. In combination with lifestyle modifications which reduce FFA exposure--weight loss, very-low-fat eating, excessive training--these measures can be expected to work in a complementary way to promote increased numbers of insulin receptors that are more functionally competent. As these measures appear to be safe and well-tolerated, they may have utility for the prevention of diabetes as well as its therapy. When they do not prove sufficient to achieve optimal glycemic control, excessive hepatic glucose output and impaired cell response to glucose can be addressed with metformin and sulfonylureas, respectively. The prospects for a rational medical management of type II diabetes, obviating the need for injectible insulin, have never been brighter.
Collapse
|
32
|
Sekar N, Li J, Shechter Y. Vanadium salts as insulin substitutes: mechanisms of action, a scientific and therapeutic tool in diabetes mellitus research. Crit Rev Biochem Mol Biol 1996; 31:339-59. [PMID: 8994801 DOI: 10.3109/10409239609108721] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Vanadium and its compounds exhibit a wide variety of insulin-like effects. In this review, these effects are discussed with respect to the treatment of type I and type II diabetes in animal models, in vitro actions, antineoplastic role, treatment of IDDM and NIDDM patients, toxicity, and the possible mechanism(s) involved. Newly established CytPTK plays a major role in the bioresponses of vanadium. It has a molecular weight of approximately 53 kDa and is active in the presence of Co2+ rather than Mn2+. Among the protein-tyrosine kinase blockers, staurosporine is found to be a potent inhibitor of CytPTK but a poor inhibitor of InsRTK. Vanadium inhibits PTPase activity, and this in turn enhances the activity of protein tyrosine kinases. Our data show that inhibition of PTPase and protein tyrosine kinase activation has a major role in the therapeutic efficacy of vanadium in treating diabetes mellitus.
Collapse
Affiliation(s)
- N Sekar
- Department of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | | | | |
Collapse
|
33
|
McNeill JH, Yuen VG, Dai S, Orvig C. Increased potency of vanadium using organic ligands. Mol Cell Biochem 1995; 153:175-80. [PMID: 8927036 DOI: 10.1007/bf01075935] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The in vivo glucose lowering effect of orally administered inorganic vanadium compounds in diabetes was first reported in our laboratory in 1985. While both vanadate and vanadyl forms of vanadium are orally active, they are still not well absorbed. We have synthesized several organic vanadium compounds and one compound, bis(maltolato)oxovanadium(lV) or BMOV, has been extensively investigated. BMOV proved effective in lowering plasma glucose and lipids in STZ-diabetic rats when administered in drinking water over a 25 week period. The maintenance dose (0.18 mmol/kg/day) was approximately 50% of that required for vanadyl sulfate (VS). Secondary complications of diabetes were prevented by BMOV and no marked toxicity was noted. Oral gavage of STZ-diabetic rats with BMOV also reduced blood glucose levels. The ED50 for BMOV was 0.5 mmol/kg, while for VS the estimated ED50 was 0.9 mmol/kg. BMOV was also effective by the intraperitoneal route in STZ-diabetic rats. The ED50 was 0.08 mmol/kg compared to 0.22 mmol/kg for VS. Some animals treated p.o. or i.p. remained euglycemic for up to 14 weeks. An i.v. infusion of BMOV of 0.05 mmol/kg over a 30 min period reduced plasma glucose levels by 50% while VS was not effective.
Collapse
Affiliation(s)
- J H McNeill
- Faculty of Pharmaceutical Sciences, Vancouver, B.C., Canada
| | | | | | | |
Collapse
|
34
|
Hamel FG, Duckworth WC. The relationship between insulin and vanadium metabolism in insulin target tissues. Mol Cell Biochem 1995; 153:95-102. [PMID: 8927053 DOI: 10.1007/bf01075923] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Vanadium (V) is an orally effective treatment for diabetes, but relatively little is known about the mechanisms controlling its normal metabolism nor the long term pharmacokinetics of oral administration. We have examined the accumulation of V in various organs from rats fed liquid diet for up to 18 days, containing no additional V, 1.6, 80, or 160 mumole/kg/day as either sodium orthovanadate (SOV) or vanadyl sulfate (VS). V content was assayed using a sensitive neutron activation analysis method. The organs of the nonsupplemented animals contained widely varying concentrations (ng of V/g dry tissue weight) with brain < fat < blood < heart < muscle < lung < liver < testes < spleen < kidney. All organs accumulated V in a dose dependent manner. Not all organs showed steady state amount of V at 18 days, so additional rats were fed SOV or VS, switched to control diet, and assayed at 0, 4 and 8 days. From this data we calculated organ half lives of V. Insulin sensitive tissue tissues, such as liver and fat, had shorter half-lives than tissues that are relatively less insulin sensitive, such as spleen, brain and testes. SOV and VS fed rats showed similar patterns, but VS had somewhat shorter t1/2's. Additional studies of old and young rats fed control diet for 45 days show accumulation of V in spleen and testes. These results indicate that vanadium metabolism varies widely among different organs, and that insulin, either directly or indirectly has effects on the retention of vanadium. This may have impact on the therapeutic use of vanadium in Type I diabetics with no insulin, or Type II patients who may be relatively hyperinsulinemic.
Collapse
Affiliation(s)
- F G Hamel
- Veterans Administration Medical Center, Omaha, NE 68105, USA
| | | |
Collapse
|
35
|
Cam MC, Faun J, McNeill JH. Concentration-dependent glucose-lowering effects of oral vanadyl are maintained following treatment withdrawal in streptozotocin-diabetic rats. Metabolism 1995; 44:332-9. [PMID: 7885278 DOI: 10.1016/0026-0495(95)90163-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We have recently reported that treatment with vanadyl sulfate 0.75 mg/mL in drinking water eliminates hyperglycemia in a subset of streptozotocin (STZ)-diabetic rats, with some rats remaining unresponsive to such treatment. In the present study, we demonstrate that unresponsive diabetic animals become normoglycemic when given higher concentrations of vanadyl. Since the subset of rats that require higher concentrations ([HC] 1.25 to 1.50 mg/mL) were found to be more severely diabetic before treatment than those that responded to lower concentrations ([LC] 0.75 to 1.00 mg/mL), the relative amount of residual circulating insulin (LC 36.0 +/- 2.2 v HC 25.6 +/- 3.3 microU/mL) appeared to be a key element in achievement of a normoglycemic effect to a given dose of vanadyl. Similarly, STZ-diabetic animals that responded to euglycemia with a more potent organic vanadyl compound (naglivan) had higher pretreatment plasma insulin levels than unresponsive animals (DT-R) (35.5 +/- 1.9 v 24.2 +/- 3.6 microU/mL). Vanadyl treatment over 10 weeks resulted in a period of normalized glucose levels and glucose tolerance after treatment was stopped. At 20 weeks after withdrawal from treatment with vanadyl sulfate, 13 of 19 animals remained euglycemic, whereas four of seven naglivan-treated animals also maintained normal glucose levels after a 30-week withdrawal period. At 3 weeks after withdrawal, maintenance of normal glucose homeostasis appeared to be independent of altered insulin levels, whereas at 20 weeks an improved insulin secretion, albeit 50% that of age-matched controls both in the fed state and in response to a glucose dose, was sufficient to return plasma glucose levels to the normal range.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M C Cam
- Division of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada
| | | | | |
Collapse
|
36
|
Chapter 17. Recent Advancements in the Discovery and Development of Agents for the Treatment of Diabetes. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 1995. [DOI: 10.1016/s0065-7743(08)60930-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
37
|
Yuen VG, Orvig C, McNeill JH. Comparison of the glucose-lowering properties of vanadyl sulfate and bis(maltolato)oxovanadium(IV) following acute and chronic administration. Can J Physiol Pharmacol 1995; 73:55-64. [PMID: 7600453 DOI: 10.1139/y95-008] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Numerous studies, both in vitro and in vivo, have demonstrated the insulin-mimetic properties of vanadium. Chronic oral administration of inorganic and organic compounds of both vanadium(IV) and vanadium(V) reduced plasma glucose levels and restored plasma lipid levels in streptozotocin-diabetic rats. We investigated the acute effects of both vanadyl sulfate and bis(maltolato)oxovanadium(IV) (BMOV), an organic vanadium compound, on plasma glucose levels by several routes of administration. Previous studies have shown that chronic administration of vanadyl sulfate has resulted in a sustained euglycemia following withdrawal of the drug. This effect was not observed following the chronic administration of BMOV; therefore, we investigated the effect of increasing the concentration of BMOV on the production of a sustained euglycemic response. An acute plasma glucose lowering effect was obtained with both vanadyl sulfate and BMOV when administered as a single dose by either oral gavage or intraperitoneal injection. In those animals that responded to vanadium treatment, plasma glucose levels were within the normal range within 2 to 6 h when given by i.p. injection or within 4 to 8 h when given by oral gavage. BMOV-treated rats that responded to treatment maintained the euglycemic effect for extended periods, ranging from 1 to 14 weeks following administration. However, vanadyl sulfate treated rats reverted to hyperglycemia within 12 to 24 h, depending on the route of administration. Intravenous administration of BMOV was effective in lowering plasma glucose levels only when administered by continuous infusion. An oral dose-response curve showed that BMOV was 2 to 3 times as potent as vanadyl sulfate. This difference in potency was observed with both oral and intraperitoneal administration, which suggests that the increase in potency with BMOV cannot be totally attributed to increased gastrointestinal absorption. Organic chelation of vanadium may facilitate uptake into vanadium-sensitive tissues. Chronic oral administration of higher concentrations of BMOV did not result in a sustained reduction in plasma glucose following withdrawal of the drug. All diabetic rats eventually responded to increased concentrations of BMOV with a restoration of plasma glucose levels to normal values; however, reversion to the hyperglycemic state occurred within 2 days of withdrawal of treatment. Chronic oral administration of BMOV did not produce a sustained euglycemic effect following withdrawal, but acute administration of the compound by either oral gavage or intraperitoneal injection did produce a long-term reduction in plasma glucose levels. Rats treated chronically with vanadyl sulfate remained euglycemic even after the drug was withdrawn. However, acute treatment produced only a transient euglycemia.
Collapse
Affiliation(s)
- V G Yuen
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada
| | | | | |
Collapse
|
38
|
|