1
|
Okano T, Matsuda T. Muscular Tissue Engineering: Capillary-Incorporated Hybrid Muscular Tissues in Vivo Tissue Culture. Cell Transplant 2017; 7:435-42. [PMID: 9786063 DOI: 10.1177/096368979800700502] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Requirements for a functional hybrid muscular tissue are 1) a high density of multinucleated cells, 2) a high degree of cellular orientation, and 3) the presence of a capillary network in the hybrid tissue. Rod-shaped hybrid muscular tissues composed of C2C12 cells (skeletal muscle myoblast cell line) and type I collagen, which were prepared using the centrifugal cell-packing method reported in our previous article, were implanted into nude mice. The grafts, comprised three hybrid tissues (each dimension, diameter, approximately 0.3 mm, length, approximately 1 mm, respectively), were inserted into the subcutaneous spaces on the backs of nude mice. All nude mice that survived the implantation were sacrificed at 1, 2, and 4 wk after the implantation. The grafts were easily distinguishable from the subcutaneous tissues of host mice with implantation time. The grafts increased in size with time after implantation, and capillary networks were formed in the vicinities and on the surfaces of the grafts. One week after implantation, many capillaries formed in the vicinities of the grafts. In the central portion of the graft, few capillaries and necrotic cells were observed. Mononucleated myoblasts were densely distributed and a low number of multinucleated myotubes were scattered. Two weeks after implantation, the formation of a capillary network was induced, resulting in the surfaces of the grafts being covered by capillaries. Numerous elongated multinucleated myotubes and mononucleated myoblasts were densely distributed and numerous capillaries were observed throughout the grafts. Four weeks after implantation a dense capillary network was formed in the vicinities and on the surfaces of the grafts. In the peripheral portion of the graft, multinucleated myotubes in the vicinities of the rich capillaries were observed. Thus, hybrid muscular tissues in vitro preconstructed was remodeled in vivo, which resulted in facilitating the incorporation of capillary networks into the tissues. © 1998 Elsevier Science Inc.
Collapse
Affiliation(s)
- T Okano
- Department of Bioengineering, National Cardiovascular Center Research Institute, Osaka, Suita, Japan
| | | |
Collapse
|
2
|
Okano T, Matsuda T. Hybrid Muscular Tissues: Preparation of Skeletal Muscle Cell-Incorporated Collagen Gels. Cell Transplant 2017; 6:109-18. [PMID: 9142442 DOI: 10.1177/096368979700600204] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We prepared three different types of hybrid muscular tissues in which C2C12 cells (skeletal muscle myoblast cell line) were incorporated in type I collagen gels and then differentiated to myotubes upon culture: a disctype, a polyester mesh-reinforced sheet-type, and a tubular type. A cold mixed solution of the cells and type I collagen was poured into three different types of molds and was kept at 37°C in an incubator to form C2C12 cell-incorporated gels. A polyester mesh was incorporated into a gel to form the sheet-type tissue. The tubular hybrid tissue was prepared by pouring a mixed solution into the interstitial space of a tubular mold consisting of an outer sheath and a mandrel and subsequently culturing after removal of the outer sheath. Hybrid tissues were incubated in a growth medium (20% fetal bovine serum medium) for the first 4 days and then in a differentiation medium (2% horse serum medium) to induce formation of myotubes. Transparent fragile gels shrank with time to form opaque gels, irrespective of type, resulting in the formation of quite dense hybrid tissues. On day 14 of incubation, myoblasts fused and differentiated to form multinucleated myotubes. For a tubular type hybrid tissue, both cells and collagen fiber bundles became circumferentially oriented with incubation time. Periodic mechanical stress loading to a mesh-reinforced hybrid tissue accelerated the cellular orientation along the axis of the stretch. The potential applications for use as living tissue substitutes in damaged and diseased skeletal and cardiac muscle and as vascular grafts are discussed.
Collapse
Affiliation(s)
- T Okano
- Department of Bioengineering, National Cardiovascular Center Research Institute, Osaka, Japan
| | | |
Collapse
|
3
|
Robinson SW, Cho PW, Levitsky HI, Olson JL, Hruban RH, Acker MA, Kessler PD. Arterial Delivery of Genetically Labelled Skeletal Myoblasts to the Murine Heart: Long-Term Survival and Phenotypic Modification of Implanted Myoblasts. Cell Transplant 2017; 5:77-91. [PMID: 8665080 DOI: 10.1177/096368979600500113] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The ability to replace damaged myocardial tissue with new striated muscle would constitute a major advance in the treatment of diseases that irreversibly injure cardiac muscle cells. The creation of focal grafts of skeletal muscle has been reported following the intramural injection of skeletal myoblasts into both normal and injured myocardium. The goals of this study were to determine whether skeletal myoblast-derived cells can be engrafted into the murine heart following arterial delivery. The murine heart was seeded with genetically labeled C2C12 myoblasts introduced into the arterial circulation of the heart via a transventricular injection. A transventricular injection provided access to the coronary and systemic circulations. Implanted cells were characterized using histochemical staining for β-galactosidase, immunofluorescent staining for muscle-specific antigens, and electron microscopy. Initially the injected cells were observed entrapped in myocardial capillaries. One week after injection myoblasts were present in the myocardial interstitium and were largely absent from the myocardial capillary bed. Implanted cells underwent myogenic development, characterized by the expression of a fast-twitch skeletal muscle sarco-endoplasmic reticulum calcium ATPase (SERCA1) and formation of myofilaments. Four months following injection myoblast-derived cells began to express a slow-twitch/cardiac protein, phospholamban, that is normally not expressed by C2C12 cells in vitro. Most surprisingly, regions of close apposition between LacZ labeled cells and native cardiomyocytes contained structures that resembled desmosomes, fascia adherens junctions, and gap junctions. The cardiac gap junction protein, connexin43, was localized to some of the interfaces between implanted cells and cardiomyocytes. Collectively, these findings suggest that arterially delivered myoblasts can be engrafted into the heart, and that prolonged residence in the myocardium may alter the phenotype of these skeletal muscle-derived cells. Further studies are necessary to determine whether arterial delivery of skeletal myoblasts can be developed as treatment for myocardial dysfunction.
Collapse
Affiliation(s)
- S W Robinson
- Peter Belfer Cardiac Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | |
Collapse
|
4
|
Okano T, Matsuda T. Tissue Engineered Skeletal Muscle: Preparation of Highly Dense, Highly Oriented Hybrid Muscular Tissues. Cell Transplant 2017; 7:71-82. [PMID: 9489765 DOI: 10.1177/096368979800700110] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We prepared highly dense, highly oriented hybrid muscular tissues that are composed of C2C12 cells (skeletal muscle myoblast cell line) and type I collagen. A cold mixture of C2C12 cells suspended in DMEM and type I collagen solution was poured into capillary tube molds of two different sizes (inner diameters; 0.90 and 0.53 mm, respectively). One end of each mold was sealed. Upon centrifugation (1000 rpm, 5 min) and subsequent thermal gelation, a rod-shaped gel was obtained. It was cultured in an agarose gel-coated dish for 7 days (first for 3 days in a growth medium and then for 4 days in a differentiation medium), during which time it shrank to become a highly dense tissue. Small-diameter rod-shaped, highly dense cellular assemblages with multinucleated myotubes were formed and only few necrotic cells at the core of the tissue were observed. On the other hand, a ring-shaped tissue prepared using a specially devised agarose gel mold was subjected to cyclic stretching at 60 rpm, resulting in the formation of a highly dense, highly oriented hybrid muscular tissue in which both densely accumulated cells and collagen fiber bundles tended to be aligned in the direction of stretching. The hybrid muscular tissues that were prepared using via sequential procedures of a centrifugal cell packing method and a mechanical stress-loading method became closer to native muscular tissues in terms of cell density and orientation.
Collapse
Affiliation(s)
- T Okano
- Department of Bioengineering, National Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | | |
Collapse
|
5
|
Silva MT, Wensing LA, Brum PC, Câmara NO, Miyabara EH. Impaired structural and functional regeneration of skeletal muscles from β2-adrenoceptor knockout mice. Acta Physiol (Oxf) 2014; 211:617-33. [PMID: 24938737 PMCID: PMC4660878 DOI: 10.1111/apha.12329] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 12/09/2013] [Accepted: 06/12/2014] [Indexed: 12/28/2022]
Abstract
Aims β2-adrenergic stimulation causes beneficial effects on structure and function of regenerating muscles; thus, the β2-adrenoceptor may play an important role in the muscle regenerative process. Here, we investigated the role of the β2-adrenoceptor in skeletal muscle regeneration. Methods Tibialis anterior (TA) muscles from β2-adrenoceptor knockout (β2KO) mice were cryolesioned and analysed after 1, 3, 10 and 21 days. The role of β2-adrenoceptor on regenerating muscles was assessed through the analysis of morphological and contractile aspects, M1 and M2 macrophage profile, cAMP content, and activation of TGF-β signalling elements. Results Regenerating muscles from β2KO mice showed decreased calibre of regenerating myofibres and reduced muscle contractile function at 10 days when compared with those from wild type. The increase in cAMP content in muscles at 10 days post-cryolesion was attenuated in the absence of the β2-adrenoceptor. Furthermore, there was an increase in inflammation and in the number of macrophages in regenerating muscles lacking the β2-adrenoceptor at 3 and 10 days, a predominance of M1 macrophage phenotype, a decrease in TβR-I/Smad2/3 activation, and in the Smad4 expression at 3 days, while akirin1 expression increased at 10 days in muscles from β2KO mice when compared to those from wild type. Conclusions Our results suggest that the β2-adrenoceptor contributes to the regulation of the initial phases of muscle regeneration, especially in the control of macrophage recruitment in regenerating muscle through activation of TβR-I/Smad2/3 and reduction in akirin1 expression. These findings have implications for the future development of better therapeutic approaches to prevent or treat muscle injuries.
Collapse
Affiliation(s)
- M. T. Silva
- Department of Anatomy Institute of Biomedical Sciences University of Sao Paulo Sao Paulo Brazil
| | - L. A. Wensing
- Department of Immunology Institute of Biomedical Sciences University of Sao Paulo Sao Paulo Brazil
| | - P. C. Brum
- Department of Biodynamics School of Physical Education and Sport University of Sao Paulo Sao Paulo Brazil
| | - N. O. Câmara
- Department of Immunology Institute of Biomedical Sciences University of Sao Paulo Sao Paulo Brazil
| | - E. H. Miyabara
- Department of Anatomy Institute of Biomedical Sciences University of Sao Paulo Sao Paulo Brazil
| |
Collapse
|
6
|
Meregalli M, Farini A, Belicchi M, Parolini D, Cassinelli L, Razini P, Sitzia C, Torrente Y. Perspectives of stem cell therapy in Duchenne muscular dystrophy. FEBS J 2013. [DOI: 10.1111/febs.12083] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Mirella Meregalli
- Laboratorio Cellule Staminali; Dipartimento di Fisiopatologia medico-chirurgica e dei Trapianti; Università degli Studi di Milano; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico; Milan; Italy
| | - Andrea Farini
- Laboratorio Cellule Staminali; Dipartimento di Fisiopatologia medico-chirurgica e dei Trapianti; Università degli Studi di Milano; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico; Milan; Italy
| | - Marzia Belicchi
- Laboratorio Cellule Staminali; Dipartimento di Fisiopatologia medico-chirurgica e dei Trapianti; Università degli Studi di Milano; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico; Milan; Italy
| | - Daniele Parolini
- Laboratorio Cellule Staminali; Dipartimento di Fisiopatologia medico-chirurgica e dei Trapianti; Università degli Studi di Milano; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico; Milan; Italy
| | - Letizia Cassinelli
- Laboratorio Cellule Staminali; Dipartimento di Fisiopatologia medico-chirurgica e dei Trapianti; Università degli Studi di Milano; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico; Milan; Italy
| | - Paola Razini
- Laboratorio Cellule Staminali; Dipartimento di Fisiopatologia medico-chirurgica e dei Trapianti; Università degli Studi di Milano; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico; Milan; Italy
| | - Clementina Sitzia
- Laboratorio Cellule Staminali; Dipartimento di Fisiopatologia medico-chirurgica e dei Trapianti; Università degli Studi di Milano; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico; Milan; Italy
| | - Yvan Torrente
- Laboratorio Cellule Staminali; Dipartimento di Fisiopatologia medico-chirurgica e dei Trapianti; Università degli Studi di Milano; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico; Milan; Italy
| |
Collapse
|
7
|
Thakur A, Sengupta R, Matsui H, Lillicrap D, Jones K, Hortelano G. Characterization of viability and proliferation of alginate-poly-L-lysine-alginate encapsulated myoblasts using flow cytometry. J Biomed Mater Res B Appl Biomater 2010; 94:296-304. [PMID: 20586078 DOI: 10.1002/jbm.b.31648] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Genetically modified cells encapsulated in alginate-poly-L-lysine-alginate (APA) are being developed to deliver therapeutic products to treat a variety of diseases. The characterization of the encapsulated cells thus becomes paramount. This study reports a novel method to assess the viability, granularity and proliferation of encapsulated cells based on flow cytometry. The in vitro viability of encapsulated G8 murine myoblasts secreting canine FVIII (cFVIII) measured by flow cytometry was comparable to the traditional trypan blue exclusion method and both correlated with cFVIII secretion levels. In contrast, after implantation into mice, only viability measured by flow cytometry correlated with cFVIII secretion. Further, flow cytometry analysis of encapsulated cells maintained in vitro and in vivo revealed a greater fraction of granular cells compared to free cells, suggesting that encapsulation influences the morphology (cytoplasmic composition) of cells within APA microcapsules. Interestingly, the proliferation study showed that encapsulated cells proliferate faster, on average, and were more heterogeneous in vivo compared to in vitro culture conditions, suggesting that encapsulated cell proliferation is complex and environment-dependent. In conclusion, we show that flow cytometry analysis allows for a more consistent and comprehensive examination of encapsulated cells to aid in the development of cell therapy protocols.
Collapse
Affiliation(s)
- Ajit Thakur
- School of Biomedical Engineering, McMaster University, Hamilton L8N3Z5, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
8
|
Liu Y, Wei H, Wu Z, He F. Gene therapy for rat renal anemia with implantation of erythropoietin-transgenic myoblasts. SCIENCE IN CHINA. SERIES C, LIFE SCIENCES 2008; 42:109-12. [PMID: 18726506 DOI: 10.1007/bf02881756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/1998] [Indexed: 11/24/2022]
Abstract
To investigate whether an erythropoietin (EPO) gene-based therapy could serve as an alternative to the repeated injection of rhEPO in treatment to renal anemia, the genetically modified myoblasts of rats, named Myo/ EPO, were implanted through intramuscular injection to model rats with renal anemia. The hemoglobin (Hb) and hematocrit (HCT) of the rats increased from (92.5 +/-3.0) g/L and 0.29+/-0.04 to the peak values of (103.8 +/-5.0) g/L and 0. 32 +/-0. 04 respectively 14 d after implantation, and sustained the pre-implantation level for 90 d. Otherwise, the control rats implanted with Myo/X, which carried the parent retroviral vector, gradually became severe in anemia. The PCR detection for hEPO cDNA in the rat muscle adjacent to injection sites indicated that the Myo/EPO cells survived for a long period in the muscle of rats. The results primarily demonstrate that myoblast gene transfer of EPO is effective for the treatment of rat renal anemia.
Collapse
Affiliation(s)
- Y Liu
- Beijing Institute of Radiation Medicine, China
| | | | | | | |
Collapse
|
9
|
Abstract
The loss or failure of an organ or tissue is one of the most frequent, devastating, and costly problems in health care. Tissue engineering and regenerative medicine is an emerging interdisciplinary field that applies the principles of biology and engineering to the development of viable substitutes that restore, maintain, or improve the function of human tissues and organs. Tissue engineering science has provided critical new knowledge that will deepen our understanding of the phenotype of an important category of cell types-the muscle cells-and this knowledge may enable meaningful advances in musculoskeletal tissue engineering. There are two principle strategies for the replacement of impaired muscle tissues. One approach uses the application of isolated and differentiated cells (in vivo tissue engineering), using a transport matrix for the cell delivery; the other uses in vitro-designed and pre-fabricated tissue equivalents (in vitro tissue engineering). Future developments and the decision regarding which approach is more promising depend on the elucidation of the relationships among cell growth and differentiation, the three-dimensional environment, the architecture of the cells, and gene expression of the developmental process and the survival of the cells and integration in the host in in vivo experiments. As the techniques of tissue engineering become more sophisticated and as issues such as vascularization and innervation are addressed, the usefulness of these methods for reconstructive surgery may grow significantly.
Collapse
Affiliation(s)
- A D Bach
- Department of Plastic and Hand Surgery, University of Erlangen, Krankenhausstrasse 12, 91054 Erlangen, Germany.
| | | | | | | | | |
Collapse
|
10
|
Ozawa CR, Springer ML, Blau HM. A novel means of drug delivery: myoblast-mediated gene therapy and regulatable retroviral vectors. Annu Rev Pharmacol Toxicol 2000; 40:295-317. [PMID: 10836138 DOI: 10.1146/annurev.pharmtox.40.1.295] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A potentially powerful approach to drug delivery in the treatment of disease involves the use of cells to introduce genes encoding therapeutic proteins into the body. Candidate genes for delivery include those encoding secreted factors that could have broad applications ranging from treatment of inherited single-gene deficiencies to acquired disorders of the vasculature or cancer. Myoblasts, the proliferative cell type of skeletal muscle tissues, are potent tools for stable delivery of a gene of interest into the body, as they become an integral part of the muscle into which they are injected, in close proximity to the circulation. The recent development of improved tetracycline-inducible retroviral vectors allows for fine control of recombinant gene expression levels. The combination of ex vivo gene transfer using myoblasts and regulatable retroviral vectors provides a powerful toolbox with which to develop gene therapies for a number of human diseases.
Collapse
Affiliation(s)
- C R Ozawa
- Department of Molecular Pharmacology, Stanford University School of Medicine, California 94305-5332, USA.
| | | | | |
Collapse
|
11
|
Abstract
Cell fusion is a universal process that occurs during fertilization and in the formation of organs such as muscles, placenta, and bones. Very little is known about the molecular and cellular mechanisms of cell fusion during pattern formation. Here we review the dynamic anatomy of all cell fusions during embryonic and postembryonic development in an organism. Nearly all the cell fates and cell lineages are invariant in the nematode C. elegans and one third of the cells that are born fuse to form 44 syncytia in a reproducible and stereotyped way. To explain the function of cell fusion in organ formation we propose the fusomorphogenetic model as a simple cellular mechanism to efficiently redistribute membranes using a combination of cell fusion and polarized membrane recycling during morphogenesis. Thus, regulated intercellular and intracellular membrane fusion processes may drive elongation of the embryo as well as postembryonic organ formation in C. elegans. Finally, we use the fusomorphogenetic hypothesis to explain the role of cell fusion in the formation of organs like muscles, bones, and placenta in mammals and other species and to speculate on how the intracellular machinery that drive fusomorphogenesis may have evolved.
Collapse
Affiliation(s)
- G Shemer
- Department of Biology, Technion-Israel Institute of Technology, Haifa
| | | |
Collapse
|
12
|
Mohajeri MH, Figlewicz DA, Bohn MC. Intramuscular grafts of myoblasts genetically modified to secrete glial cell line-derived neurotrophic factor prevent motoneuron loss and disease progression in a mouse model of familial amyotrophic lateral sclerosis. Hum Gene Ther 1999; 10:1853-66. [PMID: 10446925 DOI: 10.1089/10430349950017536] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Effects of ex vivo GDNF gene delivery on the degeneration of motoneurons were studied in the G1H transgenic mouse model of familial ALS carrying a human superoxide dismutase (SOD1) with a Gly93Ala mutation (Gurney et al., 1994). Retroviral vectors were made to produce human GDNF or E. coli beta-galactosidase (beta-Gal) by transient transfection of the Phoenix cell line and used to infect primary mouse myoblasts. In 6-week-old G1H mice, 50,000 myoblasts per muscle were injected bilaterally into two hindlimb muscles. Untreated G1H and wild-type mice served as additional controls. At 17 weeks of age, 1 week before sacrifice, these muscles were injected with fluorogold (FG) to retrogradely label spinal motoneurons that maintained axonal projections to the muscles. There were significantly more large FG-labeled alpha motoneurons at 18 weeks in GDNF-treated G1H mice than in untreated and beta-Gal-treated G1H mice. A morphometric study of motoneuron size distribution showed that GDNF shifted the size distribution of motoneurons toward larger cells compared with control G1H mice, although the average size and number of large motoneurons in GDNF-treated mice were less than that in wild-type mice. GDNF also prolonged the onset of disease, delayed the deterioration of performance in tests of motor behavior, and slowed muscle atrophy. Quantitative, real-time RT-PCR and PCR showed persistence of transgene mRNA and DNA in muscle for up to 12 weeks postgrafting. These observations demonstrate that ex vivo GDNF gene therapy in a mouse model of FALS promotes the survival of functional motoneurons, suggesting that a similar approach might delay the progression of neurodegeneration in ALS.
Collapse
Affiliation(s)
- M H Mohajeri
- Department of Pediatrics, Children's Memorial Institute for Education and Research, Northwestern University Medical School, Chicago, IL 60614, USA
| | | | | |
Collapse
|
13
|
Liu C, Dunigan JT, Watkins SC, Bahnson AB, Barranger JA. Long-term expression, systemic delivery, and macrophage uptake of recombinant human glucocerebrosidase in mice transplanted with genetically modified primary myoblasts. Hum Gene Ther 1998; 9:2375-84. [PMID: 9829536 DOI: 10.1089/hum.1998.9.16-2375] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A critical requirement for treatment of Gaucher disease via systemic delivery of recombinant GC is that secreted enzyme be in a form available for specific takeup by macrophages in vivo. In this article we investigated if transplanted primary myoblasts can sustain expression of human GC in vivo and if the secreted transgene product is taken up by macrophages. Transduced primary murine myoblasts were implanted into syngeneic C3H/HeJ mice. The results demonstrated that transplanted mice sustained long-term expression of transferred human GC gene in vivo. Furthermore, human GC is secreted into the circulation of mice transplanted with syngeneic primary myoblasts retrovirally transduced with human GC cDNA. The transplanted primary myoblasts differentiate and fuse with adjacent mature myofibers, and express the transgene product for up to 300 days. Human GC in the circulation reaches levels of 20-280 units/ml of plasma. Immunohistochemical studies of the target organs revealed that the secreted human GC is taken up by macrophages in liver and bone marrow. Immunochemical identification of reisolated myoblasts from transplanted mice showed that MFG-GC-transduced cells also survived as muscle stem cells in the implanted muscle. These results present in encouraging prospect for the treatment of Gaucher disease.
Collapse
Affiliation(s)
- C Liu
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, PA 15261, USA
| | | | | | | | | |
Collapse
|
14
|
Abstract
Human gene therapy is based on the technology of genetic engineering of cells, either through ex vivo or in vivo methods of gene transfer. Many autologous cell types have been successfully modified to deliver recombinant gene products. An alternate form of gene therapy based on genetic modification of non-autologous cells is described. Protection within immuno-isolating devices would allow implantation of well-established recombinant cell lines in different allogeneic hosts, potentially offering a more cost-effective approach to gene therapy. Implantation with microencapsulated fibroblasts and myoblasts has resulted in successful recombinant product delivery in vivo. Correction of disease phenotypes in animal models of human genetic diseases has also been achieved. Cell types such as myoblasts which can differentiate terminally within the implantation device are particularly promising for the future development of this method of gene therapy.
Collapse
Affiliation(s)
- KM Bowie
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
15
|
Ferrari G, Cusella-De Angelis G, Coletta M, Paolucci E, Stornaiuolo A, Cossu G, Mavilio F. Muscle regeneration by bone marrow-derived myogenic progenitors. Science 1998; 279:1528-30. [PMID: 9488650 DOI: 10.1126/science.279.5356.1528] [Citation(s) in RCA: 1865] [Impact Index Per Article: 71.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Growth and repair of skeletal muscle are normally mediated by the satellite cells that surround muscle fibers. In regenerating muscle, however, the number of myogenic precursors exceeds that of resident satellite cells, implying migration or recruitment of undifferentiated progenitors from other sources. Transplantation of genetically marked bone marrow into immunodeficient mice revealed that marrow-derived cells migrate into areas of induced muscle degeneration, undergo myogenic differentiation, and participate in the regeneration of the damaged fibers. Genetically modified, marrow-derived myogenic progenitors could potentially be used to target therapeutic genes to muscle tissue, providing an alternative strategy for treatment of muscular dystrophies.
Collapse
Affiliation(s)
- G Ferrari
- H. San Raffaele-Telethon Institute for Gene Therapy (TIGET), 20132 Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Current human gene therapy relies on genetic modification of the patient's own cells. An alternate non-autologous approach is to use universal cell lines engineered to secrete therapeutic products. Protection with immuno-isolation devices would allow the same recombinant cell line to be used for different patients, thus potentially lowering the cost of treatment. The feasibility of this idea has now been demonstrated in vitro and in vivo. Recombinant gene products with potential therapeutic applications (human growth hormone, factor IX, lysosomal enzymes, adenosine deaminase) have been expressed from genetically modified cells after encapsulation with alginate-poly-L-lysine-alginate or hydroxyethyl methacrylate-methyl methacrylate. We have also demonstrated the feasibility of this idea in vivo. After intraperitoneal implantation, genetically modified mouse Ltk- fibroblasts or C2C12 myoblasts encapsulated in alginate-poly-L-lysine-alginate could deliver recombinant gene products (human growth hormone, human factor IX) to the systemic circulation of mice. The clinical efficacy of this novel approach to gene therapy has now been shown in murine models of human diseases. In the Snell dwarf mice deficient in growth hormone production, implantation of encapsulated mouse myoblasts engineered to secrete mouse growth hormone resulted in increases in body weight, length and organ sizes, some to > 25% above those of the controls. In the Gus/Gus mice suffering from the lysosomal storage disease mucopolysaccharidosis type VII due to deficient beta-glucuronidase, implantation of encapsulated mouse fibroblasts engineered to secrete mouse beta-glucuronidase resulted in delivery of normal levels of the enzyme in the plasma and significant correction of the organ histopathology. Hence, delivery of recombinant gene products through bioartificial devices appears to be a promising strategy for the treatment of genetic diseases.
Collapse
Affiliation(s)
- P L Chang
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
17
|
Yogalingam G, Bielicki J, Hopwood JJ, Anson DS. Feline mucopolysaccharidosis type VI: correction of glycosaminoglycan storage in myoblasts by retrovirus-mediated transfer of the feline N-acetylgalactosamine 4-sulfatase gene. DNA Cell Biol 1997; 16:1189-94. [PMID: 9364929 DOI: 10.1089/dna.1997.16.1189] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Mucopolysaccharidosis type VI (MPS VI) is an autosomal recessive lysosomal storage disorder characterised by the deficiency of N-acetylgalactosamine 4-sulfatase (4S). MPS VI has also been described in the cat. As an initial step toward muscle-mediated gene therapy in the MPS VI cat, we have made two retroviral constructs (pLf4S and pLf4SSN) that transduce the feline 4S gene. Both constructs were designed to express the feline 4S sequence from the viral long terminal repeat promoter. In addition pLf4SSN expressed the neomycin resistance gene from the SV40 early promoter. Amphotrophic virus was produced for each construct and used to transduce feline MPS VI myoblasts. Lf4S- and Lf4SSN-transduced MPS VI feline myoblasts demonstrated correction of glycosaminoglycan storage and contained 55-fold and 3.5-fold elevated levels of 4S activity when compared with normal feline myoblasts respectively. Recombinant feline 4S (rf4S) secreted by Lf4S-transduced MPS VI myoblasts was shown to be endocytosed by MPS VI feline cells via the mannose-6-phosphate receptor system, leading to metabolic correction. The results from this study demonstrate that muscle-mediated gene replacement therapy may be a viable method for achieving circulating levels of recombinant f4S (rf4S) in the MPS VI cat.
Collapse
Affiliation(s)
- G Yogalingam
- Department of Chemical Pathology, Women's and Children's Hospital, North Adelaide, S.A., Australia
| | | | | | | |
Collapse
|
18
|
Chang PL. Nonautologous gene therapy with implantable devices. IEEE ENGINEERING IN MEDICINE AND BIOLOGY MAGAZINE : THE QUARTERLY MAGAZINE OF THE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY 1997; 16:145-50. [PMID: 9313093 DOI: 10.1109/51.620507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- P L Chang
- Department of Pediatrics, McMaster University, Hamilton, Ontario.
| |
Collapse
|
19
|
Zaretsky JZ, Candotti F, Boerkoel C, Adams EM, Yewdell JW, Blaese RM, Plotz PH. Retroviral transfer of acid alpha-glucosidase cDNA to enzyme-deficient myoblasts results in phenotypic spread of the genotypic correction by both secretion and fusion. Hum Gene Ther 1997; 8:1555-63. [PMID: 9322088 DOI: 10.1089/hum.1997.8.13-1555] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Myoblasts have properties that make them suitable vehicles for gene replacement therapy, and lysosomal storage diseases are attractive targets for such therapy. Type II Glycogen Storage Disease, a deficiency of acid alpha-glucosidase (GAA), results in the abnormal accumulation of glycogen in skeletal and cardiac muscle lysosomes. The varied manifestations of the enzyme deficiency in affected patient are ultimately lethal. We used a retroviral vector carrying the cDNA encoding for GAA to replace the enzyme in deficient myoblasts and fibroblasts and analyzed the properties of the transduced cells. The transferred gene was efficiently expressed, and the de novo-synthesized enzyme reached lysosomes where it digested glycogen. In enzyme-deficient myoblasts after transduction, enzyme activity rose to more than 30-fold higher than in normal myoblasts and increased about five-fold more when the cells were allowed to differentiate into myotubes. The transduced cells secreted GAA that was endocytosed via the mannose-6-phosphate receptor into lysosomes of deficient cells and digested glycogen. Moreover, the transduced myoblasts were able to fuse with and provide enzyme for GAA-deficient fusion partners. Thus, the gene-corrected cells, which appear otherwise normal, may ultimately provide phenotypic correction to neighboring GAA-deficient cells by fusion and to distant cells by secretion and uptake mechanisms.
Collapse
Affiliation(s)
- J Z Zaretsky
- Arthritis and Rheumatism Branch, NIAMS, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Miller RG, Sharma KR, Pavlath GK, Gussoni E, Mynhier M, Lanctot AM, Greco CM, Steinman L, Blau HM. Myoblast implantation in Duchenne muscular dystrophy: the San Francisco study. Muscle Nerve 1997; 20:469-78. [PMID: 9121505 DOI: 10.1002/(sici)1097-4598(199704)20:4<469::aid-mus10>3.0.co;2-u] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We evaluated myoblast implantation in 10 boys with Duchenne muscular dystrophy (DMD) and absent dystrophin (age 5-10 years) who were implanted with 100 million myoblasts in the anterior tibial muscle of one leg and placebo in the other. Cyclosporine (5 mg/kg/day) was administered for 7 months. Pre- and postimplantation (after 1 and 6 months) muscle biopsies were analyzed. Force generation (tetanic tension and maximum voluntary contraction) was measured monthly in a double-blind design. There was increased force generation in both legs of all boys, probably due to cyclosporine. Using the polymerase chain reaction, evidence of myoblast survival and dystrophin mRNA expression was obtained in 3 patients after 1 month and in 1 patient after 6 months. These studies suggest a salutary effect of cyclosporine upon muscular force generation in Duchenne muscular dystrophy; however, myoblast implantation was not effective in replacing clinically significant amounts of dystrophin in DMD muscle.
Collapse
Affiliation(s)
- R G Miller
- Department of Neurology, California Pacific Medical Center, San Francisco, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Doberstein SK, Fetter RD, Mehta AY, Goodman CS. Genetic analysis of myoblast fusion: blown fuse is required for progression beyond the prefusion complex. J Cell Biol 1997; 136:1249-61. [PMID: 9087441 PMCID: PMC2132517 DOI: 10.1083/jcb.136.6.1249] [Citation(s) in RCA: 174] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The events of myoblast fusion in Drosophila are dissected here by combining genetic analysis with light and electron microscopy. We describe a new and essential intermediate step in the process, the formation of a prefusion complex consisting of "paired vesicles." These pairs of vesicles from different cells align with each other across apposed plasma membranes. This prefusion complex resolves into dense membrane plaques between apposed cells; these cells then establish cytoplasmic continuity by fusion of small areas of plasma membrane followed by vesiculation of apposed membranes. Different steps in this process are specifically blocked by mutations in four genes required for myoblast fusion. One of these genes, blown fuse, encodes a novel cytoplasmic protein expressed in unfused myoblasts that is essential for progression beyond the prefusion complex stage.
Collapse
Affiliation(s)
- S K Doberstein
- Department of Molecular and Cell Biology, University of California, Berkeley 94720, USA
| | | | | | | |
Collapse
|
22
|
Abstract
We prepared three different types of hybrid muscular tissues in which C2C12 cells (skeletal muscle myoblast cell line) were incorporated in type I collagen gels and then differentiated to myotubes upon culture: a disc-type, a polyester mesh-reinforced sheet-type, and a tubular type. A cold mixed solution of the cells and type I collagen was poured into three different types of molds and was kept at 37 degrees C in an incubator to form C2C12 cell-incorporated gels. A polyester mesh was incorporated into a gel to form the sheet-type tissue. The tubular hybrid tissue was prepared by pouring a mixed solution into the interstitial space of a tubular mold consisting of an outer sheath and a mandrel and subsequently culturing after removal of the outer sheath. Hybrid tissues were incubated in a growth medium (20% fetal bovine serum medium) for the first 4 days and then in a differentiation medium (2% horse serum medium) to induce formation of myotubes. Transparent fragile gels shrank with time to form opaque gels, irrespective of type, resulting in the formation of quite dense hybrid tissues. On day 14 of incubation, myoblasts fused and differentiated to form multinucleated myotubes. For a tubular type hybrid tissue, both cells and collagen fiber bundles became circumferentially oriented with incubation time. Periodic mechanical stress loading to a mesh-reinforced hybrid tissue accelerated the cellular orientation along the axis of the stretch. The potential applications for use as living tissue substitutes in damaged and diseased skeletal and cardiac muscle and as vascular grafts are discussed.
Collapse
|
23
|
Wang X, Zinkel S, Polonsky K, Fuchs E. Transgenic studies with a keratin promoter-driven growth hormone transgene: prospects for gene therapy. Proc Natl Acad Sci U S A 1997; 94:219-26. [PMID: 8990189 PMCID: PMC19291 DOI: 10.1073/pnas.94.1.219] [Citation(s) in RCA: 131] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/1996] [Indexed: 02/03/2023] Open
Abstract
Keratinocytes are potentially appealing vehicles for the delivery of secreted gene products because they can be transferred to human skin by the relatively simple procedure of grafting. Adult human keratinocytes can be efficiently propagated in culture with sufficient proliferative capacity to produce enough epidermis to cover the body surface of an average adult. However, the feasibility of delivering secreted proteins through skin grafting rests upon (i) the strength of the promoter in keratinocytes and (ii) the efficiency of protein transport through the basement membrane of the stratified epithelium and into the bloodstream. In this paper, we use transgenic technology to demonstrate that the activity of the human keratin 14 promoter remains high in adult skin and that keratinocyte-derived human growth hormone (hGH) can be produced, secreted, and transported to the bloodstream of mice with efficiency that is sufficient to exceed by an order of magnitude the circulating hGH concentration in growing children. Transgenic skin grafts from these adults continue to produce and secrete hGH stably, at approximately 1/10 physiological levels in the bloodstream of nontransgenic recipient mice. These studies underscore the utility of the keratin 14 promoter for expressing foreign transgenes in keratinocytes and demonstrate that keratinocytes can be used as effective vehicles for transporting factors to the bloodstream and for eliciting metabolic changes. These findings have important implications for considering the keratinocyte as a possible vehicle for gene therapy.
Collapse
Affiliation(s)
- X Wang
- Howard Hughes Medical Institute, Department of Molecular Genetics, The University of Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
24
|
Kessler PD, Podsakoff GM, Chen X, McQuiston SA, Colosi PC, Matelis LA, Kurtzman GJ, Byrne BJ. Gene delivery to skeletal muscle results in sustained expression and systemic delivery of a therapeutic protein. Proc Natl Acad Sci U S A 1996; 93:14082-7. [PMID: 8943064 PMCID: PMC19498 DOI: 10.1073/pnas.93.24.14082] [Citation(s) in RCA: 473] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/1996] [Accepted: 09/16/1996] [Indexed: 02/03/2023] Open
Abstract
Somatic gene therapy has been proposed as a means to achieve systemic delivery of therapeutic proteins. However, there is limited evidence that current methods of gene delivery can practically achieve this goal. In this study, we demonstrate that, following a single intramuscular administration of a recombinant adeno-associated virus (rAAV) vector containing the beta-galactosidase (AAV-lacZ) gene into adult BALB/c mice, protein expression was detected in myofibers for at least 32 weeks. A single intramuscular administration of an AAV vector containing a gene for human erythropoietin (AAV-Epo) into mice resulted in dose-dependent secretion of erythropoietin and corresponding increases in red blood cell production that persisted for up to 40 weeks. Primary human myotubes transduced in vitro with the AAV-Epo vector also showed dose-dependent production of Epo. These results demonstrate that rAAV vectors are able to transduce skeletal muscle and are capable of achieving sustained expression and systemic delivery of a therapeutic protein following a single intramuscular administration. Gene therapy using AAV vectors may provide a practical strategy for the treatment of inherited and acquired protein deficiencies.
Collapse
Affiliation(s)
- P D Kessler
- Peter Belfer Cardiac Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Delort JP, Capecchi MR. TAXI/UAS: A molecular switch to control expression of genes in vivo. Hum Gene Ther 1996; 7:809-20. [PMID: 8860833 DOI: 10.1089/hum.1996.7.7-809] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Numerous therapies and biological questions could be addressed in mammals by the application of a molecular switch that would allow physicians and/or investigators to turn individual genes on or off during the lifetime of the organism. We have constructed such a switch, composed of three elements: (i) an inducible promoter that is normally absent from mammalian genomes; (ii) a receptor that, when it is bound to an inducer drug, specifically activates transcription from the inducible promoter; and (iii) inducer drugs, such as RU486, whose pharmacological properties in humans and several mammalian species including mouse have been well studied. The molecular switch is functional in transiently and stably transfected cells. Importantly, both the total output and the induction levels of the reporter gene can be finely tuned, with induction levels of over 100-fold being readily attained. Finally, we demonstrate that the molecular switch can be used to regulate a mouse transgene using a gene therapy paradigm. The specificity of the system suggests that it should be useful in the analysis of gene function in transgenic animals and in the design of strategies for human gene therapy.
Collapse
Affiliation(s)
- J P Delort
- Howard Hughes Medical Institute, University of Utah, Salt Lake City 84112, USA
| | | |
Collapse
|
26
|
Svensson EC, Tripathy SK, Leiden JM. Muscle-based gene therapy: realistic possibilities for the future. MOLECULAR MEDICINE TODAY 1996; 2:166-72. [PMID: 8796879 DOI: 10.1016/1357-4310(96)88792-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The past five years have witnessed tremendous growth in the field of gene therapy, with pre-clinical and clinical gene therapy trials for diseases as diverse as cancer, AIDS and atherosclerosis. These studies have utilized many different vectors and target organs in order to achieve therapeutic effects. In this review, we examine the rationale for using skeletal muscle as a target tissue for gene therapy, discuss the wide array of vectors that have been used for muscle-based gene therapy, summarize the disease-targets that have been approached using these techniques, and discuss some of the obstacles that remain to be overcome en route to successful muscle-based human gene therapy.
Collapse
Affiliation(s)
- E C Svensson
- Section of Cardiology, University of Chicago, IL 60637, USA
| | | | | |
Collapse
|
27
|
Simonson GD, Groskreutz DJ, Gorman CM, MacDonald MJ. Synthesis and processing of genetically modified human proinsulin by rat myoblast primary cultures. Hum Gene Ther 1996; 7:71-8. [PMID: 8825870 DOI: 10.1089/hum.1996.7.1-71] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Rat myoblast primary cultures were tested as a model for proinsulin synthesis and processing and unregulated insulin delivery for insulin-dependent diabetes mellitus (IDDM) gene therapy. Three human proinsulin cDNA constructs containing genetically engineered furin endoprotease cleavage sites between the B-chain and C-peptide (IFur) and between the C-peptide and A-chain (IIFur) and/or containing a histidine B10 to aspartic acid point mutation were subcloned into a mammalian expression vector (pCMV) containing the cytomegalovirus (CMV) promoter. The altered cleavage sites enable the insulin to be processed by the ubiquitous endoprotease furin. The histidine B10 to aspartic acid mutation creates a more stable form of insulin leading to an increase in insulin accumulation. Myoblasts transfected with a proinsulin cDNA construct mutated at all three sites (pCMV.IFur.IIFur.B10), a construct with only the furin sites (pCMV.IFur.IIFur), and a construct containing only the mutation at the B10 position (pCMV.B10) accumulated 852 +/- 16, 150 +/- 13, and 883 +/- 39 microU (pro)insulin/ml, respectively, in the culture medium during a 48-hr incubation. (Pro)insulin was detected in the culture medium within 2 hr post-transfection. Significant (pro)insulin release continued for 1 week and gradually diminished over a month. Approximately 50% of the proinsulin released from rat myoblasts transfected with pCMV.IFur.IIFur.B10 was completely processed into mature insulin based on densitometric analysis of autoradiographs of gels containing immunoprecipitated 35S-Cys-labeled (pro)insulin. However, only a trace of the proinsulin encoded by pCMV.B10 was processed. In an isolated rat adipocyte [14C]glucose oxidation assay, insulin released from myoblasts transfected with pCMV.IFur.IIFur.B10 was active biologically, displaying more biological activity than normal human insulin. Plasmid expression was studied by transfecting myoblasts with the beta-galactosidase (beta-Gal) gene in pCMV, allowing them to divide and fuse into multinucleated myotubes, followed by staining for beta-Gal. Approximately 80% of myotubes expressed beta-Gal. The results indicate that proinsulin encoded by genetically modified proinsulin cDNA is processed into mature insulin, which is secreted at high levels, making myoblasts a viable target cell for gene therapy of IDDM.
Collapse
Affiliation(s)
- G D Simonson
- University of Wisconsin Childrens Diabetes Center, Madison 53706, USA
| | | | | | | |
Collapse
|
28
|
Vilquin JT, Wagner E, Kinoshita I, Roy R, Tremblay JP. Successful histocompatible myoblast transplantation in dystrophin-deficient mdx mouse despite the production of antibodies against dystrophin. J Cell Biol 1995; 131:975-88. [PMID: 7490298 PMCID: PMC2200003 DOI: 10.1083/jcb.131.4.975] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Myoblast transplantation has been considered a potential treatment for some muscular disorders. It has proven very successful, however, only in immunodeficient or immunosuppressed mice. In this study, myoblasts from C57BL10J +/+ mice were transplanted, with no immunosuppressive treatment, in the tibialis anterior of fully histocompatible but dystrophin-deficient C57BL10J mdx/mdx mice. One to 9 months after transplantation, the success of the graft was evaluated by immunohistochemistry. All the transplanted mice (n = 24) developed dystrophin-positive fibers following transplantation. Depending on myoblast cultures, transplantations, and time of analysis, the mice presented 15 to 80% of dystrophin-positive fibers in transplanted muscles. These fibers were correctly oriented and they were either from donor or hybrid origin. The dystrophin-positive fibers remained stable up to 9 months. Possible humoral and cellular immune responses were investigated after grafting. Antibodies directed against dystrophin and/or muscle membrane were developed by 58% of the mice as demonstrated by immunohistochemistry and Western blotting. Despite the presence of these antibodies, dystrophin-positive fibers were still present in grafted muscles 9 months after transplantation. Moreover, the muscles did not show massive infiltration by CD4 cells, CD8 cells, or macrophages, as already described in myoblast allotransplantations. This lack of rejection was attributed to the sequestrated nature of dystrophin after fiber formation. These results indicate that myoblast transplantation leads to fiber formation when immunocompetent but fully histocompatible donors and recipients are used and that dystrophin incompatibility alone is not sufficient to induce an immunological rejection reaction.
Collapse
Affiliation(s)
- J T Vilquin
- Centre de Recherche en Neurobiologie de l'Université Laval, Hôpital de l'Enfant-Jésus, Québec, Canada
| | | | | | | | | |
Collapse
|
29
|
al-Hendy A, Hortelano G, Tannenbaum GS, Chang PL. Correction of the growth defect in dwarf mice with nonautologous microencapsulated myoblasts--an alternate approach to somatic gene therapy. Hum Gene Ther 1995; 6:165-75. [PMID: 7734517 DOI: 10.1089/hum.1995.6.2-165] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Most of the currently approved human gene therapy protocols depend on genetic modification of autologous cells. We propose an alternate and potentially more cost-effective approach by implanting genetically modified "universal" cell lines to deliver desired gene products to nonautologous recipients. The recombinant allogeneic cells are protected from rejection after implantation by enclosure within immuno-protective alginate-poly-L-lysine-alginate microcapsules. The clinical efficacy of this strategy is now demonstrated by implanting microencapsulated allogeneic myoblasts engineered to secrete mouse growth hormone into the growth hormone-deficient Snell dwarf mice. The treated mutants attained increases in linear growth, body weights, peripheral organ weights, and tibial growth plate thickness significantly greater than those of the untreated controls. Secondary response to the exogenous growth hormone stimulation also resulted in increased fatty acid metabolism during the first month post-implantation. The microcapsules retrieved after about 6 months of implantation appeared intact. The encapsulated myoblasts retained a viability of > 60% and continued to secrete mouse growth hormone. Thus, implantation of nonautologous recombinant cells corrected partially the pleiomorphic effects of a transcription factor mutation in the Snell dwarf mice and the encapsulated cells remained functional for at least 6 months. This simple method of delivery recombinant gene products in vivo is a benign procedure, obviates the need for patient-specific genetic modification, and is amenable to industrial-scale quality control. It should have wide applications in therapies requiring a systemic continuous supply of recombinant gene products.
Collapse
Affiliation(s)
- A al-Hendy
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | | | | | | |
Collapse
|
30
|
Pavlath GK, Rando TA, Blau HM. Transient immunosuppressive treatment leads to long-term retention of allogeneic myoblasts in hybrid myofibers. J Cell Biol 1994; 127:1923-32. [PMID: 7806570 PMCID: PMC2120274 DOI: 10.1083/jcb.127.6.1923] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Normal and genetically engineered skeletal muscle cells (myoblasts) show promise as drug delivery vehicles and as therapeutic agents for treating muscle degeneration in muscular dystrophies. A limitation is the immune response of the host to the transplanted cells. Allogeneic myoblasts are rapidly rejected unless immunosuppressants are administered. However, continuous immunosuppression is associated with significant toxic side effects. Here we test whether immunosuppressive treatment, administered only transiently after allogeneic myoblast transplantation, allows the long-term survival of the transplanted cells in mice. Two immunosuppressive treatments with different modes of action were used: (a) cyclosporine A (CSA); and (b) monoclonal antibodies to intracellular adhesion molecule-1 and leukocyte function-associated molecule-1. The use of myoblasts genetically engineered to express beta-galactosidase allowed quantitation of the survival of allogeneic myoblasts at different times after cessation of the immunosuppressive treatments. Without host immunosuppression, allogeneic myoblasts were rejected from all host strains tested, although the relative time course differed as expected for low and high responder strains. The allogeneic myoblasts initially fused with host myofibers, but these hybrid cells were later destroyed by the massive immunological response of the host. However, transient immunosuppressive treatment prevented the hybrid myofiber destruction and led to their long-term retention. Even four months after the cessation of treatment, the hybrid myofibers persisted and no inflammatory infiltrate was present in the tissue. Such long-term survival indicates that transient immunosuppression may greatly increase the utility of myoblast transplantation as a therapeutic approach to the treatment of muscle and nonmuscle disease.
Collapse
Affiliation(s)
- G K Pavlath
- Department of Molecular Pharmacology, Stanford University School of Medicine, California 94305-5332
| | | | | |
Collapse
|
31
|
Hughes M, Vassilakos A, Andrews DW, Hortelano G, Belmont JW, Chang PL. Delivery of a secretable adenosine deaminase through microcapsules--a novel approach to somatic gene therapy. Hum Gene Ther 1994; 5:1445-55. [PMID: 7711137 DOI: 10.1089/hum.1994.5.12-1445] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Many current gene therapy protocols require genetic modification of autologous cells. An alternate approach is to use universal recombinant cell lines engineered to secrete in vivo the desired gene products. Enclosing these cells within immunoprotective devices before implantation would prevent rejection of the nonautologous donor cells. To overcome the limitation that not all therapeutic gene products are secreted, we now propose to fuse a signal sequence to the amino terminus of a nonsecreted protein such as human adenosine deaminase (ADA), thus directing the product into a secretory pathway for release from the cells. A fusion gene constructed between the cDNA of the beta-lactamase signal sequence and human ADA expressed a product after in vitro transcription and translation that was immunologically similar to the human protein. Mouse fibroblasts transfected with the fusion gene demonstrated secreted ADA activity that resembled the human cytosolic enzyme in its heat stability, pH optimum, KM, electrophoretic mobility, and immunologic reactivity. Hence, the secreted enzyme expressed from the fusion gene is antigenically and enzymatically similar to the authentic human form. When transfected mouse fibroblasts or myoblasts were enclosed in permselective alginate-poly-L-lysine alginate microcapsules, ADA activity was secreted from the microcapsules and the cells remained viable for over 5 months. Hence, a secretable and functional human ADA has been constructed that can be delivered from recombinant cells within immunoprotective capsules. The success of this strategy provides the prototype for engineering nonsecreted gene products for therapy via this novel method of somatic gene therapy.
Collapse
Affiliation(s)
- M Hughes
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
32
|
Dahler A, Wade RP, Muscat GE, Waters MJ. Expression vectors encoding human growth hormone (hGH) controlled by human muscle-specific promoters: prospects for regulated production of hGH delivered by myoblast transfer or intravenous injection. Gene 1994; 145:305-10. [PMID: 8056348 DOI: 10.1016/0378-1119(94)90025-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We report here the construction of vectors that produce and secrete human growth hormone (hGH) in a muscle-specific manner. The promoter regions of the genes encoding human skeletal alpha-actin (HSA) and troponin I slow (HTnIs) were linked to the hGH-encoding gene. These vectors were designated pHSA2000GH and pHTnIs4200GH, respectively. The HSA and HTnIs promoters linked to the cat gene have previously been shown to be necessary and sufficient for developmentally regulated muscle-specific expression. Furthermore, these promoters function in a fibre-type-specific manner in transgenic animals. Transient and stable transfection analyses with pHSA2000GH and pHTnIs4200GH indicated that: (i) these vectors efficiently synthesized hGH in a muscle-specific manner; (ii) the myogenic master regulatory gene, myoD, a determinant of cell fate, trans-activated expression of hGH in pluripotential non-muscle cells; and (iii) these hGH expression vectors were developmentally regulated during myogenic differentiation. These regulated tissue/fibre-type-specific hGH-containing plasmids are suitable vectors for the delivery and stable production of GH in livestock and GH-deficient hosts by either transgenesis, myoblast transfer or liposome-mediated intravenous injection.
Collapse
Affiliation(s)
- A Dahler
- Physiology and Pharmacology Department, University of Queensland, St. Lucia, Australia
| | | | | | | |
Collapse
|
33
|
Michelson AM. Muscle pattern diversification in Drosophila is determined by the autonomous function of homeotic genes in the embryonic mesoderm. Development 1994; 120:755-68. [PMID: 7600955 DOI: 10.1242/dev.120.4.755] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Muscle diversification in the Drosophila embryo is manifest in a stereotyped array of myofibers that exhibit distinct segment-specific patterns. Here it is shown that the homeotic genes of the Bithorax complex control the identities of abdominal somatic muscles and their precursors by functioning directly in cells of the mesoderm. Whereas Ultrabithorax (Ubx) and abdominal-A (abd-A) have equivalent functions in promoting the formation of particular muscle precursors in the anterior abdominal segments, Abdominal-B (Abd-B) suppresses the development of these same myogenic cells in the posterior region of the abdomen. When expressed in the same mesodermal cells, however, either UBX or ABD-A can override the inhibitory influence of ABD-B, suggesting that these factors may compete in the regulation of common downstream genes. Furthermore, targeted ectopic expression of Ubx or abd-A indicates that these homeotic genes influence muscle cell fates by autonomous action in mesodermal cells. Muscle identity also appears to be sensitive to the level of UBX in myogenic precursors. Finally, these experiments reveal that homeotic cues specific to both the mesoderm and the ectoderm cooperate to specify the pattern of muscle attachment sites.
Collapse
Affiliation(s)
- A M Michelson
- Department of Medicine, Brigham and Women's Hospital, Howard Hughes Medical Institute, Boston, MA 02115, USA
| |
Collapse
|
34
|
Affiliation(s)
- K R Thomas
- Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City 84112
| |
Collapse
|
35
|
Abstract
Embryological studies have identified axial signalling processes that determine somite cells to skeletal myogenesis and control the spatial patterning of muscle differentiation in vertebrate embryos. Gene knockout studies provide evidence that the muscle-specific myoD genes have essential, although partially redundant functions in vivo as regulators of muscle differentiation. However, continuous cell-cell signalling processes also appear to be required to control and maintain the myogenic potential of embryonic progenitor cells, even after activation of myoD genes. The implications of these findings are discussed in relation to cellular mechanisms of muscle regeneration and the use of myoblast transfer as a muscle regeneration therapy.
Collapse
|
36
|
|