1
|
Altas B, Rhee HJ, Ju A, Solís HC, Karaca S, Winchenbach J, Kaplan-Arabaci O, Schwark M, Ambrozkiewicz MC, Lee C, Spieth L, Wieser GL, Chaugule VK, Majoul I, Hassan MA, Goel R, Wojcik SM, Koganezawa N, Hanamura K, Rotin D, Pichler A, Mitkovski M, de Hoz L, Poulopoulos A, Urlaub H, Jahn O, Saher G, Brose N, Rhee J, Kawabe H. Nedd4-2-dependent regulation of astrocytic Kir4.1 and Connexin43 controls neuronal network activity. J Cell Biol 2024; 223:e201902050. [PMID: 38032389 PMCID: PMC10689203 DOI: 10.1083/jcb.201902050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 10/21/2021] [Accepted: 11/02/2023] [Indexed: 12/01/2023] Open
Abstract
Nedd4-2 is an E3 ubiquitin ligase in which missense mutation is related to familial epilepsy, indicating its critical role in regulating neuronal network activity. However, Nedd4-2 substrates involved in neuronal network function have yet to be identified. Using mouse lines lacking Nedd4-1 and Nedd4-2, we identified astrocytic channel proteins inwardly rectifying K+ channel 4.1 (Kir4.1) and Connexin43 as Nedd4-2 substrates. We found that the expression of Kir4.1 and Connexin43 is increased upon conditional deletion of Nedd4-2 in astrocytes, leading to an elevation of astrocytic membrane ion permeability and gap junction activity, with a consequent reduction of γ-oscillatory neuronal network activity. Interestingly, our biochemical data demonstrate that missense mutations found in familial epileptic patients produce gain-of-function of the Nedd4-2 gene product. Our data reveal a process of coordinated astrocytic ion channel proteostasis that controls astrocyte function and astrocyte-dependent neuronal network activity and elucidate a potential mechanism by which aberrant Nedd4-2 function leads to epilepsy.
Collapse
Affiliation(s)
- Bekir Altas
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- International Max Planck Research School and the Göttingen Graduate School for Neurosciences, Biophysics and Molecular Biosciences, Göttingen, Germany
- The Göttingen Graduate School for Neurosciences, Biophysics, and Molecular Biosciences, PhD Program Systems Neuroscience, University of Göttingen, Göttingen, Germany
- Department of Pharmacology and Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hong-Jun Rhee
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Anes Ju
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- The Göttingen Graduate School for Neurosciences, Biophysics, and Molecular Biosciences, PhD Program Systems Neuroscience, University of Göttingen, Göttingen, Germany
| | - Hugo Cruces Solís
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- International Max Planck Research School and the Göttingen Graduate School for Neurosciences, Biophysics and Molecular Biosciences, Göttingen, Germany
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Samir Karaca
- International Max Planck Research School and the Göttingen Graduate School for Neurosciences, Biophysics and Molecular Biosciences, Göttingen, Germany
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Jan Winchenbach
- The Göttingen Graduate School for Neurosciences, Biophysics, and Molecular Biosciences, PhD Program Systems Neuroscience, University of Göttingen, Göttingen, Germany
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Oykum Kaplan-Arabaci
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- The Göttingen Graduate School for Neurosciences, Biophysics, and Molecular Biosciences, PhD Program Molecular Physiology of the Brain, University of Göttingen, Göttingen, Germany
| | - Manuela Schwark
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Mateusz C. Ambrozkiewicz
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- International Max Planck Research School and the Göttingen Graduate School for Neurosciences, Biophysics and Molecular Biosciences, Göttingen, Germany
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - ChungKu Lee
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Lena Spieth
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Georg L. Wieser
- City Campus Light Microscopy Facility, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Viduth K. Chaugule
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Irina Majoul
- Institute of Biology, Center for Structural and Cell Biology in Medicine, University of Lübeck, Lübeck, Germany
| | - Mohamed A. Hassan
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Egypt
| | - Rashi Goel
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Sonja M. Wojcik
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Noriko Koganezawa
- Department of Pharmacology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Kenji Hanamura
- Department of Pharmacology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Daniela Rotin
- The Hospital for Sick Children and University of Toronto, Toronto, Canada
| | - Andrea Pichler
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Miso Mitkovski
- City Campus Light Microscopy Facility, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Livia de Hoz
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Alexandros Poulopoulos
- Department of Pharmacology and Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Bioanalytics, Institute for Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, Göttingen, Germany
| | - Olaf Jahn
- Department of Molecular Neurobiology, Neuroproteomics Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Department of Psychiatry and Psychotherapy, Translational Neuroproteomics Group, University Medical Center Göttingen, Göttingen, Germany
| | - Gesine Saher
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - JeongSeop Rhee
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Hiroshi Kawabe
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Department of Pharmacology, Gunma University Graduate School of Medicine, Maebashi, Japan
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
- Department of Gerontology, Laboratory of Molecular Life Science, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| |
Collapse
|
2
|
Zuchegna C, Porcellini A, Messina S. Redox-sensitive small GTPase H-Ras in murine astrocytes, an in vitro study. Redox Rep 2022; 27:150-157. [PMID: 35822835 PMCID: PMC9291712 DOI: 10.1080/13510002.2022.2094109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Although the protooncogenes small GTPases Ras are redox-sensitive proteins, how they are regulated by redox signaling in the central nervous system (CNS) is still poorly understood. Alteration in redox-sensitive targets by redox signaling may have myriad effects on Ras stability, activity and localization. Redox-mediated changes in astrocytic RAS may contribute to the control of redox homeostasis in the CNS that is connected to the pathogenesis of many diseases. RESULTS AND METHODS Here, we investigated the transient physiological induction, at both transcriptional and translational levels, of small GTPases Ras in response to redox stimulation. Cultured astrocytes were treated with hydrogen peroxide as in bolus addition and relative mRNA levels of murine hras and kras genes were detected by qRT-PCR. We found that de novo transcription of hras mRNA in reactive astrocytes is redox-sensitive and mimics the prototypical redox-sensitive gene iNOS. Protein abundance in combination with protein turnover measurements by cycloheximide-chase experiments revealed distinct translation efficiency, GTP-bound enrichment, and protein turnover rates between the two isoforms H-Ras and K-Ras. CONCLUSION Reports from recent years support a significant role of H-Ras in driving redox processes. Beyond its canonical functions, Ras may impact on the core astrocytic cellular machinery that operates during redox stimulation.
Collapse
Affiliation(s)
- Candida Zuchegna
- Dipartimento di Biologia, Complesso Universitario di Monte Sant'Angelo, Università degli Studi di Napoli “Federico II”, Napoli, Italia
| | - Antonio Porcellini
- Dipartimento di Biologia, Complesso Universitario di Monte Sant'Angelo, Università degli Studi di Napoli “Federico II”, Napoli, Italia
| | - Samantha Messina
- Dipartimento di Scienze, Università degli Studi Roma Tre, Roma, Italia
| |
Collapse
|
3
|
Gross I, Brandt N, Vonk D, Köper F, Wöhlbrand L, Rabus R, Witt M, Heep A, Plösch T, Hipp MS, Bräuer AU. Plasticity-Related Gene 5 Is Expressed in a Late Phase of Neurodifferentiation After Neuronal Cell-Fate Determination. Front Cell Neurosci 2022; 16:797588. [PMID: 35496908 PMCID: PMC9053830 DOI: 10.3389/fncel.2022.797588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 03/17/2022] [Indexed: 12/27/2022] Open
Abstract
During adult neurogenesis, neuronal stem cells differentiate into mature neurons that are functionally integrated into the existing network. One hallmark during the late phase of this neurodifferentiation process is the formation of dendritic spines. These morphological specialized structures form the basis of most excitatory synapses in the brain, and are essential for neuronal communication. Additionally, dendritic spines are affected in neurological disorders, such as Alzheimer’s disease or schizophrenia. However, the mechanisms underlying spinogenesis, as well as spine pathologies, are poorly understood. Plasticity-related Gene 5 (PRG5), a neuronal transmembrane protein, has previously been linked to spinogenesis in vitro. Here, we analyze endogenous expression of the PRG5 protein in different mouse brain areas, as well as on a subcellular level. We found that native PRG5 is expressed dendritically, and in high abundance in areas characterized by their regenerative capacity, such as the hippocampus and the olfactory bulb. During adult neurogenesis, PRG5 is specifically expressed in a late phase after neuronal cell-fate determination associated with dendritic spine formation. On a subcellular level, we found PRG5 not to be localized at the postsynaptic density, but at the base of the synapse. In addition, we showed that PRG5-induced formation of membrane protrusions is independent from neuronal activity, supporting a possible role in the morphology and stabilization of spines.
Collapse
Affiliation(s)
- Isabel Gross
- Research Group Anatomy, School of Medicine and Health Sciences, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
- School of Medicine and Health Sciences, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Nicola Brandt
- Research Group Anatomy, School of Medicine and Health Sciences, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
- School of Medicine and Health Sciences, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Danara Vonk
- Research Group Anatomy, School of Medicine and Health Sciences, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
- School of Medicine and Health Sciences, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Franziska Köper
- Research Group Anatomy, School of Medicine and Health Sciences, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
- School of Medicine and Health Sciences, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
- Perinatal Neurobiology Research Group, School of Medicine and Health Sciences, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Lars Wöhlbrand
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Ralf Rabus
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Martin Witt
- Department of Anatomy, University Medical Center Rostock, Rostock, Germany
| | - Axel Heep
- School of Medicine and Health Sciences, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
- Perinatal Neurobiology Research Group, School of Medicine and Health Sciences, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
- Research Center Neurosensory Science, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Torsten Plösch
- School of Medicine and Health Sciences, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
- Perinatal Neurobiology Research Group, School of Medicine and Health Sciences, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
- Research Center Neurosensory Science, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Mark S. Hipp
- School of Medicine and Health Sciences, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Anja U. Bräuer
- Research Group Anatomy, School of Medicine and Health Sciences, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
- School of Medicine and Health Sciences, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
- Research Center Neurosensory Science, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
- *Correspondence: Anja U. Bräuer,
| |
Collapse
|
4
|
Messina S, De Simone G, Ascenzi P. Cysteine-based regulation of redox-sensitive Ras small GTPases. Redox Biol 2019; 26:101282. [PMID: 31386964 PMCID: PMC6695279 DOI: 10.1016/j.redox.2019.101282] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/21/2019] [Accepted: 07/24/2019] [Indexed: 12/22/2022] Open
Abstract
Reactive oxygen and nitrogen species (ROS and RNS, respectively) activate the redox-sensitive Ras small GTPases. The three canonical genes (HRAS, NRAS, and KRAS) are archetypes of the superfamily of small GTPases and are the most common oncogenes in human cancer. Oncogenic Ras is intimately linked to redox biology, mainly in the context of tumorigenesis. The Ras protein structure is highly conserved, especially in effector-binding regions. Ras small GTPases are redox-sensitive proteins thanks to the presence of the NKCD motif (Asn116-Lys 117-Cys118-Asp119). Notably, the ROS- and RNS-based oxidation of Cys118 affects protein stability, activity, and localization, and protein-protein interactions. Cys residues at positions 80, 181, 184, and 186 may also help modulate these actions. Moreover, oncogenic mutations of Gly12Cys and Gly13Cys may introduce additional oxidative centres and represent actionable drug targets. Here, the pathophysiological involvement of Cys-redox regulation of Ras proteins is reviewed in the context of cancer and heart and brain diseases.
Collapse
Affiliation(s)
- Samantha Messina
- Department of Science, Roma Tre University, Viale Guglielmo Marconi 446, I-00146, Roma, Italy.
| | - Giovanna De Simone
- Department of Science, Roma Tre University, Viale Guglielmo Marconi 446, I-00146, Roma, Italy
| | - Paolo Ascenzi
- Department of Science, Roma Tre University, Viale Guglielmo Marconi 446, I-00146, Roma, Italy
| |
Collapse
|
5
|
Agarwal A, Zhang M, Trembak-Duff I, Unterbarnscheidt T, Radyushkin K, Dibaj P, Martins de Souza D, Boretius S, Brzózka MM, Steffens H, Berning S, Teng Z, Gummert MN, Tantra M, Guest PC, Willig KI, Frahm J, Hell SW, Bahn S, Rossner MJ, Nave KA, Ehrenreich H, Zhang W, Schwab MH. Dysregulated expression of neuregulin-1 by cortical pyramidal neurons disrupts synaptic plasticity. Cell Rep 2014; 8:1130-45. [PMID: 25131210 DOI: 10.1016/j.celrep.2014.07.026] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 04/04/2014] [Accepted: 07/16/2014] [Indexed: 12/17/2022] Open
Abstract
Neuregulin-1 (NRG1) gene variants are associated with increased genetic risk for schizophrenia. It is unclear whether risk haplotypes cause elevated or decreased expression of NRG1 in the brains of schizophrenia patients, given that both findings have been reported from autopsy studies. To study NRG1 functions in vivo, we generated mouse mutants with reduced and elevated NRG1 levels and analyzed the impact on cortical functions. Loss of NRG1 from cortical projection neurons resulted in increased inhibitory neurotransmission, reduced synaptic plasticity, and hypoactivity. Neuronal overexpression of cysteine-rich domain (CRD)-NRG1, the major brain isoform, caused unbalanced excitatory-inhibitory neurotransmission, reduced synaptic plasticity, abnormal spine growth, altered steady-state levels of synaptic plasticity-related proteins, and impaired sensorimotor gating. We conclude that an "optimal" level of NRG1 signaling balances excitatory and inhibitory neurotransmission in the cortex. Our data provide a potential pathomechanism for impaired synaptic plasticity and suggest that human NRG1 risk haplotypes exert a gain-of-function effect.
Collapse
Affiliation(s)
- Amit Agarwal
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21025, USA
| | - Mingyue Zhang
- Laboratory of Molecular Psychiatry, Department of Psychiatry, University of Münster, 48149 Muenster Germany
| | - Irina Trembak-Duff
- Laboratory of Molecular Psychiatry, Department of Psychiatry, University of Münster, 48149 Muenster Germany
| | - Tilmann Unterbarnscheidt
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Konstantin Radyushkin
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Payam Dibaj
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | | | - Susann Boretius
- Biomedizinische NMR Forschungs GmbH, Max Planck Institute of Biophysical Chemistry, 37077 Göttingen, Germany
| | - Magdalena M Brzózka
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Heinz Steffens
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Sebastian Berning
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Zenghui Teng
- Laboratory of Molecular Psychiatry, Department of Psychiatry, University of Münster, 48149 Muenster Germany
| | - Maike N Gummert
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Martesa Tantra
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Peter C Guest
- Institute of Biotechnology, University of Cambridge, Cambridge CB2 1QT, UK
| | - Katrin I Willig
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Jens Frahm
- Biomedizinische NMR Forschungs GmbH, Max Planck Institute of Biophysical Chemistry, 37077 Göttingen, Germany
| | - Stefan W Hell
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Sabine Bahn
- Institute of Biotechnology, University of Cambridge, Cambridge CB2 1QT, UK
| | - Moritz J Rossner
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Hannelore Ehrenreich
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Weiqi Zhang
- Laboratory of Molecular Psychiatry, Department of Psychiatry, University of Münster, 48149 Muenster Germany.
| | - Markus H Schwab
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany.
| |
Collapse
|
6
|
Yamamoto Y, Mochida S, Miyazaki N, Kawai K, Fujikura K, Kurooka T, Iwasaki K, Sakisaka T. Tomosyn inhibits synaptotagmin-1-mediated step of Ca2+-dependent neurotransmitter release through its N-terminal WD40 repeats. J Biol Chem 2010; 285:40943-55. [PMID: 20978127 DOI: 10.1074/jbc.m110.156893] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neurotransmitter release is triggered by Ca(2+) binding to a low affinity Ca(2+) sensor, mostly synaptotagmin-1, which catalyzes SNARE-mediated synaptic vesicle fusion. Tomosyn negatively regulates Ca(2+)-dependent neurotransmitter release by sequestering target SNAREs through the C-terminal VAMP-like domain. In addition to the C terminus, the N-terminal WD40 repeats of tomosyn also have potent inhibitory activity toward Ca(2+)-dependent neurotransmitter release, although the molecular mechanism underlying this effect remains elusive. Here, we show that through its N-terminal WD40 repeats tomosyn directly binds to synaptotagmin-1 in a Ca(2+)-dependent manner. The N-terminal WD40 repeats impaired the activities of synaptotagmin-1 to promote SNARE complex-mediated membrane fusion and to bend the lipid bilayers. Decreased acetylcholine release from N-terminal WD40 repeat-microinjected superior cervical ganglion neurons was relieved by microinjection of the cytoplasmic domain of synaptotagmin-1. These results indicate that, upon direct binding, the N-terminal WD40 repeats negatively regulate the synaptotagmin-1-mediated step of Ca(2+)-dependent neurotransmitter release. Furthermore, we show that synaptotagmin-1 binding enhances the target SNARE-sequestering activity of tomosyn. These results suggest that the interplay between tomosyn and synaptotagmin-1 underlies inhibitory control of Ca(2+)-dependent neurotransmitter release.
Collapse
Affiliation(s)
- Yasunori Yamamoto
- Division of Membrane Dynamics, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Paige JS, Xu G, Stancevic B, Jaffrey SR. Nitrosothiol reactivity profiling identifies S-nitrosylated proteins with unexpected stability. ACTA ACUST UNITED AC 2009; 15:1307-16. [PMID: 19101475 DOI: 10.1016/j.chembiol.2008.10.013] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Revised: 10/21/2008] [Accepted: 10/27/2008] [Indexed: 12/11/2022]
Abstract
Nitric oxide (NO) regulates protein function by S-nitrosylation of cysteine to form nitrosothiols. Nitrosothiols are highly susceptible to nonenzymatic degradation by cytosolic reducing agents. Here we show that although most protein nitrosothiols are rapidly degraded by cytosolic reductants, a small subset form unusually stable S-nitrosylated proteins. Our findings suggest that stable S-nitrosylation reflects a protein conformation change that shields the nitrosothiol. To identify stable protein nitrosothiols, we developed a proteomic method for profiling S-nitrosylation. We examined the stability of over 100 S-nitrosylated proteins, and identified 10 stable nitrosothiols. These proteins remained S-nitrosylated in cells after NO synthesis was inhibited, unlike most S-nitrosylated proteins. Taken together, our data identify a class of NO targets that form stable nitrosothiols in the cell and are likely to mediate the persistent cellular effects of NO.
Collapse
Affiliation(s)
- Jeremy S Paige
- Department of Pharmacology, Weill Medical College, Cornell University, New York, NY 10065, USA
| | | | | | | |
Collapse
|
8
|
Sakisaka T, Yamamoto Y, Mochida S, Nakamura M, Nishikawa K, Ishizaki H, Okamoto-Tanaka M, Miyoshi J, Fujiyoshi Y, Manabe T, Takai Y. Dual inhibition of SNARE complex formation by tomosyn ensures controlled neurotransmitter release. ACTA ACUST UNITED AC 2008; 183:323-37. [PMID: 18936251 PMCID: PMC2568027 DOI: 10.1083/jcb.200805150] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Neurotransmitter release from presynaptic nerve terminals is regulated by soluble NSF attachment protein receptor (SNARE) complex–mediated synaptic vesicle fusion. Tomosyn inhibits SNARE complex formation and neurotransmitter release by sequestering syntaxin-1 through its C-terminal vesicle-associated membrane protein (VAMP)–like domain (VLD). However, in tomosyn-deficient mice, the SNARE complex formation is unexpectedly decreased. In this study, we demonstrate that the N-terminal WD-40 repeat domain of tomosyn catalyzes the oligomerization of the SNARE complex. Microinjection of the tomosyn N-terminal WD-40 repeat domain into neurons prevented stimulated acetylcholine release. Thus, tomosyn inhibits neurotransmitter release by catalyzing oligomerization of the SNARE complex through the N-terminal WD-40 repeat domain in addition to the inhibitory activity of the C-terminal VLD.
Collapse
Affiliation(s)
- Toshiaki Sakisaka
- Division of Membrane Dynamics, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Inoue E, Mochida S, Takagi H, Higa S, Deguchi-Tawarada M, Takao-Rikitsu E, Inoue M, Yao I, Takeuchi K, Kitajima I, Setou M, Ohtsuka T, Takai Y. SAD: a presynaptic kinase associated with synaptic vesicles and the active zone cytomatrix that regulates neurotransmitter release. Neuron 2006; 50:261-75. [PMID: 16630837 DOI: 10.1016/j.neuron.2006.03.018] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2005] [Revised: 09/02/2005] [Accepted: 03/13/2006] [Indexed: 11/25/2022]
Abstract
A serine/threonine kinase SAD-1 in C. elegans regulates synapse development. We report here the isolation and characterization of mammalian orthologs of SAD-1, named SAD-A and SAD-B, which are specifically expressed in the brain. SAD-B is associated with synaptic vesicles and, like the active zone proteins CAST and Bassoon, is tightly associated with the presynaptic cytomatrix in nerve terminals. A short conserved region (SCR) in the COOH-terminus is required for the synaptic localization of SAD-B. Overexpression of SAD-B in cultured rat hippocampal neurons significantly increases the frequency of miniature excitatory postsynaptic current but not its amplitude. Introduction of SCR into presynaptic superior cervical ganglion neurons in culture significantly inhibits evoked synaptic transmission. Moreover, SCR decreases the size of the readily releasable pool measured by applying hypertonic sucrose. Furthermore, SAD-B phosphorylates the active zone protein RIM1 but not Munc13-1. These results suggest that mammalian SAD kinase presynaptically regulates neurotransmitter release.
Collapse
Affiliation(s)
- Eiji Inoue
- KAN Research Institute, Kyoto 600-8815, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Rab3A, a member of the Rab3 small GTP-binding protein (G protein) family, regulates Ca(2+)-dependent exocytosis of neurotransmitter. The cyclical activation and inactivation of Rab3A are essential for the Rab3A action in exocytosis. GDP-Rab3A is activated to GTP-Rab3A by Rab3 GDP/GTP exchange protein (Rab3 GEP), and GTP-Rab3A is inactivated to GDP-Rab3A by Rab3 GTPase-activating protein (Rab3 GAP). We) have found a novel protein, named rabconnectin-3, that is coimmunoprecipitated with Rab3 GEP or GAP from the crude synaptic vesicle fraction of rat brain. Rabconnectin-3 constitutes a subunit structure consisting of alpha and beta subunits and localizes at synaptic vesicles. Overexpression of the C-terminal fragment of rabconnectin-3alpha inhibits Ca(2+)-dependent exocytosis from PC12 cells. We describe the purification method for native rabconnectin-3alpha and -3beta from rat brain and the functional properties of rabconnectin-3alpha in Ca(2+)-dependent exocytosis by use of human growth hormone coexpression assay system of PC12 cells.
Collapse
|
11
|
Nakada N, Hongo S, Ohki T, Maeda A, Takeda M. Molecular characterization of NDRG4/Bdm1 protein isoforms that are differentially regulated during rat brain development. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2002; 135:45-53. [PMID: 11978392 DOI: 10.1016/s0165-3806(02)00303-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We previously reported the identification of a novel gene, Bdm1/NDRG4, that was expressed predominantly in the postnatal rat brain and might possibly play a role in this process. We describe here the characterization of a NDRG4 protein in a developing and maturing rat brain. Antibody raised against glutathione S-transferase (GST)-NDRG4 fusion protein recognized four protein species of 38, 39, 41, and 45 kDa on Western blotting of proteins from differently staged rat brains. The 38-kDa form was revealed after birth, and the amount of this species peaked on postnatal day 15. The 39-kDa form became detectable after postnatal week 6. The 41-kDa form appeared late in embryogenesis, increased by postnatal day 15, and disappeared at postnatal week 6. The 45-kDa form was abundant during the late embryonic period and slightly decreased after birth. Subcellular fractionation of cerebra indicated that the NDRG4 protein was distributed mainly in the mitochondria and endoplasmic reticulum (ER). Detergent solubility assays and protease susceptibility demonstrated that in the ER NDRG4 protein is membrane-associated and luminally oriented. The 45-kDa isoform was induced during NGF-mediated neuronal differentiation of PC12 cells, but not by tunicamycin which causes ER stress. Differential expressions of NDRG4 protein isoforms may be a mechanism for modifying the NDRG4 function and for the formation of a functioning nervous system.
Collapse
Affiliation(s)
- Noriyuki Nakada
- Department of Biochemistry, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | | | | | | | | |
Collapse
|
12
|
Nagano F, Kawabe H, Nakanishi H, Shinohara M, Deguchi-Tawarada M, Takeuchi M, Sasaki T, Takai Y. Rabconnectin-3, a novel protein that binds both GDP/GTP exchange protein and GTPase-activating protein for Rab3 small G protein family. J Biol Chem 2002; 277:9629-32. [PMID: 11809763 DOI: 10.1074/jbc.c100730200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rab3A, a member of the Rab3 small G protein family, regulates Ca(2+)-dependent exocytosis of neurotransmitter. The cyclical activation and inactivation of Rab3A are essential for the Rab3A action in exocytosis. GDP-Rab3A is activated to GTP-Rab3A by Rab3 GDP/GTP exchange protein (Rab3 GEP), and GTP-Rab3A is inactivated to GDP-Rab3A by Rab3 GTPase-activating protein (Rab3 GAP). It remains unknown how or in which step of the multiple exocytosis steps these regulators are activated and inactivated. We isolated here a novel protein that was co-immunoprecipitated with Rab3 GEP and GAP by their respective antibodies from the crude synaptic vesicle fraction of rat brain. The protein, named rabconnectin-3, bound both Rab3 GEP and GAP. The cDNA of rabconnectin-3 was cloned from a human cDNA library and its primary structure was determined. Human rabconnectin-3 consisted of 3,036 amino acids and showed a calculated M(r) of 339,753. It had 12 WD domains. Tissue and subcellular distribution analyses in rat indicated that rabconnectin-3 was abundantly expressed in the brain where it was enriched in the synaptic vesicle fraction. Immunofluorescence and immunoelectron microscopy revealed that rabconnectin-3 was concentrated on synaptic vesicles at synapses. These results indicate that rabconnectin-3 serves as a scaffold molecule for both Rab3 GEP and GAP on synaptic vesicles.
Collapse
Affiliation(s)
- Fumiko Nagano
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine/Faculty of Medicine, Suita 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Holzer M, Gärtner U, Klinz FJ, Narz F, Heumann R, Arendt T. Activation of mitogen-activated protein kinase cascade and phosphorylation of cytoskeletal proteins after neurone-specific activation of p21ras. I. Mitogen-activated protein kinase cascade. Neuroscience 2002; 105:1031-40. [PMID: 11530240 DOI: 10.1016/s0306-4522(01)00245-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Alterations in the phosphorylation state of the microtubule-associated protein tau have been associated with the pathogenesis of neurofibrillary degeneration as well as with a neuroprotective action against apoptotic cell death. Mitogen-activated protein kinases (MAPK) phosphorylate tau protein in vitro but the pathophysiological significance of this tau phosphorylation and its effects on neuronal viability is far from clear. Moreover, an in vivo model of activation of MAPK, a key candidate for in vivo tau phosphorylation, is still lacking. The aim of the present study and the accompanying paper was to establish an animal model of stimulated MAPK and to analyse the consequences on tau phosphorylation and the neuronal cytoskeleton. We took advantage of transgenic mice with neurone-specific expression of activated ras protein (p21H-ras(Val12)). The expression of the transgene in these animals is forced to a subset of neurones by the use of the synapsin I promoter. Activity of B-raf was elevated by 37%, while activity of MAPK (ERK1/ERK2) was increased by 25% associated with a subcellular redistribution from the cytoplasmic to the nuclear compartment. Kinases downstream of MAPK such as p90rsk and glycogen synthase kinase 3beta were only marginally affected. Activity of p70S6 kinase was unaltered. The present model might be useful to study the effects of activation of the MAPK cascade on tau phosphorylation and its cell biological sequelae.
Collapse
Affiliation(s)
- M Holzer
- Paul Flechsig Institute of Brain Research, Department of Neuroanatomy, University of Leipzig, Germany.
| | | | | | | | | | | |
Collapse
|
14
|
Affiliation(s)
- H Nakanishi
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine/Faculty of Medicine, Osaka 565-0871, Japan
| | | |
Collapse
|
15
|
Suzuki T, Mitake S, Murata S. Presence of up-stream and downstream components of a mitogen-activated protein kinase pathway in the PSD of the rat forebrain. Brain Res 1999; 840:36-44. [PMID: 10517950 DOI: 10.1016/s0006-8993(99)01762-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We previously reported the presence of Erk2 type mitogen-activated protein kinase (MAPK) and enrichment of its substrates in the post-synaptic density (PSD) fraction, and suggested a role for MAPK in the synaptic transmission and its modulation [Suzuki, T., Okumura-Noji, K., Nishida, E., ERK2-type mitogen-activated protein kinase (MAPK) and its substrates in post-synaptic density fractions from the rat brain, Neurosci. Res., 22 (1995) 277-285.]. In this paper, synaptic localization of the upstream and downstream components of a MAPK cascade was examined. We found that RSK1, Sos1, N-Shc 66 kDa, N-Shc 52 kDa, and Grb2 were present in the PSD fraction, and cPLA(2) was present in the synaptic plasma membrane fraction. RSK2, Sos2, and N-Shc 46 kDa were not present in the PSD fraction. Post-synaptic localization of RSK1 and Sos1 was confirmed by immunohistochemical examination at the electron microscopic level: the two immunoreactivities were localized in the PSDs, both in the spines and dendrites. These results suggest that all the MAPK cascade components examined were associated with PSD or the synaptic plasma membrane, suggesting the role(s) of the MAPK cascade for synaptic transmission and its regulation at post-synaptic sites.
Collapse
Affiliation(s)
- T Suzuki
- Department of Neuroplasticity, Research Center on Aging and Adaptation, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Japan.
| | | | | |
Collapse
|
16
|
Sakaguchi G, Orita S, Naito A, Maeda M, Igarashi H, Sasaki T, Takai Y. A novel brain-specific isoform of beta spectrin: isolation and its interaction with Munc13. Biochem Biophys Res Commun 1998; 248:846-51. [PMID: 9704016 DOI: 10.1006/bbrc.1998.9067] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Munc13 is a component of the neurotransmitter release machinery which is specifically expressed in brain. Munc13 interacts with Doc2 and syntaxin which are also implicated in the neurotransmitter release process. Here we isolated another Munc13-interacting molecule from a rat brain cDNA library by use of the yeast two-hybrid system, identified it to be a novel type of beta spectrin, and named it beta SpIII sigma 1. beta SpIII sigma 1 was specifically expressed in brain, where it was enriched in the synaptic vesicle and plasma membrane fractions. Because spectrin has been shown to interact with the actin cytoskeleton which is involved in the exocytotic process, the present results suggest that the Munc13-beta SpIII sigma 1 interactions play a role in neurotransmitter release.
Collapse
Affiliation(s)
- G Sakaguchi
- Shionogi Institute for Medical Science, Settsu, Japan
| | | | | | | | | | | | | |
Collapse
|
17
|
Sturani E, Abbondio A, Branduardi P, Ferrari C, Zippel R, Martegani E, Vanoni M, Denis-Donini S. The Ras Guanine nucleotide Exchange Factor CDC25Mm is present at the synaptic junction. Exp Cell Res 1997; 235:117-23. [PMID: 9281359 DOI: 10.1006/excr.1997.3660] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
CDC25Mm, a mouse Ras-Guanine nucleotide Exchange Factor, is specifically expressed as a product of 140 kDa (p140) in the postnatal and adult brain. Immunohistochemical analysis indicates that it is present throughout the brain particularly concentrated in discrete punctate structures. Subcellular fractionation of the mouse brain shows that p140 is present in synaptosomes but not in highly purified synaptic vesicles. Moreover, isolated postsynaptic densities (PSDs) are largely enriched in CDC25Mm. This protein can be phosphorylated by calcium/calmodulin kinase II, the most abundant protein in PSDs. Altogether these results suggest that CDC25Mm is present at synaptic junctions and that it may be involved in synaptic signal transduction leading to Ras activation.
Collapse
Affiliation(s)
- E Sturani
- Department of General Physiology and Biochemistry, Department of Biology, University of Milan, Via Celoria 26, Milano, 20133, Italia
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Suzuki T, Okumura-Noji K, Nishida E. ERK2-type mitogen-activated protein kinase (MAPK) and its substrates in postsynaptic density fractions from the rat brain. Neurosci Res 1995; 22:277-85. [PMID: 7478291 DOI: 10.1016/0168-0102(95)00902-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Mitogen-activated protein kinase (MAPK) and MAPK kinase (MAPKK) were detected by Western blotting in the synaptic fraction prepared from the rat brain. There were two bands immunoreactive to the anti-MAPK antiserum in the soluble, P2, synaptosome, and synaptic plasma membrane fractions. These immunoreactive bands possibly corresponded to extracellular signal-regulated kinase (ERK) 1 and 2 (Boulton et al., 1991b), respectively. Only ERK2 was detected in the postsynaptic density (PSD) fraction. We then surveyed MAPK substrates in the synaptic fractions using purified Xenopus MAPK (ERK2-type MAPK), and found a number of MAPK substrates unique to the PSD fraction. Thus, ERK2 is present in the synapse, especially at the postsynaptic site, and it may play a role(s) in synaptic function via the phosphorylation of synapse-specific substrates. Developmental changes in ERK2 also supported its role in the synapse.
Collapse
Affiliation(s)
- T Suzuki
- Department of Biochemistry, Nagoya City University Medical School, Japan
| | | | | |
Collapse
|
19
|
Urayama O, Murakoshi T, Ikawa Y. K rev-1 protein is abundantly expressed in the rat spinal cord. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1243:446-52. [PMID: 7727520 DOI: 10.1016/0304-4165(94)00174-v] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The K rev-1 gene, which was originally identified as a dominantly functioning tumor suppressor gene inducing a flat revertant of a v-K-ras-transformed NIH 3T3 cell line, was abundantly expressed in the mammalian brain [Kitayama et al. (1989) Cell 56, 77-84]. To investigate where K rev-1 and its family ras proteins are distributed in the central nervous system, we isolated the membrane fractions from several regions of the brain and spinal cord of rats by subcellular fractionation and analyzed those proteins by immunoblot analysis with the specific monoclonal antibodies, K rev-1 protein was detected at the highest level in the spinal cord among areas of the central nervous system which included cerebral cortex, cerebellum, hippocampus, and olfactory bulb. On the other hand, ras proteins were found at similar levels in these regions. Within the spinal cord, K rev-1 and ras proteins were detected at a comparable level in the ventral and dorsal parts, while they were much less in the dorsal root ganglion than in the spinal cord. They showed the differential expression during early postnatal development: K rev-1 protein increased and ras proteins were at relatively high levels. When K rev-1 and ras proteins were examined in synaptosomes from the lumbar spinal cord of newborn rats, most of them were detected not in the synaptic vesicles but in the synaptic plasma membranes. K rev-1 protein as well as ras proteins might be involved in neuronal functions in the spinal cord such as sensory processing and motor control.
Collapse
Affiliation(s)
- O Urayama
- Department of Laboratory Medicine, Akita University School of Medicine, Japan
| | | | | |
Collapse
|
20
|
Affiliation(s)
- T Sasaki
- Department of Molecular Biology and Biochemistry, Osaka University Medical School, Suita, Japan
| | | |
Collapse
|
21
|
Tanaka K, Sasaki T, Takai Y. Purification and properties of recombinant Rho-GDP dissociation inhibitor. Methods Enzymol 1995; 256:41-9. [PMID: 7476454 DOI: 10.1016/0076-6879(95)56008-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- K Tanaka
- Department of Molecular Biology and Biochemistry, Osaka University Medical School, Japan
| | | | | |
Collapse
|
22
|
Inohara S, Kitano Y, Sagami S. Immunohistologic localization of ras p21 in normal, hyperplastic, and neoplastic epidermis. Int J Dermatol 1993; 32:866-9. [PMID: 8125686 DOI: 10.1111/j.1365-4362.1993.tb01400.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Ras p21, a ras oncogene product, plays an important role in tumorigenesis, proliferation, and differentiation in various tissues and cells. METHODS Using a monoclonal antibody raised against ras p21 (RASK 4), localization of ras p21 in normal epidermis and involved epidermis of various skin diseases was examined immunohistologically. RESULTS Ras p21 was not present in basal cells of normal epidermis or basaloid cells of basal cell epithelioma but was found almost evenly in the cytoplasm of squamous cells and granular cells. This suggests that ras p21 is concerned with differentiation of epidermal cells. The mode of distribution of ras p21 differed from one cell to another in epidermal cells that turned to malignancy. The distribution was uneven and irregular in the tumorous region on the whole. CONCLUSIONS This result might possibly represent abnormal differentiation of epidermal cells that turned to malignancy, deviating from the regular mode of the distribution of ras p21, which is necessary for normal differentiation.
Collapse
Affiliation(s)
- S Inohara
- Department of Dermatology, Hyogo College of Medicine, Nishinomiya, Japan
| | | | | |
Collapse
|
23
|
Murakoshi T, Hamasaki H, Ikawa Y, Urayama O. Expression of Krev-1 and c-H-ras proto-oncogenes in the rat spinal cord and the effects of noxious stimulation. REGULATORY PEPTIDES 1993; 46:370-2. [PMID: 8210500 DOI: 10.1016/0167-0115(93)90089-q] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- T Murakoshi
- Department of Pharmacology, Faculty of Medicine, Tokyo Medical and Dental University, Japan
| | | | | | | |
Collapse
|
24
|
Zoccarato F, Valente M, Alexandre A. Identification of an NADH plus iron dependent, Ca2+ activated hydrogen peroxide production in synaptosomes. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1176:208-14. [PMID: 8385996 DOI: 10.1016/0167-4889(93)90046-r] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The addition of microM Ca2+ to synaptosomes incubated in the presence of EGTA and NADH activates a slow production of H2O2, which is promptly inhibited by excess EGTA and reactivated by Ca2+. The H2O2 output is inhibited by the Fe chelator deferoxamine. Higher Ca(2+)-dependent H2O2 productions are induced in the presence of added FeCl3 in the absence of lipid peroxidation. The apparent Km for Fe is 28 microM. NADH is oxidized parallel to the production of H2O2 (NADH/H2O2 = 0.82 +/- 0.1). If NADH is omitted, some H2O2 is still generated, with electrons from ferrocytochrome c; in these conditions the inhibition by excess EGTA develops slowly being completed only after some minutes. The semimaximal activation of the H2O2 production is obtained at 1-1.2 microM free Ca2+. Millimolar Ca2+ is inhibitory. After treatment with digitonin, the H2O2 production increases by 40-50%. This 'internal' H2O2 probably corresponds to the previously described Ca(2+)-ionophore-induced H2O2 generation which is observable after glutathione depletion. In no case could a production of O2- be monitored. All the synaptosomal Ca(2+)-Fe oxidase activity is recovered in the plasma membrane fractions. NADH provides most of the reducing equivalents in the heavier fraction, which is the richest in postsynaptic components. A significant proportion of the H2O2 production utilizes electrons from cytochrome c in the lighter plasma membrane fractions.
Collapse
Affiliation(s)
- F Zoccarato
- Department of Biological Chemistry, University of Padova, Italy
| | | | | |
Collapse
|
25
|
Birnberg N, Stork P, Hemmick L. Expression of the c-Harvey ras oncogene alters peptide synthesis in the neurosecretory cell line AtT20. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)49557-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
26
|
Kuno T, Mukai H, Ito A, Chang CD, Kishima K, Saito N, Tanaka C. Distinct cellular expression of calcineurin A alpha and A beta in rat brain. J Neurochem 1992; 58:1643-51. [PMID: 1313851 DOI: 10.1111/j.1471-4159.1992.tb10036.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Specific polyclonal antibodies that distinguish the two distinct isoforms of the catalytic subunit of calmodulin-dependent protein phosphatase, calcineurin A alpha and A beta, were prepared, and the distribution of calcineurin A alpha and A beta in rat brain was studied using immunochemical and immunocytochemical techniques. Immunochemical measurement revealed that the regional distributions of the two isoforms differed and that A alpha was more abundant than A beta in the rat brain. The subcellular distribution patterns of both isoforms were similar. Both isoforms were highly enriched in cytosolic fractions, including the synaptosomal cytosol. Immunocytochemical analysis revealed that both A alpha and A beta immunoreactivities differed in regional and cellular localizations. These different patterns of expression suggest that the two isoforms of calcineurin A may each have specific functions in modulating neuronal activity in particular cell types.
Collapse
Affiliation(s)
- T Kuno
- Department of Pharmacology, Kobe University School of Medicine, Japan
| | | | | | | | | | | | | |
Collapse
|
27
|
Takai Y, Kaibuchi K, Kikuchi A, Kawata M. Small GTP-binding proteins. INTERNATIONAL REVIEW OF CYTOLOGY 1992; 133:187-230. [PMID: 1577587 DOI: 10.1016/s0074-7696(08)61861-6] [Citation(s) in RCA: 275] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Y Takai
- Department of Biochemistry, Kobe University School of Medicine, Japan
| | | | | | | |
Collapse
|
28
|
Hata Y, Kaibuchi K, Kawamura S, Hiroyoshi M, Shirataki H, Takai Y. Enhancement of the actions of smg p21 GDP/GTP exchange protein by the protein kinase A-catalyzed phosphorylation of smg p21. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)38155-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
29
|
Sahyoun N, McDonald OB, Farrell F, Lapetina EG. Phosphorylation of a Ras-related GTP-binding protein, Rap-1b, by a neuronal Ca2+/calmodulin-dependent protein kinase, CaM kinase Gr. Proc Natl Acad Sci U S A 1991; 88:2643-7. [PMID: 1901412 PMCID: PMC51294 DOI: 10.1073/pnas.88.7.2643] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A neuron-specific Ca2+/calmodulin-dependent protein kinase, CaM kinase Gr, phosphorylates selectively a Ras-related GTP-binding protein (Rap-1b) that is enriched in brain tissue. The phosphorylation reaction achieves a stoichiometry of about 1 and involves a serine residue near the carboxyl terminus of the substrate. Both CaM kinase Gr and cAMP-dependent protein kinase, but not CaM kinase II, phosphorylate identical or contiguous serine residues in Rap-1b. The rate of phosphorylation of Rap-1b by CaM kinase Gr is enhanced following autophosphorylation of the protein kinase. Other low molecular weight GTP-binding proteins belonging to the Ras superfamily, including Rab-3A, Rap-2b, and c-Ha-ras p21, are not phosphorylated by CaM kinase Gr. The phosphorylation of Rap-1b itself can be reversed by an endogenous brain phosphoprotein phosphatase. These observations provide a potential connection between a neuronal Ca2(+)-signaling pathway and a specific low molecular weight GTP-binding protein that may regulate neuronal transmembrane signaling, vesicle transport, or neurotransmitter release.
Collapse
Affiliation(s)
- N Sahyoun
- Wellcome Research Laboratories, Research Triangle Park, NC 27709
| | | | | | | |
Collapse
|
30
|
Kawamura S, Kaibuchi K, Hiroyoshi M, Hata Y, Takai Y. Stoichiometric interaction of smg p21 with its GDP/GTP exchange protein and its novel action to regulate the translocation of smg p21 between membrane and cytoplasm. Biochem Biophys Res Commun 1991; 174:1095-102. [PMID: 1900001 DOI: 10.1016/0006-291x(91)91533-i] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We have previously purified a GDP/GTP exchange protein for smg p21A and -B, members of a ras p21/ras p21-like small GTP-binding protein superfamily. This regulatory protein, named smg p21 GDP dissociation stimulator (GDS), stimulates the dissociation of both GDP and GTP from and the subsequent binding of both GDP and GTP to smg p21s. We show here that smg p21 GDS forms a complex with both the GDP- and GTP-bound forms of smg p21B at a molar ratio of about 1:1. Both the GDP- and GTP-bound forms of smg p21B bound to membranes. smg p21 GDS inhibited this binding and moreover induced the dissociation of the prebound smg p21B from the membranes. These results indicate that smg p21 GDS stoichiometrically interacts with smg p21B and thereby regulates its GDP/GTP exchange reaction and its translocation between membranes and cytoplasm.
Collapse
Affiliation(s)
- S Kawamura
- Department of Biochemistry, Kobe University School of Medicine, Japan
| | | | | | | | | |
Collapse
|
31
|
Role of the C-terminal region of smg p21, a ras p21-like small GTP-binding protein, in membrane and smg p21 GDP/GTP exchange protein interactions. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)49941-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
32
|
Motoike T, Sano K, Tsuneishi S, Nakamura H, Takai Y. Expression of smg p25A, a ras p21-like small GTP-binding protein, during postnatal development of rat cerebellum. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1990; 57:279-89. [PMID: 2127384 DOI: 10.1016/0165-3806(90)90054-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Changes in expression and localization of smg p25A, a ras p21-like small GTP-binding protein, in developing rat brain were analyzed in comparison with those of synaptophysin, a well-known synaptic vesicle-specific protein. The smg 25A mRNA was detected in whole brain of rat fetus at 14 days of gestation and its level was increased along with the age and reached the maximum level at postnatal day (P) 20. In postnatal cerebellum, the smg25A mRNA level was also increased age-dependently and the maximum level was observed at P30. Immunoblot analysis with an anti-smg p25A monoclonal antibody (MAb SG-11-7) and an anti-synaptophysin monoclonal antibody (SY 38) showed that expression of both smg p25A and synaptophysin was increased age-dependently in postnatal rat cerebellum. By immunofluorescent cytochemical study with the anti-smg p25A antibody, bright fluorescence was observed in the molecular layer of cerebellum and it was increased in accordance with the cerebellar development. In early postnatal cerebellum, the perikarya of Purkinje cells and the white matter were brightly stained with the antibody, but the fluorescence of these portions was faint in adult cerebellum. The anti-synaptophysin monoclonal antibody also stained the molecular layer of cerebellum but the perikarya of Purkinje cells and the white matter had only a weak immunoreactivity with the antibody irrespective of the age. These results indicate that smg p25A is predominantly present in the nerve terminals and that its amount is increased along with the development of postnatal rat cerebellum. Our results also suggest that smg p25A and synaptophysin have the different kinetics of synthesis, transport, and/or turnover in developing rat cerebellum.
Collapse
Affiliation(s)
- T Motoike
- Department of Pediatrics, Kobe University School of Medicine, Japan
| | | | | | | | | |
Collapse
|
33
|
Mochly-Rosen D, Gordon AS. GTP-binding proteins are restricted to signal transduction sites. Biochem Biophys Res Commun 1990; 173:388-95. [PMID: 2124113 DOI: 10.1016/s0006-291x(05)81070-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We have used the Torpedo electric organ to study GTP-binding protein localization since functionally distinct membrane fractions can be isolated from this tissue. Postsynaptic membranes from the innervated face and membranes from the non-innervated face of the electrocyte, as well as presynaptic membranes from the innervating nerve, can be isolated. alpha s was restricted to the innervated face of the postsynaptic cell; alpha i, alpha o, and ras were found only in the presynaptic membrane fraction of the innervating nerve. 21 and 25 kDa GTP-binding proteins were present in all the membrane fractions. These results suggest that specific GTP-binding proteins are differentially restricted to membrane areas specialized in signal transduction.
Collapse
Affiliation(s)
- D Mochly-Rosen
- Department of Neurology, University of California, San Francisco General Hospital 94110
| | | |
Collapse
|
34
|
Klinz FJ. Development-dependent expression of low molecular weight GTP-binding proteins in embryonic chicken brain. Biochem Biophys Res Commun 1990; 172:633-7. [PMID: 2122895 DOI: 10.1016/0006-291x(90)90721-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Expression of low molecular weight GTP-binding proteins in particulate and soluble fractions of embryonic chicken brain was analysed by SDS-PAGE and incubation of blotted proteins with [alpha-32P]GTP. At least seven GTP-binding proteins with apparent molecular weights between 21 and 29 kDa were demonstrated by this technique in membranes and microsomal fractions, whereas only four species were present in the cytosol. Levels of several small GTP-binding proteins were developmentally regulated in membrane and microsomal fractions, but not in the cytosol of embryonic chicken brain. Major GTP-binding proteins G28 and G26 were strongly increased in microsomal but not in membrane fractions between E6 and hatched chicken brain, whereas the minor protein G24 decreased in both membrane and microsomal fractions over this time. The differential expression of low molecular weight GTP-binding proteins in embryonic chicken brain suggests important roles for these proteins in brain development.
Collapse
Affiliation(s)
- F J Klinz
- Department of Neuropharmacology, Max-Planck-Institut für Psychiatrie, Planegg-Martinsried, F.R.G
| |
Collapse
|
35
|
Yamamoto T, Kaibuchi K, Mizuno T, Hiroyoshi M, Shirataki H, Takai Y. Purification and characterization from bovine brain cytosol of proteins that regulate the GDP/GTP exchange reaction of smg p21s, ras p21-like GTP-binding proteins. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(17)46268-5] [Citation(s) in RCA: 116] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
36
|
Regulation of reversible binding of smg p25A, a ras p21-like GTP-binding protein, to synaptic plasma membranes and vesicles by its specific regulatory protein, GDP dissociation inhibitor. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)38260-2] [Citation(s) in RCA: 192] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
37
|
Yamamoto J, Kikuchi A, Ueda T, Ohga N, Takai Y. A GTPase-activating protein for rhoB p20, a ras p21-like GTP-binding protein--partial purification, characterization and subcellular distribution in rat brain. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1990; 8:105-11. [PMID: 2169565 DOI: 10.1016/0169-328x(90)90054-h] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A protein stimulating the GTPase activity of rhoB p20, a ras p21-like GTP-binding protein (G protein), was partially purified from the cytosol fraction of bovine brain. This protein, designated as rhoB p20 GTPase-activating protein (GAP), did not stimulate the GTPase activity of other ras p21/ras p21-like G proteins including c-Ha-ras p21, smg p21 and smg p25A. The activities of c-Ha-ras p21 GAP and smg p21 GAP were also detected in the cytosol fraction of bovine brain and rhoB p20 GAP was separated from these GAPs. The activity of rhoB p20 GAP was eliminated by tryptic digestion or boiling. The Mr value of rhoB p20 GAP was estimated to be 150-200 x 10(3) and 37 x 10(3) by gel filtration and sucrose density gradient ultracentrifugation, respectively. These results indicate that there is rhoB p20 GAP in addition to c-Ha-ras p21 GAP and smg p21 GAP in bovine brain. In rat brain, about 50% of rhoB p20 GAP was found with the highest specific activity in the P2 fraction containing myelin, synaptosomes and mitochondria. In the P2 fraction, about 30% of rhoB p20 GAP was found in the P2C fraction containing mainly synaptosomes. rhoB p20 GAP was detected in the cytosol and particulate fractions of not only rat brain but also other rat tissues.
Collapse
Affiliation(s)
- J Yamamoto
- Department of Biochemistry, Kobe University School of Medicine, Japan
| | | | | | | | | |
Collapse
|
38
|
Mizoguchi A, Kim S, Ueda T, Kikuchi A, Yorifuji H, Hirokawa N, Takai Y. Localization and subcellular distribution of smg p25A, a ras p21-like GTP-binding protein, in rat brain. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)38480-7] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
39
|
Tissue and subcellular distributions of the smg-21/rap1/Krev-1 proteins which are partly distinct from those of c-ras p21s. Mol Cell Biol 1990. [PMID: 2111441 DOI: 10.1128/mcb.10.6.2645] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have made a specific antiserum recognizing both smg p21A (the rap1A/Krev-1 protein) and -B (the rap1B protein), ras p21-like GTP-binding proteins having the same putative effector domain as ras p21s and have used this antiserum to study the tissue and subcellular distributions of smg p21s by immunoblot and immunocytochemical analyses. By immunoblot analysis, smg p21s were detected in various rat tissues and at the highest level in brain. By light microscopic immunocytochemical analysis, smg p21s were also detected in various rat tissues. Particularly, smg p21s in brain were found abundantly in the cytoplasmic region of most types of neuronal cell bodies and moderately in neuropil, whereas c-ras p21s were found more abundantly in neuropil than in the cytoplasmic region of most types of neuronal cell bodies. smg p21s in testis were found in spermatogenic cells, in which c-ras p21s were not significantly detected. By subcellular fractionation analysis of cerebrum, smg p21s were detected in all of the particulate fractions but not in the cytosol fraction. Among the particulate fractions, approximately 70% of smg p21s was recovered with the highest specific content in the fraction containing mainly synaptosomes, mitochondria, and myelin. In further fractionation of this fraction, approximately 40% of smg p21s was recovered in each of the synaptosome fraction and the mitochondrial fraction. This subcellular distribution of smg p21s in cerebrum was partly distinct from that of c-ras p21s, which were mainly recovered in the synaptosome and microsome fractions but present at very low levels in the mitochondrial fraction. These tissue and subcellular distributions of smg p 21s together with the fact that smg p21s have the same putative effector domain as ras p21s exert their own specific actions in addition to the actions similar or antagonistic to those of c-ras p21s.
Collapse
|
40
|
Kim S, Mizoguchi A, Kikuchi A, Takai Y. Tissue and subcellular distributions of the smg-21/rap1/Krev-1 proteins which are partly distinct from those of c-ras p21s. Mol Cell Biol 1990; 10:2645-52. [PMID: 2111441 PMCID: PMC360623 DOI: 10.1128/mcb.10.6.2645-2652.1990] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We have made a specific antiserum recognizing both smg p21A (the rap1A/Krev-1 protein) and -B (the rap1B protein), ras p21-like GTP-binding proteins having the same putative effector domain as ras p21s and have used this antiserum to study the tissue and subcellular distributions of smg p21s by immunoblot and immunocytochemical analyses. By immunoblot analysis, smg p21s were detected in various rat tissues and at the highest level in brain. By light microscopic immunocytochemical analysis, smg p21s were also detected in various rat tissues. Particularly, smg p21s in brain were found abundantly in the cytoplasmic region of most types of neuronal cell bodies and moderately in neuropil, whereas c-ras p21s were found more abundantly in neuropil than in the cytoplasmic region of most types of neuronal cell bodies. smg p21s in testis were found in spermatogenic cells, in which c-ras p21s were not significantly detected. By subcellular fractionation analysis of cerebrum, smg p21s were detected in all of the particulate fractions but not in the cytosol fraction. Among the particulate fractions, approximately 70% of smg p21s was recovered with the highest specific content in the fraction containing mainly synaptosomes, mitochondria, and myelin. In further fractionation of this fraction, approximately 40% of smg p21s was recovered in each of the synaptosome fraction and the mitochondrial fraction. This subcellular distribution of smg p21s in cerebrum was partly distinct from that of c-ras p21s, which were mainly recovered in the synaptosome and microsome fractions but present at very low levels in the mitochondrial fraction. These tissue and subcellular distributions of smg p 21s together with the fact that smg p21s have the same putative effector domain as ras p21s exert their own specific actions in addition to the actions similar or antagonistic to those of c-ras p21s.
Collapse
Affiliation(s)
- S Kim
- Department of Biochemistry, Kobe University School of Medicine, Japan
| | | | | | | |
Collapse
|
41
|
Flamm RE, Birnberg NC, Kaczmarek LK. Transfection of activated ras into an excitable cell line (AtT-20) alters tetrodotoxin sensitivity of voltage-dependent sodium current. Pflugers Arch 1990; 416:120-5. [PMID: 2191273 DOI: 10.1007/bf00370232] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The sensitivity of voltage-dependent sodium current to the sodium channel blocker tetrodotoxin (TTX) is altered by transfection of a c-Ha-ras oncogene into an excitable cell line. Control AtT-20 cells, a cell line derived from a mouse anterior pituitary tumor, were found to express both a TTX-sensitive and a TTX-resistant sodium current. AtT-20 cells transfected with the c-Ha-ras gene expressed only a TTX-sensitive current. Properties of TTX-sensitive and -resistant currents were also examined. No differences in voltage dependence of activation or inactivation between the TTX-sensitive and -resistant currents were observed. The rate of inactivation of the TTX-resistant current in control cells was slower, than that of the TTX-sensitive current in either control or ras-transfected AtT-20 cells.
Collapse
Affiliation(s)
- R E Flamm
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510-8066
| | | | | |
Collapse
|
42
|
Sasaki T, Kikuchi A, Araki S, Hata Y, Isomura M, Kuroda S, Takai Y. Purification and characterization from bovine brain cytosol of a protein that inhibits the dissociation of GDP from and the subsequent binding of GTP to smg p25A, a ras p21-like GTP-binding protein. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)39980-6] [Citation(s) in RCA: 135] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
43
|
Activation of the c-fos serum-response element by the activated c-Ha-ras protein in a manner independent of protein kinase C and cAMP-dependent protein kinase. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)40117-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
44
|
Abstract
Immunoblot analysis using a panreactive monoclonal antibody directed against ras p21 proteins detects two differentially regulated ras pools in embryonic chicken brain: a membrane pool that is not changed and a microsomal pool that starts at a low level but is strongly increased from E6 to E16 chicken brain. In order to study the distribution of ras proteins in different cell types of the nervous system, immunoblot analysis was performed on total cell proteins. In contrast to histochemical data showing the absence or low levels of ras proteins in glial cells, comparable amounts of ras proteins were found in cell lysates from purified chicken sympathetic neurons, cultured rat Schwann cells and mouse brain astrocytes.
Collapse
Affiliation(s)
- F J Klinz
- Department of Neuropharmacology, Max-Planck-Institut für Psychiatrie, Planegg-Martinsried, FRG
| |
Collapse
|
45
|
Kim S, Kikuchi A, Mizoguchi A, Takai Y. Intrasynaptosomal distribution of the ras, rho and smg-25A GTP-binding proteins in bovine brain. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1989; 6:167-76. [PMID: 2515409 DOI: 10.1016/0169-328x(89)90051-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We have purified to near homogeneity and characterized three small molecular weight (Mr) GTP-binding proteins, the c-Ki-ras protein (c-Ki-ras p21), the rho protein (rho p20) and a novel smg-25A protein (smg p25A), from bovine brain crude membranes. In the present studies, the intrasynaptosomal distribution of these 3 small Mr G protein has been investigated using bovine brain. ras p21 and rho p20 are found in the synaptosomal membrane fraction but not in the synaptosomal soluble fraction. In contrast, smg p25A is found in both the synaptosomal membrane and soluble fractions. These results indicate that the intrasynaptosomal distribution of these small Mr G proteins is different and suggest that they are involved in different neuronal functions.
Collapse
Affiliation(s)
- S Kim
- Department of Biochemistry, Kobe University School of Medicine, Japan
| | | | | | | |
Collapse
|
46
|
Mizoguchi A, Kim S, Ueda T, Takai Y. Tissue distribution of smg p25A, a ras p21-like GTP-binding protein, studied by use of a specific monoclonal antibody. Biochem Biophys Res Commun 1989; 162:1438-45. [PMID: 2504158 DOI: 10.1016/0006-291x(89)90835-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We made a monoclonal antibody specifically recognizing smg p25A among many ras p21-like GTP-binding proteins and investigated the tissue distribution of smg p25A by use of this antibody. By immunoblot analysis, smg p25A was detected in rat brain and bovine adrenal medulla but not in bovine adrenal cortex or other rat tissues including thymus, spleen, lung, heart, liver and kidney. However, by immunocytochemical studies, smg p25A was detected not only in the synaptic areas of rat brain and the chromaffin cells of bovine adrenal medulla but also in the endocrine cells of rat pancreatic islets, the acinar cells of rat exocrine pancreas and the exocrine cells of rat submaxillary gland. These results suggest that smg p25A is involved in the regulation of secretory processes not only in synapses but also in other endocrine and exocrine secretory cells.
Collapse
Affiliation(s)
- A Mizoguchi
- Department of Anatomy, Kobe University School of Medicine, Japan
| | | | | | | |
Collapse
|