1
|
Vegeto E, Villa A, Della Torre S, Crippa V, Rusmini P, Cristofani R, Galbiati M, Maggi A, Poletti A. The Role of Sex and Sex Hormones in Neurodegenerative Diseases. Endocr Rev 2020; 41:5572525. [PMID: 31544208 PMCID: PMC7156855 DOI: 10.1210/endrev/bnz005] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 09/20/2019] [Indexed: 12/11/2022]
Abstract
Neurodegenerative diseases (NDs) are a wide class of disorders of the central nervous system (CNS) with unknown etiology. Several factors were hypothesized to be involved in the pathogenesis of these diseases, including genetic and environmental factors. Many of these diseases show a sex prevalence and sex steroids were shown to have a role in the progression of specific forms of neurodegeneration. Estrogens were reported to be neuroprotective through their action on cognate nuclear and membrane receptors, while adverse effects of male hormones have been described on neuronal cells, although some data also suggest neuroprotective activities. The response of the CNS to sex steroids is a complex and integrated process that depends on (i) the type and amount of the cognate steroid receptor and (ii) the target cell type-either neurons, glia, or microglia. Moreover, the levels of sex steroids in the CNS fluctuate due to gonadal activities and to local metabolism and synthesis. Importantly, biochemical processes involved in the pathogenesis of NDs are increasingly being recognized as different between the two sexes and as influenced by sex steroids. The aim of this review is to present current state-of-the-art understanding on the potential role of sex steroids and their receptors on the onset and progression of major neurodegenerative disorders, namely, Alzheimer's disease, Parkinson's diseases, amyotrophic lateral sclerosis, and the peculiar motoneuron disease spinal and bulbar muscular atrophy, in which hormonal therapy is potentially useful as disease modifier.
Collapse
Affiliation(s)
- Elisabetta Vegeto
- Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy.,Dipartimento di Scienze Farmaceutiche (DiSFarm), Università degli Studi di Milano, Italy
| | - Alessandro Villa
- Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy.,Dipartimento di Scienze della Salute (DiSS), Università degli Studi di Milano, Italy
| | - Sara Della Torre
- Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy.,Dipartimento di Scienze Farmaceutiche (DiSFarm), Università degli Studi di Milano, Italy
| | - Valeria Crippa
- Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy.,Dipartimento di Eccellenza di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Italy
| | - Paola Rusmini
- Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy.,Dipartimento di Eccellenza di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Italy
| | - Riccardo Cristofani
- Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy.,Dipartimento di Eccellenza di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Italy
| | - Mariarita Galbiati
- Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy.,Dipartimento di Eccellenza di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Italy
| | - Adriana Maggi
- Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy.,Dipartimento di Scienze Farmaceutiche (DiSFarm), Università degli Studi di Milano, Italy
| | - Angelo Poletti
- Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy.,Dipartimento di Eccellenza di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Italy
| |
Collapse
|
2
|
Dose-dependent effects of the antiprogestin, RU486, on sexual behavior of naturally cycling Fischer rats. Behav Brain Res 2015; 282:95-102. [PMID: 25591479 DOI: 10.1016/j.bbr.2015.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 01/01/2015] [Accepted: 01/05/2015] [Indexed: 11/22/2022]
Abstract
Regularly cycling Fischer female rats were treated with either a low (5mg/kg) or high (5mg/RAT; approximately 30mg/kg) dose of the antiprogestin, RU486, before the morning of proestrus or on the morning of proestrus. The emergence of sexual behavior after treatment with RU486 was examined in a mating test with a sexually active male rat. Lordosis behavior was remarkably resistant to the effects of RU486. Only the high dose of RU486 given the evening before proestrus, approximately 22h before mating, reduced lordosis behavior. Independent of dose or time of treatment, proceptivity was reduced and resistance to the male's attempts to mount was increased by RU486 treatment. In addition, the effect of a 5min restraint stress on sexual behavior was examined. In contrast to the relative resistance of lordosis behavior of unrestrained rats to RU486 treatment, RU486 treated rats showed a significant decline in lordosis behavior after restraint. These findings allow the suggestion that the emergence of lordosis behavior is relatively resistant to the antiprogestin while the maintenance of lordosis behavior after restraint may require participation of intracellular progesterone receptors.
Collapse
|
3
|
Yang CF, Chiang MC, Gray DC, Prabhakaran M, Alvarado M, Juntti SA, Unger EK, Wells JA, Shah NM. Sexually dimorphic neurons in the ventromedial hypothalamus govern mating in both sexes and aggression in males. Cell 2013; 153:896-909. [PMID: 23663785 PMCID: PMC3767768 DOI: 10.1016/j.cell.2013.04.017] [Citation(s) in RCA: 499] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 02/11/2013] [Accepted: 04/05/2013] [Indexed: 02/06/2023]
Abstract
Sexual dimorphisms in the brain underlie behavioral sex differences, but the function of individual sexually dimorphic neuronal populations is poorly understood. Neuronal sexual dimorphisms typically represent quantitative differences in cell number, gene expression, or other features, and it is unknown whether these dimorphisms control sex-typical behavior exclusively in one sex or in both sexes. The progesterone receptor (PR) controls female sexual behavior, and we find many sex differences in number, distribution, or projections of PR-expressing neurons in the adult mouse brain. Using a genetic strategy we developed, we have ablated one such dimorphic PR-expressing neuronal population located in the ventromedial hypothalamus (VMH). Ablation of these neurons in females greatly diminishes sexual receptivity. Strikingly, the corresponding ablation in males reduces mating and aggression. Our findings reveal the functions of a molecularly defined, sexually dimorphic neuronal population in the brain. Moreover, we show that sexually dimorphic neurons can control distinct sex-typical behaviors in both sexes.
Collapse
Affiliation(s)
- Cindy F Yang
- Program in Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Abstract
Steroid hormones modulate a wide array of physiological processes including development, metabolism, and reproduction in various species. It is generally believed that these biological effects are predominantly mediated by their binding to specific intracellular receptors resulting in conformational change, dimerization, and recruitment of coregulators for transcription-dependent genomic actions (classical mechanism). In addition, to their cognate ligands, intracellular steroid receptors can also be activated in a "ligand-independent" manner by other factors including neurotransmitters. Recent studies indicate that rapid, nonclassical steroid effects involve extranuclear steroid receptors located at the membrane, which interact with cytoplasmic kinase signaling molecules and G-proteins. The current review deals with various mechanisms that function together in an integrated manner to promote hormone-dependent actions on the central and sympathetic nervous systems.
Collapse
Affiliation(s)
- S K Mani
- Department of Molecular & Cellular Biology and Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | | | |
Collapse
|
5
|
Mani SK, Oyola MG. Progesterone signaling mechanisms in brain and behavior. Front Endocrinol (Lausanne) 2012; 3:7. [PMID: 22649404 PMCID: PMC3355960 DOI: 10.3389/fendo.2012.00007] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Accepted: 01/10/2012] [Indexed: 11/25/2022] Open
Abstract
Steroid hormone, progesterone, modulates neuroendocrine functions in the central nervous system resulting in alterations in physiology and behavior. These neuronal effects are mediated primarily by intracellular progestin receptors (PRs) in the steroid-sensitive neurons, resulting in transcription-dependent genomic actions (classical mechanism). In addition to progesterone, intracellular PRs can also be activated in a "ligand-independent" manner by neurotransmitters, peptide growth factors, cyclic nucleotides, and neurosteroids. Recent studies indicate that rapid, non-classical progesterone actions involving cytoplasmic kinase signaling and/or extranuclear PRs can result in both transcription-independent and transcription-dependent actions. Cross-talk between extranuclear and classical intracellular signaling pathways promotes progesterone-dependent behavior in mammals. This review focuses on the mechanisms by which progesterone-initiated signaling mechanisms converge with PRs in the brain to modulate reproductive behavior in female rodents.
Collapse
Affiliation(s)
- Shaila K Mani
- Center on Addiction, Learning and Memory, Department of Neuroscience, Baylor College of Medicine Houston, TX, USA.
| | | |
Collapse
|
6
|
Mani SK, Blaustein JD. Neural progestin receptors and female sexual behavior. Neuroendocrinology 2012; 96:152-61. [PMID: 22538437 PMCID: PMC3498483 DOI: 10.1159/000338668] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 04/02/2012] [Indexed: 01/06/2023]
Abstract
The steroid hormone, progesterone (P), modulates neuroendocrine functions in the central nervous system resulting in integration of reproduction and reproductive behaviors in female mammals. Although it is widely recognized that P's effects on female sex behavior are mediated by the classical neural progestin receptors (PRs) functioning as 'ligand-dependent' transcription factors to regulate genes and genomic networks, additional mechanisms of PR activation also contribute to the behavioral response. Cellular and molecular evidence indicates that PRs can be activated in a ligand-independent manner by neurotransmitters, growth factors, cyclic nucleotides, progestin metabolites and mating stimuli. The rapid responses of P may be mediated by a variety of PR types, including membrane-associated PRs or extranuclear PRs. Furthermore, these rapid nonclassical P actions involving cytoplasmic kinase signaling and/or extranuclear PRs also converge with classical PR-mediated transcription-dependent pathways to regulate reproductive behaviors. In this review, we summarize some of the history of the study of the role of PRs in reproductive behaviors and update the status of PR-mediated mechanisms involved in the facilitation of female sex behavior. We present an integrative model of PR activation via crosstalk and convergence of multiple signaling pathways.
Collapse
Affiliation(s)
- Shaila K Mani
- Department of Molecular and Cellular Biology, Department of Neuroscience, Center on Addiction, Learning and Memory, Baylor College of Medicine, Houston, TX 77030, USA.
| | | |
Collapse
|
7
|
Abstract
Steroid hormones, such as progesterone, are typically considered to be primarily secreted by the gonads (albeit adrenals can also be a source) and to exert their actions through cognate intracellular progestin receptors (PRs). Through its actions in the midbrain ventral tegmental Area (VTA), progesterone mediates appetitive (exploratory, anxiety, social approach) and consummatory (social, sexual) aspects of rodents' mating behaviour. However, progesterone and its natural metabolites ('progestogens') are produced in the midbrain VTA independent of peripheral sources and midbrain VTA of adult rodents is devoid of intracellular PRs. One approach that we have used to understand the effects of progesterone and mechanisms in the VTA for mating is to manipulate the actions of progesterone in the VTA and to examine effects on lordosis (the posture female rodents assume for mating to occur). This review focuses on the effects and mechanisms of progestogens to influence reproduction and related processes. The actions of progesterone and its 5α-reduced metabolite and neurosteroid, 5α-pregnan-3α-ol-20-one (3α,5α-THP; allopregnanolone) in the midbrain VTA to facilitate mating are described. The findings that 3α,5α-THP biosynthesis in the midbrain occurs with mating are discussed. Evidence for the actions of 3α,5α-THP in the midbrain VTA via nontraditional steroid targets is summarised. The broader relevance of these actions of 3α,5α-THP for aspects of reproduction, beyond lordosis, is summarised. Finally, the potential role of the pregnane xenobiotic receptor in mediating 3α,5α-THP biosynthesis in the midbrain is introduced.
Collapse
Affiliation(s)
- Cheryl Anne Frye
- Department of Psychology, University at Albany, Albany, NY 12222, USA.
| |
Collapse
|
8
|
Yilmaz MB, Wolfe A, Zhao H, Brooks DC, Bulun SE. Aromatase promoter I.f is regulated by progesterone receptor in mouse hypothalamic neuronal cell lines. J Mol Endocrinol 2011; 47:69-80. [PMID: 21628418 PMCID: PMC4130222 DOI: 10.1530/jme-10-0149] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Aromatase catalyzes the conversion of C(19) steroids to estrogens. Aromatase and progesterone, both of which function at different steps of steroidogenesis, are crucial for the sexually dimorphic development of the fetal brain and the regulation of gonadotropin secretion and sexual interest in adults. The aromatase gene (Cyp19a1) is selectively expressed in distinct neurons of the mouse hypothalamus through a distal brain-specific promoter, I.f, located ∼40 kb upstream of the coding region. However, the regulation of aromatase expression in the brain is not well understood. In this study, we investigated a short feedback effect of progesterone analogues on aromatase mRNA expression and enzyme activity in estrogen receptor α (Esr1)-positive or -negative mouse embryonic hypothalamic neuronal cell lines that express aromatase via promoter I.f. In a hypothalamic neuronal cell line that highly expresses aromatase, progesterone receptor (Pgr), and Esr1, a progesterone agonist, R5020, inhibited aromatase mRNA level and enzyme activity. The inhibitory effect of R5020 was reversed by its antagonist, RU486. Deletion mutants of promoter I.f suggested that inhibition of aromatase expression by progesterone is conferred by the nt -1000/-500 region, and R5020 enhanced binding of Pgr to the nt -800/-600 region of promoter I.f. Small interfering RNA knockdown of Pgr eliminated progesterone-dependent inhibition of aromatase mRNA and enzyme activity. Taken together, progesterone enhances recruitment of Pgr to specific regions of the promoter I.f of Cyp19a1 and regulates aromatase expression in hypothalamic neurons.
Collapse
Affiliation(s)
- M Bertan Yilmaz
- Division of Reproductive Biology Research, Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | | | | | | | | |
Collapse
|
9
|
O’Connell LA, Matthews BJ, Patel SB, O’Connell JD, Crews D. Molecular characterization and brain distribution of the progesterone receptor in whiptail lizards. Gen Comp Endocrinol 2011; 171:64-74. [PMID: 21185292 PMCID: PMC3041865 DOI: 10.1016/j.ygcen.2010.12.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 12/06/2010] [Accepted: 12/16/2010] [Indexed: 11/21/2022]
Abstract
Progesterone and its nuclear receptor are critical in modulating reproductive physiology and behavior in female and male vertebrates. Whiptail lizards (genus Cnemidophorus) are an excellent model system in which to study the evolution of sexual behavior, as both the ancestral and descendent species exist. Male-typical sexual behavior is mediated by progesterone in both the ancestral species and the descendant all-female species, although the molecular characterization and distribution of the progesterone receptor protein throughout the reptilian brain is not well understood. To better understand the gene targets and ligand binding properties of the progesterone receptor in whiptails, we cloned the promoter and coding sequence of the progesterone receptor and analyzed the predicted protein structure. We next determined the distribution of the progesterone receptor protein and mRNA throughout the brain of Cnemidophorus inornatus and Cnemidophorus uniparens by immunohistochemistry and in situ hybridization. We found the progesterone receptor to be present in many brain regions known to regulate social behavior and processing of stimulus salience across many vertebrates, including the ventral tegmental area, amygdala, nucleus accumbens and several hypothalamic nuclei. Additionally, we quantified immunoreactive cells in the preoptic area and ventromedial hypothalamus in females of both species and males of the ancestral species. We found differences between both species and across ovarian states. Our results significantly extend our understanding of progesterone modulation in the reptilian brain and support the important role of the nuclear progesterone receptor in modulating sexual behavior in reptiles and across vertebrates.
Collapse
Affiliation(s)
- Lauren A. O’Connell
- Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, Texas 78712
- Section of Integrative Biology, University of Texas at Austin, Austin, Texas 78712
| | - Bryan J. Matthews
- Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, Texas 78712
| | - Sagar B. Patel
- Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, Texas 78712
| | - Jeremy D. O’Connell
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, Texas 78712
| | - David Crews
- Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, Texas 78712
- Section of Integrative Biology, University of Texas at Austin, Austin, Texas 78712
- All correspondence and requests for reprints should to addressed to: David Crews, Section of Integrative Biology, University of Texas at Austin, Austin, TX 78712, Phone: 512-471-1113,
| |
Collapse
|
10
|
Intlekofer KA, Petersen SL. Distribution of mRNAs encoding classical progestin receptor, progesterone membrane components 1 and 2, serpine mRNA binding protein 1, and progestin and ADIPOQ receptor family members 7 and 8 in rat forebrain. Neuroscience 2011; 172:55-65. [PMID: 20977928 PMCID: PMC3024713 DOI: 10.1016/j.neuroscience.2010.10.051] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 10/15/2010] [Accepted: 10/18/2010] [Indexed: 10/18/2022]
Abstract
Several lines of evidence suggest the existence of multiple progestin receptors that may account for rapid and delayed effects of progesterone in the CNS. The delayed effects have been long attributed to activation of the classical progestin receptor (Pgr). Recent studies have discovered novel progestin signaling molecules that may be responsible for rapid effects. These include progesterone receptor membrane component 1 (Pgrmc1), Pgrmc2, progestin and adipoQ receptor 7 (Paqr7) and Paqr8. The functions of these molecules have been investigated extensively in non-neural, but not in neural tissues, partly because it is unclear which are expressed in the brain and where they are expressed. To address these issues, we compared the distributions of mRNAs encoding Pgr, Pgrmc1, Pgrmc2, Paqr7 and Paqr8 using in situ hybridization with radiolabeled oligodeoxynucleotidyl probes in forebrain tissues of estradiol-treated female rats. We also examined the distribution of serpine mRNA binding protein 1 (Serbp1), a putative binding partner of Pgrmc1. Analyses of adjacent brain sections showed that the highest expression of mRNAs encoding Pgr, Pgrmc1, Pgrmc2 and Serbp1 was detected in several hypothalamic nuclei important for female reproduction. In contrast, expression patterns of Paqr7 and Paqr8 were low and homogeneous in the hypothalamus, and more abundant in thalamic nuclei. The neuroanatomical distributions of these putative progestin signaling molecules suggest that Pgrmc1 and Pgrmc2 may play roles in neuroendocrine functions while Paqr7 and Paqr8 are more likely to regulate sensory and cognitive functions.
Collapse
Affiliation(s)
- Karlie A. Intlekofer
- Center for Neuroendocrinology, University of Massachusetts, Amherst MA 01003 USA
| | - Sandra L. Petersen
- Center for Neuroendocrinology, University of Massachusetts, Amherst MA 01003 USA
| |
Collapse
|
11
|
Activation of progestin receptors in female reproductive behavior: Interactions with neurotransmitters. Front Neuroendocrinol 2010; 31:157-71. [PMID: 20116396 PMCID: PMC2849835 DOI: 10.1016/j.yfrne.2010.01.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Revised: 01/20/2010] [Accepted: 01/21/2010] [Indexed: 01/22/2023]
Abstract
The steroid hormone, progesterone (P), modulates neuroendocrine functions in the central nervous system resulting in alterations in physiology and reproductive behavior in female mammals. A wide body of evidence indicates that these neural effects of P are predominantly mediated via their intracellular progestin receptors (PRs) functioning as "ligand-dependent" transcription factors in the steroid-sensitive neurons regulating genes and genomic networks. In addition to P, intracellular PRs can be activated by neurotransmitters, growth factors and cyclic nucleotides in a ligand-independent manner via crosstalk and convergence of pathways. Furthermore, recent studies indicate that rapid signaling events associated with membrane PRs and/or extra-nuclear, cytoplasmic PRs converge with classical PR activated pathways in neuroendocrine regulation of female reproductive behavior. The molecular mechanisms, by which multiple signaling pathways converge on PRs to modulate PR-dependent female reproductive behavior, are discussed in this review.
Collapse
|
12
|
Abstract
Ovarian steroid hormones, oestradiol and progesterone, modulate neuroendocrine functions in the central nervous system, resulting in alterations in physiology and behaviour. The classical model of steroid hormone action assumes that these neural effects are predominantly mediated via their intracellular receptors functioning as 'ligand-dependent' transcription factors in the steroid-sensitive neurones regulating genes and genomic networks with profound behavioural consequences. Studies from our laboratory demonstrate that, in addition to their cognate ligands, intracellular steroid receptors can be activated in a 'ligand-independent' manner by the neurotransmitter dopamine, which alters the dynamic equilibrium between neuronal phosphatases and kinases. A high degree of cross-talk between membrane-initiated signalling pathways and the classical intracellular signalling pathways mediates hormone-dependent behaviour in mammals. The molecular mechanisms, by which a multitude of signals converge with steroid receptors to delineate a genomic level of cross-talk in brain and behaviour are discussed.
Collapse
Affiliation(s)
- S K Mani
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | |
Collapse
|
13
|
Hoffman KL, Martínez-Alvarez E, Rueda-Morales RI. The inhibition of female rabbit sexual behavior by progesterone: progesterone receptor-dependent and-independent effects. Horm Behav 2009; 55:84-92. [PMID: 18817778 DOI: 10.1016/j.yhbeh.2008.08.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Revised: 08/23/2008] [Accepted: 08/25/2008] [Indexed: 11/23/2022]
Abstract
In the pregnant domestic rabbit, scent marking ("chinning") and sexual behavior are inhibited by ovarian-derived progesterone (P). In order to distinguish behavioral effects of P that are PR-dependent from those mediated by its ring A reduced metabolites, we administered P, P+RU486 (PR antagonist), chlormadinone acetate (CA, synthetic progestin that does not form ring A reduced metabolites), or vehicle to ovariectomized (ovx) estradiol-benzoate (EB)-treated female rabbits, via sc injection, on experimental day 0. Chinning was quantified daily, and mating tests were done on days -1, 1, 3, 5, and 7. On day 1, chinning was significantly decreased, and the latency to be mounted by the male was significantly increased (indicating decreased sexual attractivity of the female) in P-treated females. The effect of P on chinning, but not its effect on sexual attractivity, was completely blocked by RU486 and replicated by CA. Although CA had no effect on attractivity on day 1, it decreased both sexual receptivity and attractivity on day 3. In a preference test in which the male could interact with either an ovx EB-treated female or an ovx female that had received one of the above hormone treatments 24 h earlier, P decreased sexual attractivity and increased aggression. The effect of P on aggression, but not its effect on attractivity, was blocked by RU486 and replicated by CA. These results indicate that both PR-dependent and PR-independent mechanisms decrease sexual attractivity, whereas PR activation is necessary for the inhibition of chinning and sexual receptivity, and for the stimulation of aggression.
Collapse
Affiliation(s)
- K L Hoffman
- Centro de Investigación en Reproducción Animal, CINVESTAV-Universidad Autónoma de Tlaxcala,Tlaxcala, Tlax, Mexico.
| | | | | |
Collapse
|
14
|
Balasubramanian B, Portillo W, Reyna A, Chen JZ, Moore AN, Dash PK, Mani SK. Nonclassical mechanisms of progesterone action in the brain: I. Protein kinase C activation in the hypothalamus of female rats. Endocrinology 2008; 149:5509-17. [PMID: 18617608 PMCID: PMC2584599 DOI: 10.1210/en.2008-0712] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The modulation of gene regulation by progesterone (P) and its classical intracellular regulation by progestin receptors in the brain, resulting in alterations in physiology and behavior has been well studied. The mechanisms mediating the short latency effects of P are less well understood. Recent studies have revealed rapid nonclassical signaling action of P involving the activation of intracellular signaling pathways. We explored the involvement of protein kinase C (PKC) in P-induced rapid signaling in the ventromedial nucleus of the hypothalamus (VMN) and preoptic area (POA) of the rat brain. Both the Ca2+-independent (basal) PKC activity representing the activation of PKC by the in vivo treatments and the Ca+2-dependent (total) PKC activity assayed in the presence of exogenous cofactors in vitro were determined. A comparison of the two activities demonstrated the strength and temporal status of PKC regulation by steroid hormones in vivo. P treatment resulted in a rapid increase in basal PKC activity in the VMN but not the POA. Estradiol benzoate priming augmented P-initiated increase in PKC basal activity in both the VMN and POA. These increases were inhibited by intracerebroventricular administration of a PKC inhibitor administered 30 min prior to P. The total PKC activity remained unchanged demonstrating maximal PKC activation within 30 min in the VMN. In contrast, P regulation in the POA significantly attenuated total PKC activity +/- estradiol benzoate priming. These rapid changes in P-initiated PKC activity were not due to changes in PKC protein levels or phosphorylation status.
Collapse
Affiliation(s)
- Bhuvana Balasubramanian
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Progesterone (P), the most biologically active progestin of ovarian origin, modulates numerous cellular functions in the central nervous system to coordinate physiology and reproduction. The neurobiological activity of P is mediated not by a single form of the progestin receptor (PR), but by two neural isoforms of PRs, PR-A and PR-B. Classical model of P action assumes that these neural effects are primarily mediated via their intracellular PRs, acting as transcriptional regulators, in steroid-sensitive neurons, modulating genes and genomic networks. Evidence has emerged, however, that activation of neural PRs is much more diverse; four distinct classes of molecules, neurotransmitters, peptide growth factors, cyclic nucleotides, and neurosteroids have been shown to activate the PRs via cross-talk and pathway convergence. In addition, rapid signaling events associated with membrane receptors and/or subpopulations of cytoplasmic PRs, via activation of protein kinase cascades, regulate PR gene expression in the cytoplasm independent of PR nuclear action. The increasing in vitro and in vivo evidence of differential transcriptional activities and coregulator interactions between PR-A and PR-B predict that these isoforms could have distinct roles in mediating additional and/or alternate signaling pathways within steroid-sensitive neurons. In this minireview, we evaluate the available data and discuss the possible roles of the isoforms in the regulation of neurobiological processes.
Collapse
Affiliation(s)
- Shaila Mani
- Department of Molecular and Cellular Biology, Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas 77030-3411, USA.
| |
Collapse
|
16
|
Schlumpf M, Durrer S, Faass O, Ehnes C, Fuetsch M, Gaille C, Henseler M, Hofkamp L, Maerkel K, Reolon S, Timms B, Tresguerres JAF, Lichtensteiger W. Developmental toxicity of UV filters and environmental exposure: a review. ACTA ACUST UNITED AC 2008; 31:144-51. [DOI: 10.1111/j.1365-2605.2007.00856.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Maerkel K, Durrer S, Henseler M, Schlumpf M, Lichtensteiger W. Sexually dimorphic gene regulation in brain as a target for endocrine disrupters: developmental exposure of rats to 4-methylbenzylidene camphor. Toxicol Appl Pharmacol 2006; 218:152-65. [PMID: 17188730 DOI: 10.1016/j.taap.2006.10.026] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Revised: 10/02/2006] [Accepted: 10/29/2006] [Indexed: 11/21/2022]
Abstract
The developing neuroendocrine brain represents a potential target for endocrine active chemicals. The UV filter 4-methylbenzylidene camphor (4-MBC) exhibits estrogenic activity, but also interferes with the thyroid axis. We investigated effects of pre- and postnatal exposure to 4-MBC in the same rat offspring at brain and reproductive organ levels. 4-MBC (7, 24, 47 mg/kg/day) was administered in chow to the parent generation before mating, during gestation and lactation, and to the offspring until adulthood. mRNA of estrogen target genes involved in control of sexual behavior and gonadal functions was measured by real-time RT-PCR in ventromedial hypothalamic nucleus (VMH) and medial preoptic area (MPO) of adult offspring. 4-MBC exposure affected mRNA levels of ER alpha, progesterone receptor (PR), preproenkephalin (PPE) and insulin-like growth factor-I (IGF-I) in a sex- and region-specific manner. In order to assess possible changes in sensitivity of target genes to estrogens, offspring were gonadectomized on day 70, injected with estradiol (E2, 10 or 50 microg/kg s.c.) or vehicle on day 84, and sacrificed 6 h later. The acute induction of PR mRNA, and repression (at 6 h) of PPE mRNA by E2 was enhanced by 4-MBC in male and female VMH and female MPO, whereas male MPO exhibited reduced responsiveness of both genes. Steroid receptor coactivator SRC-1 mRNA levels were increased in female VMH and MPO. The data indicate profound sex- and region-specific alterations in the regulation of estrogen target genes at brain level. Effect patterns in baseline and E2-induced gene expression differ from those in uterus and prostate.
Collapse
Affiliation(s)
- Kirsten Maerkel
- Institute of Pharmacology and Toxicology and GREEN Tox, University of Zurich, CH-8057 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
18
|
Molenda-Figueira HA, Williams CA, Griffin AL, Rutledge EM, Blaustein JD, Tetel MJ. Nuclear receptor coactivators function in estrogen receptor- and progestin receptor-dependent aspects of sexual behavior in female rats. Horm Behav 2006; 50:383-92. [PMID: 16769066 PMCID: PMC2244585 DOI: 10.1016/j.yhbeh.2006.04.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2006] [Revised: 04/25/2006] [Accepted: 04/26/2006] [Indexed: 11/17/2022]
Abstract
The ovarian hormones, estradiol (E) and progesterone (P) facilitate the expression of sexual behavior in female rats. E and P mediate many of these behavioral effects by binding to their respective intracellular receptors in specific brain regions. Nuclear receptor coactivators, including Steroid Receptor Coactivator-1 (SRC-1) and CREB Binding Protein (CBP), dramatically enhance ligand-dependent steroid receptor transcriptional activity in vitro. Previously, our lab has shown that SRC-1 and CBP modulate estrogen receptor (ER)-mediated induction of progestin receptor (PR) gene expression in the ventromedial nucleus of the hypothalamus (VMN) and hormone-dependent sexual receptivity in female rats. Female sexual behaviors can be activated by high doses of E alone in ovariectomized rats, and thus are believed to be ER-dependent. However, the full repertoire of female sexual behavior, in particular, proceptive behaviors such as hopping, darting and ear wiggling, are considered to be PR-dependent. In the present experiments, the function of SRC-1 and CBP in distinct ER- (Exp. 1) and PR- (Exp. 2) dependent aspects of female sexual behavior was investigated. In Exp. 1, infusion of antisense oligodeoxynucleotides to SRC-1 and CBP mRNA into the VMN decreased lordosis intensity in rats treated with E alone, suggesting that these coactivators modulate ER-mediated female sexual behavior. In Exp. 2, antisense to SRC-1 and CBP mRNA around the time of P administration reduced PR-dependent ear wiggling and hopping and darting. Taken together, these data suggest that SRC-1 and CBP modulate ER and PR action in brain and influence distinct aspects of hormone-dependent sexual behaviors. These findings support our previous studies and provide further evidence that SRC-1 and CBP function together to regulate ovarian hormone action in behaviorally-relevant brain regions.
Collapse
Affiliation(s)
- Heather A. Molenda-Figueira
- Center for Neuroendocrine Studies, Neuroscience and Behavior Program, University of Massachusetts, Amherst, MA 01003, USA
| | - Casey A. Williams
- Center for Neuroendocrine Studies, Neuroscience and Behavior Program, University of Massachusetts, Amherst, MA 01003, USA
| | - Andreana L. Griffin
- Center for Neuroendocrine Studies, Neuroscience and Behavior Program, University of Massachusetts, Amherst, MA 01003, USA
| | - Eric M. Rutledge
- Biology Department, Skidmore College, Saratoga Spring, NY 12866, USA
| | - Jeffrey D. Blaustein
- Center for Neuroendocrine Studies, Neuroscience and Behavior Program, University of Massachusetts, Amherst, MA 01003, USA
| | - Marc J. Tetel
- Center for Neuroendocrine Studies, Neuroscience and Behavior Program, University of Massachusetts, Amherst, MA 01003, USA
- .Department of Biological Sciences and Neuroscience Program, Wellesley College, Wellesley, MA 02481, USA
- * Corresponding author. Department of Biological Sciences and Neuroscience Program, Wellesley College, Wellesley, MA 02481, USA. Fax: +1 781 283 3642. E-mail address: (M.J. Tetel)
| |
Collapse
|
19
|
Devidze N, Lee AW, Zhou J, Pfaff DW. CNS arousal mechanisms bearing on sex and other biologically regulated behaviors. Physiol Behav 2006; 88:283-93. [PMID: 16769096 DOI: 10.1016/j.physbeh.2006.05.030] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
It now seems possible to move beyond analyzing only the mechanisms for specific sexual behaviors to the analysis of 'generalized arousal' that underlies all motivated behaviors. Our science has advanced sufficiently to attack mechanisms linking specific motivations to these general arousal mechanisms that intrinsically activate all biologically-regulated behaviors including ingestive behaviors. Learning from the well-developed reproductive behavior paradigm, we know that sex hormone effects on hypothalamic neurons have been studied to a point where receptor mechanisms are relatively well understood, a neural circuit for a sex steroid-dependent behavior has been worked out, and several functional genomic regulations have been discovered. Here we focus for the first time on three chemical systems that signal 'generalized arousal' and which impact hormone-dependent hypothalamic neurons of importance to sexual arousal: histamine, norepinephrine and enkephalin. Progress in linking generalized arousal to specific motivational mechanisms is reviewed.
Collapse
Affiliation(s)
- Nino Devidze
- Laboratory of Neurobiology and Behavior, Box 275, The Rockefeller University, New York, NY 10021, USA.
| | | | | | | |
Collapse
|
20
|
Musatov S, Chen W, Pfaff DW, Kaplitt MG, Ogawa S. RNAi-mediated silencing of estrogen receptor {alpha} in the ventromedial nucleus of hypothalamus abolishes female sexual behaviors. Proc Natl Acad Sci U S A 2006; 103:10456-10460. [PMID: 16803960 PMCID: PMC1502479 DOI: 10.1073/pnas.0603045103] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Estrogen receptor alpha (ERalpha) plays a major role in the regulation of neuroendocrine functions and behaviors by estrogens. Although the generation of ERalpha knockout mice advanced our knowledge of ERalpha functions, gene deletion using this method is global and potentially confounded by developmental consequences. To achieve a site-specific knockdown of ERalpha in the normally developed adult brain, we have generated an adeno-associated virus vector expressing a small hairpin RNA targeting ERalpha. After bilateral injection of this vector into the hypothalamic ventromedial nucleus in ovariectomized female mice, expression levels of ERalpha as well as the estrogen-inducible progesterone receptor were profoundly reduced despite the continued presence of this receptor elsewhere in the brain. Functionally, silencing of ERalpha in the ventromedial nucleus abolished female proceptive and receptive sexual behaviors while enhancing rejection behavior. These results provide evidence that adeno-associated virus-mediated long-term knockdown of genes can be used to delineate their effects on complex behaviors in discrete brain regions.
Collapse
Affiliation(s)
- Sergei Musatov
- *Neurologix, Inc., Fort Lee, NJ 07024
- Laboratory of Neurobiology and Behavior, The Rockefeller University, New York, NY 10021
- Laboratory of Molecular Neurosurgery, Weill Medical College of Cornell University, New York, NY 10021; and
| | - Walter Chen
- Laboratory of Neurobiology and Behavior, The Rockefeller University, New York, NY 10021
| | - Donald W Pfaff
- Laboratory of Neurobiology and Behavior, The Rockefeller University, New York, NY 10021;
| | - Michael G Kaplitt
- Laboratory of Neurobiology and Behavior, The Rockefeller University, New York, NY 10021
- Laboratory of Molecular Neurosurgery, Weill Medical College of Cornell University, New York, NY 10021; and
| | - Sonoko Ogawa
- Laboratory of Neurobiology and Behavior, The Rockefeller University, New York, NY 10021;
- Kansei, Behavioral, and Brain Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
21
|
Mani SK. Signaling mechanisms in progesterone–neurotransmitter interactions. Neuroscience 2006; 138:773-81. [PMID: 16310962 DOI: 10.1016/j.neuroscience.2005.07.034] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Revised: 06/28/2005] [Accepted: 07/12/2005] [Indexed: 01/27/2023]
Abstract
Ovarian steroid hormones, estradiol and progesterone, modulate neuroendocrine functions in the CNS resulting in alterations in physiology in female mammals. Classical model of steroid hormone action assumes that these neural effects are predominantly mediated via their intracellular receptors functioning as "ligand-dependent" transcription factors in the steroid-sensitive neurons regulating genes and genomic networks with profound behavioral consequences. Steroid receptors are phosphoproteins and steroid hormone-dependent, receptor-mediated transcription is dependent on the state of phosphorylation of the cognate receptors and/or their co-regulator proteins. Studies from our laboratory have demonstrated that in addition to the steroid hormones, intracellular steroid receptors can be activated in a "ligand-independent" manner by neurotransmitters that can alter the dynamic equilibrium between neuronal phosphatases and kinases. Using biochemical and molecular approaches we have elucidated that the signaling cascade initiated by neurotransmitter, dopamine, converges with steroid hormone-initiated pathway to regulate neuroendocrine pathways associated with reproductive behavior. Signal transduction via protein phosphorylation is common to the molecular pathways through which steroid hormones and neurotransmitters mediate their physiological effects in the CNS involving a high degree of cross-talk and reinforcement among rapid, membrane-initiated pathways at the G-protein level and the classical intracellular signaling pathways at the transcriptional level in mammals. The molecular mechanisms, by which a multitude of signals converge with steroid receptors to delineate a genomic level of cross-talk, provide new avenues for understanding the role of steroid hormones in brain and behavior.
Collapse
Affiliation(s)
- S K Mani
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
22
|
Lee AW, Devidze N, Pfaff DW, Zhou J. Functional genomics of sex hormone-dependent neuroendocrine systems: specific and generalized actions in the CNS. PROGRESS IN BRAIN RESEARCH 2006; 158:243-72. [PMID: 17027700 DOI: 10.1016/s0079-6123(06)58012-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Sex hormone effects on hypothalamic neurons have been worked out to a point where receptor mechanisms are relatively well understood, a neural circuit for a sex steroid-dependent behavior has been determined, and several functional genomic regulations have been discovered and conceptualized. With that knowledge in hand, we approach deeper problems of explaining sexual arousal and generalized CNS arousal. After a brief summary of arousal mechanisms, we focus on three chemical systems which signal generalized arousal and impact hormone-dependent hypothalamic neurons of behavioral importance: histamine, norepinephrine and enkephalin.
Collapse
Affiliation(s)
- Anna W Lee
- Laboratory of Neurobiology and Behavior, Box 275, The Rockefeller University, New York, NY 10021, USA
| | | | | | | |
Collapse
|
23
|
Pazol K, Northcutt KV, Wilson ME, Wallen K. Medroxyprogesterone acetate acutely facilitates and sequentially inhibits sexual behavior in female rats. Horm Behav 2006; 49:105-13. [PMID: 16095597 DOI: 10.1016/j.yhbeh.2005.05.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2005] [Revised: 05/10/2005] [Accepted: 05/11/2005] [Indexed: 10/25/2022]
Abstract
Medroxyprogesterone acetate (MPA), a synthetic progestin commonly used in contraception and hormone replacement therapy, appears to inhibit libido in women, but little is known about the mechanisms through which it may exert this effect. We compared the acute and sequential actions of MPA and natural progesterone (P4) on sexual behavior in female rats to test the hypothesis that MPA inhibits sexual behavior, at least in part, by acting as a potent progesterone receptor (PR) agonist. Ovariectomized females were placed in one of three dose groups (high, mid, or low), and each subject was tested under three different conditions (MPA, P4, and vehicle). The order of progestin treatment was balanced among subjects, and within each dose group equimolar quantities of MPA and P4 were administered. During each trial, females were injected with estradiol benzoate (EB, 4 mug) followed by one of three progestin treatments (MPA, P4, or vehicle) at +44 h, and behavioral testing at +48 h. On the next day, all females were given a standard 500-microg injection of P4 at +68 h and were tested again for sexual behavior at +72 h. On the first day of behavioral testing, both MPA and P4 induced a pronounced rise in receptive and proceptive behavior at the mid and high doses, but at the lowest dose MPA had a much greater effect in comparison to P4. On the second day of behavioral testing, MPA attenuated the expression of proceptive and receptive behavior at both the mid and high doses, whereas P4 only attenuated the expression of lordosis and only did so at the highest dose. These findings illustrate that MPA and P4 have a similar impact on sexual behavior in female rats and suggest that the inhibitory effects of MPA may be attributable, at least in part, to its potent effects at the progesterone receptor.
Collapse
Affiliation(s)
- Karen Pazol
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA.
| | | | | | | |
Collapse
|
24
|
Kudwa AE, Dominguez-Salazar E, Cabrera DM, Sibley DR, Rissman EF. Dopamine D5 receptor modulates male and female sexual behavior in mice. Psychopharmacology (Berl) 2005; 180:206-14. [PMID: 15696326 DOI: 10.1007/s00213-005-2150-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2004] [Accepted: 12/07/2004] [Indexed: 02/03/2023]
Abstract
RATIONALE Dopamine exerts its actions through at least five receptor (DAR) isoforms. In female rats, D5 DAR may be involved in expression of sexual behavior. We used a D5 knockout (D5KO) mouse to assess the role of D5 DAR in mouse sexual behavior. Both sexes of D5KO mice are fertile and exhibit only minor disruptions in exploratory locomotion, startle, and prepulse inhibition responses. OBJECTIVE This study was conducted to characterize the sexual behavior of male and female D5KO mice relative to their WT littermates. METHODS Female WT and D5KO littermates were ovariectomized and given a series of sexual behavior tests after treatment with estradiol benzoate (EB) and progesterone (P). Once sexual performance was optimal the dopamine agonist, apomorphine (APO), was substituted for P. Male mice were observed in pair- and trio- sexual behavior tests. To assess whether the D5 DAR is involved in rewarding aspects of sexual behavior, WT and D5KO male mice were tested for conditioned place preference. RESULTS Both WT and D5KO females can display receptivity after treatment with EB and P, but APO was only able to facilitate receptivity in EB-primed WT, not in D5KO, mice. Male D5KO mice display normal masculine sexual behavior in mating tests. In conditioned preference tests, WT males formed a conditioned preference for context associated with either intromissions alone or ejaculation as the unconditioned stimulus. In contrast, D5KO males only showed a place preference when ejaculation was paired with the context. CONCLUSIONS In females, the D5 DAR is essential for the actions of dopamine on receptivity. In males, D5 DAR influences rewarding aspects of intromissions. Taken together, the work suggests that the D5 receptor mediates dopamine's action on sexual behavior in both sexes, perhaps via a reward pathway.
Collapse
Affiliation(s)
- A E Kudwa
- Neuroscience Graduate Program, University of Virginia Medical School, Charlottesville, VA 22908, USA
| | | | | | | | | |
Collapse
|
25
|
Charlier TD, Balthazart J. Modulation of Hormonal Signaling in the Brain by Steroid Receptor Coactivators. Rev Neurosci 2005; 16:339-57. [PMID: 16519010 DOI: 10.1515/revneuro.2005.16.4.339] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Nuclear receptors, such as estrogen, glucocorticoid or thyroid hormone receptors, have been shown to play a critical role in brain development and physiology. The activity of these receptors is modulated by the interaction with several proteins and, in particular, coactivators are required to enhance their transcriptional activity. The steroid receptor coactivators (SRC-1, -2 and -3) are currently the best characterized coactivators and we review here the current knowledge on the distribution and function of these proteins in the brain. Knock-out models and antisense techniques have demonstrated the requirement for SRC-1 and -2 in the brain, focusing mainly on steroid and thyroid hormone-dependent development and behavior. The precise function of SRC-3 in the brain is currently unknown but its presence throughout the brain suggests an important function. Although the molecular biology of SRCs is relatively well known, the in vivo control of their expression, post-translational modifications and time- and cell-specific interactions with the different nuclear receptors remain elusive. A complete understanding of hormone action on brain and behavior will not be attained until a better knowledge of coactivator physiology is achieved.
Collapse
Affiliation(s)
- Thierry D Charlier
- University of Liège, Center for Cellular and Molecular Neurobiology, Research Group in Behavioral Neuroendocrinology, Belgium.
| | | |
Collapse
|
26
|
Abstract
Genes induced by estrogens in the mammalian forebrain influence a variety of neural functions. Among them, reproductive behavior mechanisms are very well understood. Their functional genomics provide a theoretical paradigm for linking genes to neural circuits to behavior. We propose that estrogen-induced genes are organized in modules: Growth of hypothalamic neurons; Amplification of the estrogen effect by progesterone; Preparative behaviors; Permissive actions on sex behavior circuitry; and Synchronization of mating behavior with ovulation. These modules may represent mechanistic routes for CNS management of successful reproduction. Moreover, new microarray results add estrogen-dependent genes, including some expressed in glia, suggesting possible hormone-dependent neuronal/glial coordination.
Collapse
Affiliation(s)
- J A Mong
- The Laboratory of Neurobiology and Behavior Rockefeller University, New York, NY 10021, USA
| | | |
Collapse
|
27
|
González-Flores O, Guerra-Araiza C, Cerbón M, Camacho-Arroyo I, Etgen AM. The 26S proteasome participates in the sequential inhibition of estrous behavior induced by progesterone in rats. Endocrinology 2004; 145:2328-36. [PMID: 14764628 DOI: 10.1210/en.2003-1162] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Estrous behavior induced by progesterone (P) treatment of estradiol-primed rats is followed by a period in which females do not respond behaviorally to a second administration of P [sequential inhibition (SI)]. SI is thought to involve P-dependent down-regulation of hypothalamic P receptor (PR) content. This study tested the hypothesis that the 26S proteasome participates in the regulation of SI and brain PR content in female rats. Ovariectomized, estrogen-primed (estradiol benzoate, 2 microg s.c.) adult rats were injected with P (1 mg s.c.) alone or P with the proteasome inhibitors Z-Ile-Glu (OBu(1))-Ala-Leu-H (PSI, 300 microg/100 g s.c.) or N alpha-tosyl-lysyl chloromethyl ketone (TLCK, 200 microg i.p.) administered 48 h after estradiol priming. Sexual behavior was assessed in all animals 4 h later. These two agents inhibit 26S proteasome-mediated protein degradation by different mechanisms. To explore SI, the animals received a second P injection 24 h after the first, and a second sexual behavior test was performed 4 h later. After this test, brains were excised, and proteins were extracted from the preoptic area and the hypothalamus and processed for semiquantitative immunoblotting. In the first sexual behavior test (facilitation test), all animals treated with estradiol + P exhibited intense lordosis behavior. In the second sexual behavior test (inhibition test), both lordosis and proceptivity were significantly reduced in response to the second administration of P (SI). The magnitude of SI was significantly attenuated by the administration of either PSI or TLCK concurrently with the first P injection. The first P injection reduced PR content in the hypothalamus but not in the preoptic area. In contrast, PSI and TLCK significantly increased PR content in both structures. Our results suggest that PR degradation by the 26S proteasome participates in the expression of P-induced SI in female rats.
Collapse
Affiliation(s)
- Oscar González-Flores
- Centro de Investigación en Reproducción Animal, Centro de Investigacion y de Estudios Avanzados-Universidad Autonoma de Tlaxcala, Tlaxcala 90140, Mexico
| | | | | | | | | |
Collapse
|
28
|
Blaustein JD. Progestin receptors: neuronal integrators of hormonal and environmental stimulation. Ann N Y Acad Sci 2004; 1007:238-50. [PMID: 14993057 DOI: 10.1196/annals.1286.023] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Although it originally was believed that neuronal steroid hormone receptors require binding to cognate ligand for activation, more recent evidence suggests that the receptors can be activated indirectly by other compounds, such as neurotransmitters and growth factors, acting through their own membrane receptors and specific intracellular signaling pathways. For example, as is the case with facilitation of sexual behavior by progesterone, facilitation of sexual behavior by D(1)/D(5) dopamine receptor agonists is blocked by disruption of progestin receptors. Therefore, some dopamine agonists facilitate sexual behavior at least in part by a progestin receptor-dependent mechanism, as does progesterone. This "ligand-independent activation" of neuronal progestin receptors is not limited to dopamine agonists; a variety of other compounds, as well as mating stimulation, facilitate sexual receptivity by a progestin receptor-dependent process. Steroid hormone receptors also can be regulated by afferent input in another way. Various neurotransmitters upregulate or downregulate steroid hormone receptors in some neurons. This, in turn, presumably confers greater or decreased sensitivity to the particular factors that can activate the particular steroid receptor in those particular neurons. Therefore, steroid hormones are but one class of factors that can regulate and activate steroid hormone receptors. Some additional factors that activate steroid hormone receptors have been identified, as have some factors that can regulate concentrations of receptors. Relatively little is known at this time about the range of neurotransmitters, humoral factors, and intracellular signaling pathways that are involved.
Collapse
Affiliation(s)
- Jeffrey D Blaustein
- Center for Neuroendocrine Studies, University of Massachusetts, Amherst, Massachusetts 01003-9271, USA.
| |
Collapse
|
29
|
Abstract
The ovarian steroid hormones have numerous effects on the brain, many of which are mediated, at least in part, by interaction with intracellular steroid hormone receptors acting as regulators of transcription. These intracellular steroid hormone receptors have often been considered to be activated solely by cognate hormone. However, during the past decade, numerous studies have shown that the receptors can be activated by neurotransmitters and intracellular signaling systems, through a process that does not require hormone. Although most of these have been in vitro experiments, others have been in vivo. Evidence from a wide variety of tissues and cells suggests that steroid hormone receptors are transcription factors that can be activated by a wide variety of factors, only one of which is cognate hormone. Furthermore, ligand-independent activation of neural steroid hormone receptors, rather than being a pharmacological or in vitro curiosity, seems to be a process that occurs in the normal physiology of animals. Thinking of steroid hormone receptors only as ligand-activated proteins may constrain our thinking about the many factors that may activate the receptors and cause receptor-dependent changes in neural gene expression and neuroendocrine function.
Collapse
Affiliation(s)
- Jeffrey D Blaustein
- Center for Neuroendocrine Studies, University of Massachusetts, Amherst, Massachusetts 01003, USA.
| |
Collapse
|
30
|
Molenda HA, Kilts CP, Allen RL, Tetel MJ. Nuclear receptor coactivator function in reproductive physiology and behavior. Biol Reprod 2003; 69:1449-57. [PMID: 12855594 PMCID: PMC2683359 DOI: 10.1095/biolreprod.103.019364] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Gonadal steroid hormones act throughout the body to elicit changes in gene expression that result in profound effects on reproductive physiology and behavior. Steroid hormones exert many of these effects by binding to their respective intracellular receptors, which are members of a nuclear receptor superfamily of transcriptional activators. A variety of in vitro studies indicate that nuclear receptor coactivators are required for efficient transcriptional activity of steroid receptors. Many of these coactivators are found in a variety of steroid hormone-responsive reproductive tissues, including the reproductive tract, mammary gland, and brain. While many nuclear receptor coactivators have been investigated in vitro, we are only now beginning to understand their function in reproductive physiology and behavior. In this review, we discuss the general mechanisms of action of nuclear receptor coactivators in steroid-dependent gene transcription. We then review some recent and exciting findings on the function of nuclear receptor coactivators in steroid-dependent brain development and reproductive physiology and behavior.
Collapse
Affiliation(s)
- Heather A. Molenda
- Center for Neuroendocrine Studies, Neuroscience and Behavior Program, University of Massachusetts, Amherst, Massachusetts 01003
| | - Caitlin P. Kilts
- Department of Biology, Neuroscience Program, Skidmore College, Saratoga Springs, New York 12866
| | - Rachel L. Allen
- Department of Biology, Neuroscience Program, Skidmore College, Saratoga Springs, New York 12866
| | - Marc J. Tetel
- Center for Neuroendocrine Studies, Neuroscience and Behavior Program, University of Massachusetts, Amherst, Massachusetts 01003
- Department of Biology, Neuroscience Program, Skidmore College, Saratoga Springs, New York 12866
- Correspondence: Marc J. Tetel, Department of Biology and Neuroscience Program, Skidmore College, 815 North Broadway, Saratoga Springs, NY 12866. FAX: 518 580 5071; e-mail:
| |
Collapse
|
31
|
Apostolakis EM, Lanz R, O'Malley BW. Pituitary adenylate cyclase-activating peptide: a pivotal modulator of steroid-induced reproductive behavior in female rodents. Mol Endocrinol 2003; 18:173-83. [PMID: 14593074 DOI: 10.1210/me.2002-0386] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) regulates the secretion of GnRH into the hypothalamic hypophysial portal system and sensitizes the pituitary for release of hormones that trigger ovulation. Because reproductive behavior is synchronized with GnRH release, the present study was undertaken to determine whether PACAP in the ventromedial nucleus (VMN) plays a role in receptivity. To this end, we used rat and mouse reproductive behavioral models to determine the biological relationship between PACAP and steroid receptor function in females. We provide evidence for the requirement of PACAP in the VMN for progesterone (P)-dependent sexual behavior in estrogen (E)-primed females. We clarify the biological and molecular mechanisms of PACAP activity by showing 1) that inhibition of endogenous PACAP suppresses P receptor (PR)-dependent sexual behavior facilitated by the steroid P or D1-like agonist SKF38393 and 2) that PR, steroid receptor coactivators-1 and -2, and new protein synthesis are essential for ligand independent PACAP-facilitated behavior. These findings are consistent with convergence of PACAP-mediated cellular signals on PR for genomic activation and subsequent behavioral changes. Further, we show that steroids regulate both endogenous PACAP mRNA in the VMN and immunoreactive PACAP in the medial basal hypothalamus and cerebral spinal fluid for ligand-dependent, steroid receptor-dependent receptivity. The present findings delineate a novel, steroid-dependent mechanism within the female hypothalamus by which the neuropeptide PACAP acts as a feed-forward, paracrine, and/or autocrine factor for synchronization of behavior coordinate with hypothalamic control of ovulation.
Collapse
Affiliation(s)
- Ede Marie Apostolakis
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | | | | |
Collapse
|
32
|
Abstract
Recent advances in the field of steroid hormone action have significantly advanced our understanding of neuroendocrine regulation of sexual behavior in female rodents. The presumed classical steroid receptor-steroid hormone functional relationship has undergone significant modifications to integrate the wider context of cellular signaling mechanisms initiated by sensory and environmental stimuli and their transcriptional regulation of steroid hormone receptors in reproductive behavior. This effort has greatly been aided by recent studies identifying steroid hormone receptors as transcriptional mediators of a variety of ligands, whose functional flexibility is dependent upon their recruitment of coregulators, and the availability of gene knockout animal models. This review provides a framework for current concepts in the field of steroid hormone action in the context of their regulation of female sexual behavior.
Collapse
Affiliation(s)
- Shaila Mani
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA.
| |
Collapse
|
33
|
Scott REM, Wu-Peng XS, Pfaff DW. Regulation and expression of progesterone receptor mRNA isoforms A and B in the male and female rat hypothalamus and pituitary following oestrogen treatment. J Neuroendocrinol 2002; 14:175-83. [PMID: 11999716 DOI: 10.1046/j.0007-1331.2001.00750.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Progesterone receptors play a central role in neuroendocrine and behavioural regulation. To gain insight into the sex- and tissue-specific regulation of progesterone receptors, protein binding on a progesterone receptor-oestrogen response element and mRNA levels for progesterone receptor (PR)-A and PR-B were compared between female and male rats following oestradiol benzoate replacement treatment in hypothalamic and pituitary tissue. Both male and female pituitary protein extracts demonstrated an increase in nuclear protein binding activity to a progesterone receptor-oestrogen response element following oestradiol benzoate treatment. However, there was a greater difference in total binding activity seen in the female pituitary extracts compared to male pituitary protein extracts. In both cases, reflecting the binding data, oestradiol benzoate pretreatment led to an increase in pituitary PR-B messenger RNA, although this increase was significantly larger in females than in males. Oestradiol benzoate treatment also led to a significant increase in specific binding of hypothalamic nuclear proteins to the progesterone receptor oestrogen response element from both females and male hypothalamic extracts. In addition, PR-B messenger RNA was induced by oestradiol benzoate treatment in the female rat hypothalamus, under circumstances where no PR-A could be detected. The male also demonstrated an increase in PR-B messenger RNA following oestradiol benzoate treatment, with undetectable levels of PR-A, although to a lesser degree than that seen in the female. The predominance of PR-B over PR-A messenger RNA in rat hypothalamus and pituitary, and the quantitative differences between female and male rats, could both contribute to the greater responsiveness of female rats to progesterone with respect to control over luteinizing hormone release from the pituitary, and lordosis behaviour regulated by hypothalamic neurones.
Collapse
Affiliation(s)
- R E M Scott
- Laboratory of Neurobiology and Behavior, The Rockefeller University, New York, NY, USA.
| | | | | |
Collapse
|
34
|
Molenda HA, Griffin AL, Auger AP, McCarthy MM, Tetel MJ. Nuclear receptor coactivators modulate hormone-dependent gene expression in brain and female reproductive behavior in rats. Endocrinology 2002; 143:436-44. [PMID: 11796496 DOI: 10.1210/endo.143.2.8659] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Gonadal steroid hormones act in the brain to elicit changes in gene expression that result in profound effects on behavior and physiology. A variety of in vitro studies indicate that nuclear receptor coactivators are required for efficient transcriptional activity of steroid receptors. Two nuclear receptor coactivators, steroid receptor coactivator-1 (SRC-1) and cAMP response element binding protein-binding protein (CBP), have been shown to act in concert to enhance ER activity in vitro. In the present study, we investigated the function of these important nuclear receptor coactivators in estrogen action in rodent brain. Reduction of SRC-1 and CBP protein in brain disrupted ER-mediated activation of the behaviorally relevant progestin receptor gene. Furthermore, we found that SRC-1 and CBP function in brain to modulate the expression of hormone-dependent female sexual behavior. These findings indicate that these nuclear receptor coactivators function in brain to modulate ER transcriptional activity and the expression of hormone-dependent behavior.
Collapse
Affiliation(s)
- Heather A Molenda
- Center for Neuroendocrine Studies and Neuroscience and Behavior Program, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | | | | | | | |
Collapse
|
35
|
Abstract
Ovarian steroid hormones, estradiol and progesterone, regulate cellular functions in the central nervous system, resulting in the alterations in physiology and reproductive behavior. One means by which steroid hormones exert their neural effects on reproductive behavior is via their intracellular receptors functioning as ligand-dependent transcription factors. Studies from our laboratory in the past few years have shown that in addition to their cognate ligands, neurotransmitters like dopamine can activate intracellular steroid receptors in a ligand-independent manner. Using biochemical and molecular approaches we have demonstrated that the effects of neurotransmitter dopamine, on reproductive behavior in female rats and mice, occur by means of cross talk between membrane receptors for dopamine and intracellular progestin receptors (PRs). In this article, our studies on the integration of intracellular signaling pathways leading to the activation of PRs and its impact on modulation of reproductive behavior are summarized.
Collapse
Affiliation(s)
- S Mani
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA.
| |
Collapse
|
36
|
Maurice T, Phan VL, Privat A. The anti-amnesic effects of sigma1 (sigma1) receptor agonists confirmed by in vivo antisense strategy in the mouse. Brain Res 2001; 898:113-21. [PMID: 11292454 DOI: 10.1016/s0006-8993(01)02152-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The sigma1 (sigma1) receptor cDNA was recently cloned in several animal species, including the mouse. In order to firmly establish the implication of sigma1 receptors in memory, a phosphorothioate-modified antisense oligodeoxynucleotide (aODN) targeting the sigma1 receptor mRNA and a mismatched analog (mODN) were administered intracerebroventricularly for 3 days in mice. Scatchard analyses of in vitro (+)-[3H]SKF-10,047 binding to sigma1 sites showed that Bmax values were significantly decreased in the hippocampus (-58.5%) and cortex (-38.1%), but not in the cerebellum, of aODN treated mice, as compared to saline- or mODN-treated animals. In vivo binding levels were also significantly decreased after aODN treatment in the hippocampus and cortex but not in the cerebellum. The anti-amnesic effects of the selective sigma1 agonists PRE-084 or SA4503 were evaluated against the learning impairments induced by dizocilpine or scopolamine, respectively, using spontaneous alternation behavior and passive avoidance task. The anti-amnesic effects of PRE-084 or SA4503, observed after saline- or mODN-treatment, were blocked after aODN administration. These observations bring a molecular basis to the modulatory role of sigma1 receptors in memory processes.
Collapse
Affiliation(s)
- T Maurice
- INSERM U. 336, Behavioral Neuropharmacology group, Institut de Biologie, 4, boulevard Henri IV, 34060, Montpellier, France.
| | | | | |
Collapse
|
37
|
Progesterone receptor and dopamine receptors are required in Delta 9-tetrahydrocannabinol modulation of sexual receptivity in female rats. Proc Natl Acad Sci U S A 2001; 98. [PMID: 11158625 PMCID: PMC14740 DOI: 10.1073/pnas.031563998] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ovarian steroids, estrogen and progesterone, influence the sensitivity of certain neural processes to cannabinoid treatment by modulation of brain dopaminergic activity. We examined the effects of the active ingredient of cannabis, Delta(9)-tetrahydrocannabinol (THC), on sexual behavior in female rats and its influence on steroid hormone receptors and neurotransmitters in the facilitation of sexual receptivity. Our results revealed that the facilitatory effect of THC was inhibited by antagonists to both progesterone and dopamine D(1) receptors. To test further the idea that progesterone receptors (PR) and/or dopamine receptors (D(1)R) in the hypothalamus are required for THC-facilitated sexual behavior in rodents, antisense and sense oligonucleotides to PR and D(1)R were administered intracerebroventricularly (ICV) into the third cerebral ventricle of ovariectomized, estradiol benzoate-primed rats. Progesterone- and THC-facilitated sexual behavior was inhibited in animals treated with antisense oligonucleotides to PR or to D(1)R. Antagonists to cannabinoid receptor-1 subtype (CB(1)), but not to cannabinoid receptor-2 subtype (CB(2)) inhibited progesterone- and dopamine-facilitated sexual receptivity in female rats. Our studies indicate that THC acts on the CB(1) cannabinoid receptor to initiate a signal transduction response that requires both membrane dopamine and intracellular progesterone receptors for effective induction of sexual behavior.
Collapse
|
38
|
Mani SK, Mitchell A, O'Malley BW. Progesterone receptor and dopamine receptors are required in 9-tetrahydrocannabinol modulation of sexual receptivity in female rats. Proc Natl Acad Sci U S A 2001; 98:1249-54. [PMID: 11158625 PMCID: PMC14740 DOI: 10.1073/pnas.98.3.1249] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ovarian steroids, estrogen and progesterone, influence the sensitivity of certain neural processes to cannabinoid treatment by modulation of brain dopaminergic activity. We examined the effects of the active ingredient of cannabis, Delta(9)-tetrahydrocannabinol (THC), on sexual behavior in female rats and its influence on steroid hormone receptors and neurotransmitters in the facilitation of sexual receptivity. Our results revealed that the facilitatory effect of THC was inhibited by antagonists to both progesterone and dopamine D(1) receptors. To test further the idea that progesterone receptors (PR) and/or dopamine receptors (D(1)R) in the hypothalamus are required for THC-facilitated sexual behavior in rodents, antisense and sense oligonucleotides to PR and D(1)R were administered intracerebroventricularly (ICV) into the third cerebral ventricle of ovariectomized, estradiol benzoate-primed rats. Progesterone- and THC-facilitated sexual behavior was inhibited in animals treated with antisense oligonucleotides to PR or to D(1)R. Antagonists to cannabinoid receptor-1 subtype (CB(1)), but not to cannabinoid receptor-2 subtype (CB(2)) inhibited progesterone- and dopamine-facilitated sexual receptivity in female rats. Our studies indicate that THC acts on the CB(1) cannabinoid receptor to initiate a signal transduction response that requires both membrane dopamine and intracellular progesterone receptors for effective induction of sexual behavior.
Collapse
MESH Headings
- Animals
- Benzazepines/administration & dosage
- Benzazepines/pharmacology
- Dopamine Antagonists/pharmacology
- Dronabinol/administration & dosage
- Dronabinol/pharmacology
- Estradiol/pharmacology
- Female
- Injections, Intraventricular
- Mifepristone/administration & dosage
- Mifepristone/pharmacology
- Oligodeoxyribonucleotides, Antisense/pharmacology
- Ovariectomy
- Piperidines/administration & dosage
- Piperidines/pharmacology
- Posture
- Progesterone/pharmacology
- Pyrazoles/administration & dosage
- Pyrazoles/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptors, Dopamine D1/antagonists & inhibitors
- Receptors, Dopamine D1/genetics
- Receptors, Dopamine D1/physiology
- Receptors, Progesterone/antagonists & inhibitors
- Receptors, Progesterone/genetics
- Receptors, Progesterone/physiology
- Rimonabant
- Sexual Behavior, Animal/drug effects
- Sexual Behavior, Animal/physiology
Collapse
Affiliation(s)
- S K Mani
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | |
Collapse
|
39
|
Saito N, Sasaki T, Furuse M, Arakawa K, Shimada K. Effect of AVT antisense oligodeoxynucleotides on AVT release induced by hypertonic stimulation in chicks. Comp Biochem Physiol A Mol Integr Physiol 2001; 128:147-53. [PMID: 11137447 DOI: 10.1016/s1095-6433(00)00290-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In birds, arginine vasotocin (AVT) and mesotocin (MT) are the neurohypophyseal hormones. AVT is known to be an avian antidiuretic hormone and is released from the neurohypophysis by dehydration or hyperosmotic stimulation. The purpose of this study was to determine whether the mechanism of AVT synthesis is related to the mechanism of hormone release from the neurohypophysis. Four-day-old chicks received an AVT antisense oligodeoxynucleotide (ODN) injection into the cerebral ventricle (icv). Following antisense administration, the chicks received hypertonic saline stimulation. Plasma levels of AVT and MT were measured by radioimmunoassays. In control birds, a hypertonic saline injection resulted in the increase of plasma AVT level. The administration of a high dose (50 microg) of antisense ODN inhibited the increase of plasma AVT level induced by the hypertonic saline stimulation. Plasma levels of MT did not change with the administration of hypertonic saline or antisense ODN. These results suggest that the mechanisms that regulate the secretion of AVT from the neurohypophysis may be coupled to the mechanisms that regulate the synthesis of AVT.
Collapse
Affiliation(s)
- N Saito
- Laboratory of Animal Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, 464-8601, Nagoya, Japan.
| | | | | | | | | |
Collapse
|
40
|
Mani SK, Fienberg AA, O'Callaghan JP, Snyder GL, Allen PB, Dash PK, Moore AN, Mitchell AJ, Bibb J, Greengard P, O'Malley BW. Requirement for DARPP-32 in progesterone-facilitated sexual receptivity in female rats and mice. Science 2000; 287:1053-6. [PMID: 10669419 DOI: 10.1126/science.287.5455.1053] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
DARPP-32, a dopamine- and adenosine 3',5'-monophosphate (cAMP)-regulated phosphoprotein (32 kilodaltons in size), is an obligate intermediate in progesterone (P)-facilitated sexual receptivity in female rats and mice. The facilitative effect of P on sexual receptivity in female rats was blocked by antisense oligonucleotides to DARPP-32. Homozygous mice carrying a null mutation for the DARPP-32 gene exhibited minimal levels of P-facilitated sexual receptivity when compared to their wild-type littermates. P significantly increased hypothalamic cAMP levels and cAMP-dependent protein kinase activity. These increases were not inhibited by a D1 subclass dopamine receptor antagonist. P also enhanced phosphorylation of DARPP-32 on threonine 34 in the hypothalamus of mice. DARPP-32 activation is thus an obligatory step in progestin receptor regulation of sexual receptivity in rats and mice.
Collapse
MESH Headings
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology
- Animals
- Cyclic AMP/metabolism
- Cyclic AMP-Dependent Protein Kinases/metabolism
- Dopamine/pharmacology
- Dopamine Agonists/pharmacology
- Dopamine and cAMP-Regulated Phosphoprotein 32
- Female
- Hypothalamus/metabolism
- Injections, Intraventricular
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Nerve Tissue Proteins
- Oligonucleotides, Antisense/pharmacology
- Phosphoproteins/genetics
- Phosphoproteins/metabolism
- Phosphorylation
- Posture
- Progesterone/pharmacology
- Proteins/genetics
- Proteins/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Progesterone/metabolism
- Serotonin/pharmacology
- Sexual Behavior, Animal/drug effects
- Signal Transduction
Collapse
Affiliation(s)
- S K Mani
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Broberger C, Nylander I, Geijer T, Terenius L, Hökfelt T, Georgieva J. Differential effects of intrastriatally infused fully and endcap phosphorothioate antisense oligonucleotides on morphology, histochemistry and prodynorphin expression in rat brain. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 75:25-45. [PMID: 10648885 DOI: 10.1016/s0169-328x(99)00276-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In the present study, we investigated the selectivity and specificity associated with continuous intrastriatal treatment with antisense oligonucleotides. Rats were given intrastriatal infusions for 72 h with phosphodiester, and fully and endcap phosphorothioated oligonucleotide probes complementary to prodynorphin mRNA. Dynorphin (Dyn) peptide levels were measured by radioimmunoassay. The integrity of three other striatal transmitter systems, the neuropeptide Y (NPY)-ergic interneurons, the cholinergic interneurons and the dopaminergic afferent innervation, was assessed histochemically. The gross morphology of the striatum and the distribution of fluorescently labelled antisense probes were also investigated. Brains infused with phosphodiester probes had tissue Dyn levels not different from control. They also showed little or no change in staining for NPY, acetylcholinesterase (AChE) and tyrosine hydroxylase (TH) and essentially normal striatal gross morphology. In contrast, brains treated with fully phosphorothioated oligonucleotides showed significant decreases in striatal Dyn levels but also severe tissue damage accompanied by massive cell infiltration and decreases in immunoreactivities for the striatal neurochemical markers. Fluorescently labelled phosphorothioate probes were observed widely in the striatum and adjacent structures and, presumably retrogradely transported, in the dopamine cell bodies in the substantia nigra, also revealing the presence of abnormal cellular structures within the striatum. By comparison, endcap probes significantly reduced striatal Dyn levels and showed good tissue penetration without inducing major changes in tissue morphology or histochemistry of non-dynorphinergic systems, except for cell infiltration. The deleterious tissue effects of fully phosphorothioated oligonucleotides and the ineffectiveness of phosphodiester oligonucleotides in inhibiting protein synthesis suggest that, of the probes examined in this study, endcap oligonucleotides are the most useful for in vivo studies in the central nervous system.
Collapse
Affiliation(s)
- C Broberger
- Department of Neuroscience, Karolinska Institutet, S-171 77, Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
42
|
Davis AM, Penschuck S, Fritschy JM, McCarthy MM. Developmental switch in the expression of GABA(A) receptor subunits alpha(1) and alpha(2) in the hypothalamus and limbic system of the rat. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2000; 119:127-38. [PMID: 10648879 DOI: 10.1016/s0165-3806(99)00150-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The GABA(A) receptor is a pentameric ligand gated ion channel complex assembled from a family of at least 17 different subunits encoded by distinct genes. Two subunits, alpha(1) and alpha(2), exhibit age dependent expression throughout several areas of the brain. In general, the density of immunoreactive product for alpha(1) is greatest in the adult brain, while alpha(2) is highest in younger tissue. Since the developmental switch in alpha(1) and alpha(2) coincides with the end of the sensitive period for steroid-mediated sexual differentiation of the brain, we hypothesized that GABA(A) receptor subunit expression may be involved in this process. We have examined the age-dependent expression of alpha(1) and alpha(2) in discrete regions of the hypothalamus and limbic system of males and females. While we did not detect any dramatic sex differences in alpha(1) or alpha(2) immunoreactive density, each region exhibited a unique developmental profile. In the ventromedial nucleus of neonatal animals immunoreactivity is highest for alpha(1), while in the adult the signal for alpha(2) is greater; the opposite of that observed in the ventrolateral thalamus. There is no age dependent change for alpha(1) in the preoptic area, while alpha(2) shows a small, but significant increase. Immunoreactive densities for both subunits increase in the arcuate nucleus and the hippocampus, but decrease in the lateral amygdala. We conclude that these regional differences in subunit expression across development determine individual characteristics of brain areas and may play a role in establishing unique physiological responses to GABA.
Collapse
Affiliation(s)
- A M Davis
- Department of Physiology and Center for Studies in Reproduction, University of Maryland, School of Medicine, Baltimore, MD 21201, USA.
| | | | | | | |
Collapse
|
43
|
Penichet ML, Kang YS, Pardridge WM, Morrison SL, Shin SU. An Antibody-Avidin Fusion Protein Specific for the Transferrin Receptor Serves as a Delivery Vehicle for Effective Brain Targeting: Initial Applications in Anti-HIV Antisense Drug Delivery to the Brain. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.8.4421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
In the present study a novel Ab-avidin fusion protein has been constructed to deliver biotinylated compounds across the blood brain barrier. This fusion molecule consists of an Ab specific for the transferrin receptor genetically fused to avidin. The Ab-avidin fusion protein (anti-TfR IgG3-CH3-Av) expressed in murine myeloma cells was correctly assembled and secreted and showed both Ab- and avidin-related activities. In animal models, it showed much longer serum half-life than the chemical conjugate between OX-26 and avidin. Most importantly, this fusion protein demonstrated superior [3H]biotin uptake into brain parenchyma in comparison with the chemical conjugate. We also delivered a biotinylated 18-mer antisense peptide-nucleic acid specific for the rev gene of HIV-1 to the brain. Brain uptake of the HIV antisense drug was increased at least 15-fold when it was bound to the anti-TfR IgG3-CH3-Av, suggesting its potential use in neurologic AIDS. This novel Ab fusion protein should have general utility as a universal vehicle to effectively deliver biotinylated compounds across the blood-brain barrier for diagnosis and/or therapy of a broad range of CNS disorders such as infectious diseases, brain tumors as well as Parkinson’s and Huntington’s diseases.
Collapse
Affiliation(s)
- Manuel L. Penichet
- *Department of Microbiology and Molecular Genetics and The Molecular Biology Institute, University of California, Los Angeles, CA 90095
| | - Young-Sook Kang
- †College of Pharmacy, Sookmyung Women’s University, Seoul, Korea
| | - William M. Pardridge
- ‡Department of Medicine and Brain Research Institute, University of California at Los Angeles School of Medicine, Los Angeles, CA 90095; and
| | - Sherie L. Morrison
- *Department of Microbiology and Molecular Genetics and The Molecular Biology Institute, University of California, Los Angeles, CA 90095
| | - Seung-Uon Shin
- *Department of Microbiology and Molecular Genetics and The Molecular Biology Institute, University of California, Los Angeles, CA 90095
- §Institute of Environment and Life Science, Hallym Academy of Sciences, Hallym University, Kangwon-do, Korea
| |
Collapse
|
44
|
Frye CA, Vongher JM. GABA(A), D1, and D5, but not progestin receptor, antagonist and anti-sense oligonucleotide infusions to the ventral tegmental area of cycling rats and hamsters attenuate lordosis. Behav Brain Res 1999; 103:23-34. [PMID: 10475161 DOI: 10.1016/s0166-4328(99)00020-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In hamsters, progesterone (P) in the hypothalamus and ventral tegmental area (VTA) is necessary for receptivity; in rats, hypothalamic P induces receptivity and midbrain P further enhances it. How P exerts its effects in the VTA on lordosis is of interest because few estrogen-induced P receptors (PRs) have been identified there. Sexual receptivity of rats and hamsters is enhanced when P's actions in the VTA are restricted to the membrane and when the gamma-aminobutyric acid (GABA)A agonist, muscimol, is infused into the VTA, but attenuated with infusions of the GABA(A) antagonist, bicuculline. The dopamine (DA) agonist. SKF38393, rapidly enhances receptivity when infused intravenously; this effect can be blocked by both DA receptor (DR) and PR antagonists. This study investigated the importance of PRs, glutamic acid decarboxylase (GAD), the enzyme responsible for GABA production, GABA(A) receptors (GBRs), and DRs in the VTA of cycling rats and hamsters for the expression of lordosis. Proestrous and diestrous animals implanted with bilateral VTA cannulae were pre-tested for receptivity, infused with either an antagonist (RU38486 (20 microg), bicuculline (100 ng), SCH23390 (100 ng)), anti-sense oligonucleotide (against PR (250 ng), GAD (500 ng), D1 (500 ng), D5 (250 ng)), or control infusions to each cannulae and re-tested. Vehicle and scrambled oligonucleotides were infused as controls and elicited similar effects. Antagonists of GBRs and DRs significantly reduced lordosis on post-tests compared to the PR antagonist and control conditions in rats and hamsters. Lordosis was significantly reduced, compared to controls, only by anti-sense oligonucleotides for GAD and D1- and D5-DR subtypes. These data suggest that in the VTA GABAergic and dopaminergic neurons may be more important in the mediation of sexual receptivity than neurons containing intracellular PRs.
Collapse
Affiliation(s)
- C A Frye
- Neuroscience Program, Connecticut College, New London, USA.
| | | |
Collapse
|
45
|
Szklarczyk AW, Kaczmarek L. Brain as a unique antisense environment. ANTISENSE & NUCLEIC ACID DRUG DEVELOPMENT 1999; 9:105-16. [PMID: 10192296 DOI: 10.1089/oli.1.1999.9.105] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
During the last few years, antisense oligodeoxyribonucleotides (asODN) have become a commonly used tool for blocking of gene expression in the mammalian central nervous system. Successful gene inhibition has been reported for such diverse targets as those encoding neurotransmitter receptors, neuropeptides, trophic factors, transcription factors, cytokines, transporters, ion channels, and others. This review presents a discussion of recent studies on ODN in the brain, with a focus on specific approaches taken by the researchers in this field and especially on peculiar features of this organ as a milieu for asODN action. It is concluded that from the presented literature survey no coherent view on how to rationally design ODN for brain studies has emerged.
Collapse
Affiliation(s)
- A W Szklarczyk
- Department of Molecular and Cellular Neurobiology, Nencki Institute, Warsaw, Poland
| | | |
Collapse
|
46
|
Yen SH, Pan JT. Progesterone advances the diurnal rhythm of tuberoinfundibular dopaminergic neuronal activity and the prolactin surge in ovariectomized, estrogen-primed rats and in intact proestrous rats. Endocrinology 1998; 139:1602-9. [PMID: 9528940 DOI: 10.1210/endo.139.4.5901] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A diurnal change of tuberoinfundibular dopaminergic (TIDA) neuronal activity exists in female rats, which is prerequisite for the estrogen-induced afternoon PRL surge. Because progesterone (P4) administered in the morning can advance and amplify the PRL surge, it is of interest to learn whether its action involves the TIDA neuron. In adult ovariectomized and estrogen-primed Sprague-Dawley rats, P4 (2 mg/kg, s.c.), given at 0800 h, exhibited a significant effect in advancing and amplifying the afternoon PRL surge, as determined by both chronic catheterization and decapitation methods of blood sampling. The afternoon decrease of TIDA neuronal activity, as determined by 3,4-dihydroxyphenylacetic acid concentration in the median eminence, was also advanced from 1400 to 1300 h. These effects of P4 on PRL surge and TIDA neuronal activity were shown to be dose- (from 0.5-4 mg/kg) and estrogen-dependent. To determine whether the effect of P4 was indeed acting via specific P4 receptor (PR), we used a PR antagonist, RU486, an antisense oligodeoxynucleotide (ODN) for PR messenger RNA (mRNA), and an antibody against PR in this study, to answer this question. Treatments of RU486 (5 mg x 3, s.c.) for 1-2 days before, and on the sampling day, were effective in antagonizing the effects of P4 on TIDA neuronal activity and on PRL secretion. Intracerebroventricular injection of an antisense ODN (4 nM) for PR mRNA or of an antibody (1:1 and 1:5) against PR for 2 days (24 and 48 h before decapitation) also were effective. Treatments of RU486 on the sampling day only, of sense ODN for PR mRNA, or of diluted PR antibody (1:10) were without significant effect. The involvement of P4 or PR on modulating the TIDA neuronal rhythm and the PRL surge also was shown in proestrous rats. In conclusion, P4 may play a significant modulatory role on rhythmic changes of the TIDA neuronal activity and the PRL surge in the female rats.
Collapse
Affiliation(s)
- S H Yen
- Department of Physiology, School of Life Science, National Yang-Ming University, Taipei, Taiwan
| | | |
Collapse
|
47
|
Dufourny L, Warembourg M, Jolivet A. Multiple peptides infrequently coexist in progesterone receptor-containing neurons in the ventrolateral hypothalamic nucleus of the guinea-pig: an immunocytochemical triple-label analysis of somatostatin, neurotensin and substance P. J Neuroendocrinol 1998; 10:165-73. [PMID: 9576604 DOI: 10.1046/j.1365-2826.1998.00190.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Progesterone plays an important role in regulating reproductive behaviour in guinea-pigs through actions exerted at the ventrolateral nucleus (VL), an area of the brain that contains progesterone receptors (PR) and neuroactive peptides, somatostatin (SOM), neurotensin (NT) and substance P (SP). Previous double-label analyses provided evidence that a substantial proportion of these neuropeptidergic cells contain PR. By means of triple-label immunofluorescence histochemistry, we examined whether PR are colocalized with two neuropeptides (SOM + NT or SP + SOM or SP + NT) within the same neurons in the VL. Ovariectomized guinea-pigs were primed with estradiol to induce PR immunoreactivity, and treated with colchicine to visualize immunoreactive (IR) neuropeptidergic cells. Both monoclonal mouse PR and polyclonal rabbit neuropeptide antibodies were used in double staining and in elution-restaining experiments. In the whole VL, the proportion of each coexisting peptide with PR obtained after double immunofluorescence appeared in decreasing order as: SOM (34%)>NT (25%)>SP (20%). Occasional colocalization was seen between PR and two neuropeptides throughout the rostrocaudal extent of the VL. Combining our various quantitative observations, we found that, of the total population of PR-IR neurons containing any combination of SOM, NT and SP, only about 1.5% contained SOM and NT, 2% contained SP and SOM and 1.6% contained SP and NT. These results indicate that while many PR-IR neurons also contain SOM or NT or SP in the guinea-pig VL, there may be very few PR-IR neurons that express more than one of these three peptides.
Collapse
|
48
|
Telleria CM, Mezzadri MR, Deis RP. Fertility impairment after mifepristone treatment to rats at proestrus. Actions on the hypothalamic-hypophyseal-ovarian axis. Contraception 1997; 56:267-74. [PMID: 9408709 DOI: 10.1016/s0010-7824(97)00137-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Accumulated evidence indicates that the antigestagen mifepristone affects the reproductive axis acting on hypothalamic, pituitary, ovarian, and uterine tissues. The purpose of this study was to further investigate which reproductive functions are impaired by the antagonist, critically compromising the reproductive process, leading to unsuccessful pregnancy. Circulating pituitary and ovarian hormones, sexual receptivity, ovulation, and implantation rates were studied in cycling rats receiving a single dose of mifepristone (1 or 10 mg/kg subcutaneously) at 12:00 proestrus, before luteinizing hormone (LH) stimulation of the ovulatory process. Mifepristone-treated rats had decreased preovulatory surges of LH and prolactin (PRL), and hypersecretion of LH, PRL, and progesterone at estrus. The sexual receptivity was dramatically affected by the antagonist as indicated by the profound decrease in the lordosis response evaluated on the night of proestrus. The number of ovulating animals and the number of oocytes recovered from the oviduct on the morning of estrus were not affected by mifepristone. The low number of rats that succeeded in mating with potent males became pregnant. However, they delivered an average of only two pups at parturition, indicating a failure in the implantation of the fertilized ova, as ovulation was not affected by the antagonist at the dose used. We conclude that a dramatic inhibition of the sexual receptivity and unsuccessful implantation, preceded by a reduction on LH and PRL secretion, are the major components leading to fertility impairment after a single dose of mifepristone administered before the preovulatory surge of LH.
Collapse
Affiliation(s)
- C M Telleria
- Laboratorio de Reproducción y Lactancia, Consejo Nacional de Investigaciones Científicas (LARLAC-CONICET), Mendoza, Argentina.
| | | | | |
Collapse
|
49
|
Abstract
The use of antisense oligodeoxynucleotides, targeted to the transcripts encoding biologically active proteins in the nervous system, provides a novel and highly selective means to further our understanding of the function of these proteins. Recent studies of these agents also suggest the possibility of their being used therapeutically for a variety of diseases involving neuronal tissue. In this paper we review studies showing the in vitro and in vivo effects of antisense oligodeoxynucleotides as they relate to neurobiological functions. Particular attention is paid to the behavioral and biochemical effects of antisense oligodeoxynucleotides directed to the various subtypes of receptors for the neurotransmitter dopamine. An example is also provided showing the effects of a plasmid vector expressing an antisense RNA targeted to the calmodulin mRNAs in the PC12 pheochromocytoma cell line. The advantages of antisense oligodeoxynucleotides over traditional pharmacological treatments are assessed, and the advantages of using vectors encoding antisense RNA over the use of antisense oligodeoxynucleotides are also considered. We also describe the criteria that should be used in designing antisense oligodeoxynucleotides and several controls that should be employed to assure their specificity of action.
Collapse
Affiliation(s)
- B Weiss
- Department of Pharmacology, Medical College of Pennsylvania, Philadelphia, USA
| | | | | |
Collapse
|
50
|
Abstract
A thorough evaluation of the pharmacokinetical properties of oligodeoxyribonucleotides (ODN) is a first step towards their rational application as gene expression blockers in the central nervous system (CNS). In this paper we present our own data, as well as those of other authors, on tissue distribution, stability, retention and cellular uptake of phosphodiester, phosphorothioate, and end-capped analogues of ODN introduced into the CNS. ODN are easily distributed within nervous tissue, and their tissue penetration depends on anatomical conditions. Retention of radioactivity delivered with ODN within nervous tissue is higher for phosphodiesters than for phosphorothioates. On the other hand, the tissue stability of phosphorothioates is substantially greater than the tissue stability of phosphodiesters as well as that of end-capped ODN. If the elimination process of ODN is also due to their degradation, it is apparently accomplished by endonucleases, because the recovery of end-capped ODN (resistant to exonucleases) was similar to unprotected phosphodiesters. The uptake of ODN by nerve cells is rather poor, although we have shown that phosphorothioates at least can be internalized by nerve cells in vivo. ODN are metabolized by nerve cells, which results in the formation of unidentified molecules of higher molecular weight than ODN themselves.
Collapse
Affiliation(s)
- A Szklarczyk
- Nencki Institute of Experimental Biology, Warsaw, Poland
| | | |
Collapse
|