1
|
Yuan A, Nixon RA. Posttranscriptional regulation of neurofilament proteins and tau in health and disease. Brain Res Bull 2023; 192:115-127. [PMID: 36441047 PMCID: PMC9907725 DOI: 10.1016/j.brainresbull.2022.10.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/20/2022] [Accepted: 10/26/2022] [Indexed: 01/16/2023]
Abstract
Neurofilament and tau proteins are neuron-specific cytoskeletal proteins that are enriched in axons, regulated by many of the same protein kinases, interact physically, and are the principal constituents of neurofibrillary lesions in major adult-onset dementias. Both proteins share functions related to the modulation of stability and functions of the microtubule network in axons, axonal transport and scaffolding of organelles, long-term synaptic potentiation, and learning and memory. Expression of these proteins is regulated not only at the transcriptional level but also through posttranscriptional control of pre-mRNA splicing, mRNA stability, transport, localization, local translation and degradation. Current evidence suggests that posttranscriptional determinants of their levels are usually regulated by RNA-binding proteins and microRNAs primarily through 3'-untranslated regions of neurofilament and tau mRNAs. Dysregulations of neurofilament and tau expression caused by mutations or pathologies of RNA-binding proteins such as TDP43, FUS and microRNAs are increasingly recognized in association with varied neurological disorders. In this review, we summarize the current understanding of posttranscriptional control of neurofilament and tau by examining the posttranscriptional regulation of neurofilament and tau by RNA-binding proteins and microRNAs implicated in health and diseases.
Collapse
Affiliation(s)
- Aidong Yuan
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY 10962, USA; Department of Psychiatry, New York University Langone Health, New York, NY 10016, USA; NYU Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA.
| | - Ralph A. Nixon
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY 10962, USA,Department of Psychiatry, New York University Langone Health, New York, NY 10016, USA,Department of Cell Biology, New York University Langone Health, New York, NY 10016, USA,NYU Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA,Correspondence to: Center for Dementia Research, Nathan Kline Institute, New York University Langone Health, New York, NY 10016, USA, (A. Yuan), (R.A. Nixon)
| |
Collapse
|
2
|
Seidel D, Obendorf J, Englich B, Jahnke HG, Semkova V, Haupt S, Girard M, Peschanski M, Brüstle O, Robitzki AA. Impedimetric real-time monitoring of neural pluripotent stem cell differentiation process on microelectrode arrays. Biosens Bioelectron 2016; 86:277-286. [PMID: 27387257 DOI: 10.1016/j.bios.2016.06.056] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 06/17/2016] [Accepted: 06/18/2016] [Indexed: 12/31/2022]
Abstract
In today's neurodevelopment and -disease research, human neural stem/progenitor cell-derived networks represent the sole accessible in vitro model possessing a primary phenotype. However, cultivation and moreover, differentiation as well as maturation of human neural stem/progenitor cells are very complex and time-consuming processes. Therefore, techniques for the sensitive non-invasive, real-time monitoring of neuronal differentiation and maturation are highly demanded. Using impedance spectroscopy, the differentiation of several human neural stem/progenitor cell lines was analyzed in detail. After development of an optimum microelectrode array for reliable and sensitive long-term monitoring, distinct cell-dependent impedimetric parameters that could specifically be associated with the progress and quality of neuronal differentiation were identified. Cellular impedance changes correlated well with the temporal regulation of biomolecular progenitor versus mature neural marker expression as well as cellular structure changes accompanying neuronal differentiation. More strikingly, the capability of the impedimetric differentiation monitoring system for the use as a screening tool was demonstrated by applying compounds that are known to promote neuronal differentiation such as the γ-secretase inhibitor DAPT. The non-invasive impedance spectroscopy-based measurement system can be used for sensitive and quantitative monitoring of neuronal differentiation processes. Therefore, this technique could be a very useful tool for quality control of neuronal differentiation and moreover, for neurogenic compound identification and industrial high-content screening demands in the field of safety assessment as well as drug development.
Collapse
Affiliation(s)
- Diana Seidel
- Centre for Biotechnology and Biomedicine (BBZ), Universität Leipzig, Division of Molecular Biological-Biochemical Processing Technology, Deutscher Platz 5, 04103 Leipzig, Germany
| | - Janine Obendorf
- Centre for Biotechnology and Biomedicine (BBZ), Universität Leipzig, Division of Molecular Biological-Biochemical Processing Technology, Deutscher Platz 5, 04103 Leipzig, Germany
| | - Beate Englich
- Centre for Biotechnology and Biomedicine (BBZ), Universität Leipzig, Division of Molecular Biological-Biochemical Processing Technology, Deutscher Platz 5, 04103 Leipzig, Germany
| | - Heinz-Georg Jahnke
- Centre for Biotechnology and Biomedicine (BBZ), Universität Leipzig, Division of Molecular Biological-Biochemical Processing Technology, Deutscher Platz 5, 04103 Leipzig, Germany
| | - Vesselina Semkova
- Institute of Reconstructive Neurobiology, University of Bonn and Hertie Foundation, Sigmund-Freud-Strasse 25, 53127 Bonn, Germany
| | - Simone Haupt
- LIFE&BRAIN GmbH, Sigmund-Freud-Strasse 25, 53127 Bonn, Germany; Institute of Reconstructive Neurobiology, University of Bonn and Hertie Foundation, Sigmund-Freud-Strasse 25, 53127 Bonn, Germany
| | - Mathilde Girard
- CECS, I-STEM, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, Genopole Campus 1, 5 rue Henri Desbruères, 91030 Evry Cedex, France
| | - Marc Peschanski
- INSERM U861, I-STEM, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, Genopole Campus 1, 5 rue Henri Desbruères, 91030 Evry Cedex, France
| | - Oliver Brüstle
- LIFE&BRAIN GmbH, Sigmund-Freud-Strasse 25, 53127 Bonn, Germany; Institute of Reconstructive Neurobiology, University of Bonn and Hertie Foundation, Sigmund-Freud-Strasse 25, 53127 Bonn, Germany
| | - Andrea A Robitzki
- Centre for Biotechnology and Biomedicine (BBZ), Universität Leipzig, Division of Molecular Biological-Biochemical Processing Technology, Deutscher Platz 5, 04103 Leipzig, Germany.
| |
Collapse
|
3
|
Using Xenopus Embryos to Study Transcriptional and Posttranscriptional Gene Regulatory Mechanisms of Intermediate Filaments. Methods Enzymol 2016; 568:635-60. [DOI: 10.1016/bs.mie.2015.07.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
4
|
Gama Sosa MA, De Gasperi R, Elder GA. Modeling human neurodegenerative diseases in transgenic systems. Hum Genet 2011; 131:535-63. [PMID: 22167414 DOI: 10.1007/s00439-011-1119-1] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 11/23/2011] [Indexed: 02/07/2023]
Abstract
Transgenic systems are widely used to study the cellular and molecular basis of human neurodegenerative diseases. A wide variety of model organisms have been utilized, including bacteria (Escherichia coli), plants (Arabidopsis thaliana), nematodes (Caenorhabditis elegans), arthropods (Drosophila melanogaster), fish (zebrafish, Danio rerio), rodents (mouse, Mus musculus and rat, Rattus norvegicus) as well as non-human primates (rhesus monkey, Macaca mulatta). These transgenic systems have enormous value for understanding the pathophysiological basis of these disorders and have, in some cases, been instrumental in the development of therapeutic approaches to treat these conditions. In this review, we discuss the most commonly used model organisms and the methodologies available for the preparation of transgenic organisms. Moreover, we provide selected examples of the use of these technologies for the preparation of transgenic animal models of neurodegenerative diseases, including Alzheimer's disease (AD), frontotemporal lobar degeneration (FTLD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD) and Parkinson's disease (PD) and discuss the application of these technologies to AD as an example of how transgenic modeling has affected the study of human neurodegenerative diseases.
Collapse
Affiliation(s)
- Miguel A Gama Sosa
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY 10468, USA.
| | | | | |
Collapse
|
5
|
Szaro BG, Strong MJ. Regulation of Cytoskeletal Composition in Neurons: Transcriptional and Post-transcriptional Control in Development, Regeneration, and Disease. ADVANCES IN NEUROBIOLOGY 2011. [DOI: 10.1007/978-1-4419-6787-9_24] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
6
|
Dequen F, Filali M, Larivière RC, Perrot R, Hisanaga SI, Julien JP. Reversal of neuropathy phenotypes in conditional mouse model of Charcot-Marie-Tooth disease type 2E. Hum Mol Genet 2010; 19:2616-29. [PMID: 20421365 DOI: 10.1093/hmg/ddq149] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Mutations in the gene encoding for the neurofilament light subunit (NF-L) are responsible for Charcot-Marie-Tooth (CMT) neuropathy type 2E. To address whether CMT2E disease is potentially reversible, we generated a mouse model with conditional doxycycline-responsive gene system that allows repression of mutant hNF-LP22S transgene expression in adult neurons. The hNF-LP22S;tTa transgenic (tg) mice recapitulated key features of CMT2E disease, including aberrant hindlimb posture, motor deficits, hypertrophy of muscle fibres and loss of muscle innervation without neuronal loss. Remarkably, a 3-month treatment of hNF-LP22S;tTa mice with doxycycline after onset of disease efficiently down-regulated expression of hNF-LP22S and it caused reversal of CMT neurological phenotypes with restoration of muscle innervation and of neurofilament protein distribution along the sciatic nerve. These data suggest that therapeutic approaches aimed at abolishing expression or neutralizing hNF-L mutants might not only halt the progress of CMT2E disease, but also revert the disabilities.
Collapse
Affiliation(s)
- Florence Dequen
- Research Centre of CHUQ, Department of Psychiatry and Neurosciences, Laval University, Québec, Canada
| | | | | | | | | | | |
Collapse
|
7
|
Szaro BG, Strong MJ. Post-transcriptional control of neurofilaments: New roles in development, regeneration and neurodegenerative disease. Trends Neurosci 2010; 33:27-37. [DOI: 10.1016/j.tins.2009.10.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2009] [Revised: 09/21/2009] [Accepted: 10/06/2009] [Indexed: 12/17/2022]
|
8
|
Perrot R, Berges R, Bocquet A, Eyer J. Review of the Multiple Aspects of Neurofilament Functions, and their Possible Contribution to Neurodegeneration. Mol Neurobiol 2008; 38:27-65. [DOI: 10.1007/s12035-008-8033-0] [Citation(s) in RCA: 205] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Accepted: 06/14/2008] [Indexed: 10/21/2022]
|
9
|
A comparison of LEDGFp52 and CNTF on the in vitro growth of rat retinal ganglion cell neurites. Neurosci Lett 2008; 440:9-13. [PMID: 18541375 DOI: 10.1016/j.neulet.2008.05.058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2008] [Revised: 05/08/2008] [Accepted: 05/08/2008] [Indexed: 11/23/2022]
Abstract
Lens epithelium-derived growth factor (LEDGF) can be alternatively spliced to produce two isoforms-LEDGFp52 and LEDGFp75, however, LEDGFp52 has rarely been investigated. The LEDGFp52 protein or its monoclonal antibody was added to primary rat retinal ganglion cell cultures and their impact on neurite number and length, and the mRNA and protein expression levels of GAP-43, NF-L and MAP-2 quantified. LEDGFp52 was compared to the addition of ciliary neurotrophic factor (CNTF). LEDGFp52 protein significantly increased primary neurite growth compared to control conditions. In addition, the expression of GAP-43, NF-L and MAP2 genes and proteins were also significantly up-regulated. The positive action of the LEDGFp52 protein was similar to or more efficacious than CNTF. LEDGFp52 appears to be an important regulatory protein for the growth of cell processes.
Collapse
|
10
|
Thyagarajan A, Szaro BG. Dynamic endogenous association of neurofilament mRNAs with K-homology domain ribonucleoproteins in developing cerebral cortex. Brain Res 2007; 1189:33-42. [PMID: 18054780 DOI: 10.1016/j.brainres.2007.11.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Revised: 10/22/2007] [Accepted: 11/01/2007] [Indexed: 01/29/2023]
Abstract
The low, middle, and high molecular mass neurofilament subunit proteins (NF-L, NF-M, and NF-H) co-polymerize to form neurofilaments (NFs). During development, NF subunit expression is highly regulated, and in neurodegenerative disease, aberrant regulation of this expression can lead to the formation of harmful aggregates. NF expression in both development and disease is under significant post-transcriptional control, but the specific ribonucleoproteins (RNPs) involved are only poorly understood. Previously, mass spectrometry on affinity purified proteins from rat brain identified three K-homology (KH) domain RNPs - hnRNP K, hnRNP E1, hnRNP E2 - as being capable of binding NF-M RNA. In the current study, to determine whether these RNPs associate with NF mRNAs endogenously, we performed a co-immunoprecipitation assay on homogenates of postnatal and developing rat cerebral cortex. We found that all three NF mRNAs indeed associated endogenously with these RNPs and that the degree of this association changed during postnatal development, a period when NF expression is under significant post-transcriptional control. The degree of these associations changed independently of the abundance of either the RNPs or the NF messages, indicating that the RNA-protein interactions themselves are directly regulated. This study is consistent with a model whereby these RNPs and NF mRNAs are components of a dynamic post-transcriptional regulatory module that influences the cytoskeletal compositions of neurons.
Collapse
Affiliation(s)
- Amar Thyagarajan
- Department of Biological Sciences and the Center for Neuroscience Research, University at Albany, State University of New York, Albany, New York 12222, USA
| | | |
Collapse
|
11
|
Thyagarajan A, Strong MJ, Szaro BG. Post-transcriptional control of neurofilaments in development and disease. Exp Cell Res 2007; 313:2088-97. [PMID: 17428473 DOI: 10.1016/j.yexcr.2007.02.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Revised: 02/15/2007] [Accepted: 02/20/2007] [Indexed: 02/05/2023]
Abstract
Tight coordination of the expression of neurofilament subunits is integral to the normal development and function of the nervous system. Imbalances in their expression are increasingly implicated in the induction of neurodegeneration in which formation of neurofilamentous aggregates is central to the pathology. Neurofilament expression can be controlled not only at the transcriptional level but also through post-transcriptional regulation of mRNA localization, stability, and translational efficiency. The critical role that post-transcriptional mechanisms play in maintaining neurofilament homeostasis is highlighted, for example, by the human disease amyotrophic lateral sclerosis, in which selective destabilization of NF-L mRNA (or failure to stabilize it) is associated with the formation of neurofilamentous aggregates - a hallmark of the disease process. This review discusses the post-transcriptional regulatory mechanisms and associated ribonucleoproteins that have been implicated to date in controlling neurofilament expression during normal development and in disrupting neurofilament homeostasis during neurodegenerative disease.
Collapse
Affiliation(s)
- Amar Thyagarajan
- Department of Biological Sciences and the Neuroscience Research Center, University at Albany, SUNY, 1400 Washington Avenue, Albany, NY 12222, USA
| | | | | |
Collapse
|
12
|
Song F, Zhao X, Zhou G, Zhu Y, Xie K. Carbon Disulfide-Induced Alterations of Neurofilaments and Calpains Content in Rat Spinal Cord. Neurochem Res 2006; 31:1491-9. [PMID: 17120161 DOI: 10.1007/s11064-006-9210-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Accepted: 10/20/2006] [Indexed: 11/28/2022]
Abstract
To investigate the mechanism of carbon disulfide-induced neuropathy, male Wistar rats were randomly divided into two experimental groups and one control group. The rats in two experimental groups were treated with carbon disulfide by gavage at dosages of 300 and 500 mg/kg/day, respectively, five times per week for 12 weeks. Spinal cords of carbon disulfide-intoxicated rats and their age-matched controls were Triton-extracted and ultracentrifuged to yield a pellet fraction of neurofilament (NF) polymer and a corresponding supernatant fraction. Then, the contents of NF triplet proteins (NF-H, NF-M, NF-L) and two calpain isoforms (m-calpain and mu-calpain) in both fractions were determined by immunoblotting. In the meantime, the mRNA levels of NF-H, NF-M, and NF-L in spinal cords were quantified using reverse transcriptase-polymerase chain reaction. Results showed that in the pellet fraction, the contents of three NF subunits in both treated groups decreased significantly except NF-L in low dose group. In the supernatant fraction, the pattern of NFs alteration varied according to dose-levels. Compared to controls, three neurofilmant subunits in the high dose group displayed significant reduction consistently. However, in the low dose group, they remained unaffected. As for calpains, the contents of mu-calpain in both fractions increased significantly regardless of carbon disulfide dose-levels. Meanwhile, m-calpain demonstrated a significant decline in the supernatant fraction, and remained unchangeable in the pellet fraction compared to the control group. Furthermore, the levels of mRNA expression of NF-H, NF-M, and NF-L genes were elevated consistently in CS(2)-treated groups. These findings suggested that carbon disulfide intoxication was associated with obvious alterations of NFs content in rat spinal cord, which might be involved in the development of carbon disulfide neurotoxicity.
Collapse
Affiliation(s)
- Fuyong Song
- Institute of Toxicology, Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | | | | | | | | |
Collapse
|
13
|
Cañete-Soler R, Wu J, Zhai J, Shamim M, Schlaepfer WW. p190RhoGEF Binds to a destabilizing element in the 3' untranslated region of light neurofilament subunit mRNA and alters the stability of the transcript. J Biol Chem 2001; 276:32046-50. [PMID: 11435431 DOI: 10.1074/jbc.m104104200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Stabilization of neurofilament (NF) mRNAs plays a major role in regulating levels of NF expression and in establishing axonal size and rate of axonal conduction. Previous studies have identified a 68-nucleotide destabilizing element at the junction of the coding region and 3' untranslated region of the light NF subunit (NF-L) mRNA. The present study has used the destabilizing element (probe A) to screen a rat brain cDNA library for interactive proteins. A cDNA clone encoding 1068 nucleotides in the C-terminal domain of p190RhoGEF (clone 39) was found to bind strongly and specifically to the RNA probe. The interaction was confirmed using a glutathione S-transferase/clone 39 fusion protein in Northwestern, gel-shift, and cross-linkage studies. The glutathione S-transferase/clone 39 fusion protein also enhanced the cross-linkage of a major 43-kDa protein in brain extract to the destabilizing element. Functional studies on stably transfected neuronal cells showed that p190RhoGEF expression increased the half-life of a wild-type NF-L mRNA but did not alter the half-life of a mutant NF-L mRNA lacking the destabilizing element. The findings reveal a novel interactive feature of p190RhoGEF that links the exchange factor with NF mRNA stability and regulation of the axonal cytoskeleton.
Collapse
Affiliation(s)
- R Cañete-Soler
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Medical School, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | |
Collapse
|
14
|
Stork O, Welzl H, Wolfer D, Schuster T, Mantei N, Stork S, Hoyer D, Lipp H, Obata K, Schachner M. Recovery of emotional behaviour in neural cell adhesion molecule (NCAM) null mutant mice through transgenic expression of NCAM180. Eur J Neurosci 2000; 12:3291-306. [PMID: 10998113 DOI: 10.1046/j.1460-9568.2000.00197.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the present study we further investigate functions of the neural cell adhesion molecule (NCAM) in the mature central nervous system and its implications for animal behaviour. To this end we generated transgenic mice expressing the major NCAM isoform with the largest cytoplasmic domain, NCAM180, under control of a promoter for the small form neurofilament gene. Transgenic mice were also bred with mice deficient in endogenous NCAM (Ncam-/- mice) so that effects of NCAM180 could be analysed in the presence and absence of endogenous NCAM. While overexpression of transgenic NCAM180 was without apparent behavioural or morphological effect, its expression in Ncam-/- mice counteracted NCAM ablation-induced aggressive, anxiety-like and antidepressant-like behaviour. It furthermore prevented a hypersensitivity of Ncam-/- mice to the anxiolytic serotonin1A (5-HT1A) receptor agonist buspirone. Such recovery of emotional behaviour and behavioural 5-HT1A response occurred in spite of misdevelopment of the olfactory bulb and hippocampus that is characteristic of Ncam-/- mice, and without an apparent change in the expression of 5-HT1A binding sites in the brain. Hippocampus- and amygdala-dependent learning, though disturbed in Ncam-/- mice, remained unaffected by the transgenic NCAM180. We suggest an involvement of NCAM180-mediated cell recognition processes in the serotonergic modulation of emotional behaviour in adult mice.
Collapse
Affiliation(s)
- O Stork
- Department of Neurobiology, Swiss Federal Institute of Technology, Hönggerberg, CH 8093 Zürich, Switzerland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Ma D, Descarries L, Micheva KD, Lepage Y, Julien JP, Doucet G. Severe neuronal losses with age in the parietal cortex and ventrobasal thalamus of mice transgenic for the human NF-L neurofilament protein. J Comp Neurol 1999. [DOI: 10.1002/(sici)1096-9861(19990419)406:4<433::aid-cne2>3.0.co;2-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
16
|
Niloff MS, Dunn RJ, Levine RL. The levels of retinal mRNA for gefiltin, a neuronal intermediate filament protein, are regulated by the tectum during optic fiber regeneration in the goldfish. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1998; 61:78-89. [PMID: 9795150 DOI: 10.1016/s0169-328x(98)00204-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Reorganization of the intermediate filament (IF) network during axonal regeneration is accompanied by changes in the expression of various IF proteins. An increase in expression of the neuronal IF subunit gefiltin in goldfish retinal ganglion cells (RGCs) has been linked to the unique ability of the goldfish optic nerve to regenerate following injury. Evidence suggests that the optic tectum, the target of optic fibers, may regulate the expression of gefiltin during regeneration. To address this issue we examined gefiltin mRNA levels during optic fiber regeneration in the presence or absence of the tectum. We found that gefiltin mRNA levels in the RGCs of animals that received an optic nerve crush (ONC group) began increasing by 10 days, peaked from 20 to 38 days at 5.5-fold over normal, and declined to near normal values by 115 days. In animals that had the entire tectum removed as well as an optic nerve crush (ETR group), gefiltin mRNA levels increased by 10 days, peaked at 20 days at 5.5 to 6.5-fold over normal, and although they dropped slightly thereafter, they remained elevated at 5-fold over normal for at least 115 days. When axons regenerated to the ipsilateral tectal lobe as a result of a left tectal lobe removal and left eye removal surgery (LTR/LER group), the expression pattern of gefiltin mRNA paralleled that of the ONC group. We also found that the abundance of gefiltin subunits in the retina was elevated at 30 days of regeneration in ONC and ETR animals, and that levels in the nerve were reconstituted to 80% of normal by 30 days. These results demonstrate that increases in gefiltin mRNA and protein levels during optic nerve regeneration are independent of the tectum, whereas the downregulation of gefiltin mRNA levels in the late stages of regeneration is entirely dependent upon the tectum.
Collapse
Affiliation(s)
- M S Niloff
- Department of Biology, 1205 Dr. Penfield Avenue, McGill University, Montreal, Canada
| | | | | |
Collapse
|
17
|
Paterno GD, Gillespie LL, Julien JP, Skup D. Regulation of neurofilament L, M and H gene expression during retinoic acid-induced neural differentiation of P19 embryonal carcinoma cells. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1997; 49:247-54. [PMID: 9387884 DOI: 10.1016/s0169-328x(97)00157-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have investigated the regulation of neurofilament gene expression during retinoic acid (RA)-induced neural differentiation of P19 embryonal carcinoma (EC) cells. Western blot analysis demonstrated that P19 EC cells contain significant levels of NF-L protein in the insoluble fraction but undetectable levels of NF-M and NF-H protein in either the insoluble or total cell fractions. However, immunocytochemical detection of NF-L protein in P19 EC cells showed diffuse staining within the majority of cells, rather than association with intermediate filament-like structures or staining within a subpopulation of differentiated neurons. Detectable levels of both NF-L and NF-M mRNA were present in P19 EC cells whereas NF-H mRNA remained below levels of detection, even by RT-PCR analysis. When RA-treated aggregates of P19 cells were cultured under conditions permissive for neurite outgrowth, we observed a significant increase in the amount of detectable NF-L protein localized within morphologically distinct neurons. Differentiation was also accompanied by the appearance of both the NF-M and NF-H subunits. Northern analysis revealed that this differentiation was accompanied by coincident increase in the steady-state levels of the mRNA for all three subunits and that the temporal pattern of increase was similar to what has been observed in the fetal and neonatal brain. The increase in NF-L and NF-M mRNA levels were accompanied by a concomitant increase in the rate of transcription, however, our results suggest that additional post-transcriptional mechanisms may be involved in regulating NF gene expression during the differentiation of pluripotent P19 cells.
Collapse
Affiliation(s)
- G D Paterno
- Division of Basic Medical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Canada.
| | | | | | | |
Collapse
|
18
|
Yaworsky PJ, Gardner DP, Kappen C. Transgenic analyses reveal developmentally regulated neuron- and muscle-specific elements in the murine neurofilament light chain gene promoter. J Biol Chem 1997; 272:25112-20. [PMID: 9312121 DOI: 10.1074/jbc.272.40.25112] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We report here the developmental activity of regulatory elements that reside within 1.7 kilobases of the murine neurofilament light chain (NF-L) gene promoter. NF-L promoter activity is first detected at embryonic day 8.5 in neuroepithelial cells. Neuron-specific gene expression is maintained in the spinal cord until embryonic day 12.5 and at later developmental stages in the brain and sensory neuroepithelia. After day 14.5, the promoter becomes active in myogenic cells. Transgene expression in both neurons and muscle is consistent with the detection of endogenous NF-L transcript in both neuronal and myogenic tissues of neonates by reverse transcriptase-polymerase chain reaction. Neuron- and muscle-specific activities of the NF-L promoter decrease and are nearly undetectable after birth. Thus, the 1.7-kilobase NF-L promoter contains regulatory elements for initiation but not maintenance of transcription from the NF-L locus. Deletion analyses reveal that independent regulatory elements control the observed tissue-specific activities and implicate a potential MyoD binding site as the muscle-specific enhancer. Our results demonstrate that the NF-L promoter contains distinct regulatory elements for both neuron- and muscle-specific gene expression and that these activities are temporally separated during embryogenesis.
Collapse
Affiliation(s)
- P J Yaworsky
- Samuel C. Johnson Medical Research Center, Mayo Clinic Arizona, Scottsdale, Arizona 85259, USA
| | | | | |
Collapse
|
19
|
Krekoski CA, Parhad IM, Fung TS, Clark AW. Aging is associated with divergent effects on Nf-L and GFAP transcription in rat brain. Neurobiol Aging 1996; 17:833-41. [PMID: 9363793 DOI: 10.1016/s0197-4580(96)00078-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We studied the effects of advancing age on the expression of several proteins important in the structure and function of the nervous system. Brains of young (3 month), middle-aged (13 month), and old (29 month) male Fischer 344 rats were examined. Run-on transcription and Northern blot hybridizations were used to determine gene-specific transcription rates and mRNA levels, respectively. With advancing age, there was a decrement in the transcription rate and mRNA levels for neurofilament-light subunit (Nf-L), but an increment in the transcription rate and mRNA levels for glial fibrillary acidic protein (GFAP). Proteolipid protein (PLP) mRNA levels were attenuated between 3 and 13 months of age, whereas amyloid precursor protein (APP) mRNA levels were attenuated in the middle-aged but not the old animals. Transcription rates for alpha-actin and fos, and mRNA levels for alpha-actin, were unaffected. These observations indicate divergent transcriptional regulation of several genes, notably Nf-L and GFAP, in the aging mammalian forebrain.
Collapse
Affiliation(s)
- C A Krekoski
- Department of Pathology, University of Calgary, Alberta, Canada
| | | | | | | |
Collapse
|
20
|
Molinari S, Battini R, Ferrari S, Pozzi L, Killcross AS, Robbins TW, Jouvenceau A, Billard JM, Dutar P, Lamour Y, Baker WA, Cox H, Emson PC. Deficits in memory and hippocampal long-term potentiation in mice with reduced calbindin D28K expression. Proc Natl Acad Sci U S A 1996; 93:8028-33. [PMID: 8755597 PMCID: PMC38869 DOI: 10.1073/pnas.93.15.8028] [Citation(s) in RCA: 132] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The influx of calcium into the postsynaptic neuron is likely to be an important event in memory formation. Among the mechanisms that nerve cells may use to alter the time course or size of a spike of intracellular calcium are cytosolic calcium binding or "buffering" proteins. To consider the role in memory formation of one of these proteins, calbindin D28K, which is abundant in many neurons, including the CA1 pyramidal cells of the hippocampus, transgenic mice deficient in calbindin D28K have been created. These mice show selective impairments in spatial learning paradigms and fail to maintain long-term potentiation. These results suggest a role for calbindin D28K protein in temporally extending a neuronal calcium signal, allowing the activation of calcium-dependent intracellular signaling pathways underlying memory function.
Collapse
Affiliation(s)
- S Molinari
- Dipartimento di Scienze Biomediche, Sezione di Chimica Biologica, Universita di Modena, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Andrä K, Abramowski D, Duke M, Probst A, Wiederhold KH, Bürki K, Goedert M, Sommer B, Staufenbiel M. Expression of APP in transgenic mice: a comparison of neuron-specific promoters. Neurobiol Aging 1996; 17:183-90. [PMID: 8744399 DOI: 10.1016/0197-4580(95)02066-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The beta-amyloid precursor protein (APP) carries mutations in codons 717 or 670/671, which cosegregate with familial forms of Alzheimer's disease (AD). As an initial step to study the related pathogenetic mechanisms in vivo we have generated transgenic mice expressing APP with these mutations. Several neuron-specific promoters were used to drive expression of human APP cDNAs. Only the Thy-1 promoter yielded transgene expression levels comparable to or above the endogenous mouse levels. Deletion of a 121 bp sequence from the 3' untranslated region of APP appeared to increase mRNA levels. Transgene mRNA was found throughout the brain with highest levels in hippocampus and cerebral cortex. Accordingly, human APP was detected in these regions by Western blotting. Protein levels paralleled mRNA levels reaching or exceeding the amount of endogenous APP. Variable reactivity of human APP in cell bodies was shown by immunocytochemistry. Although our initial histological examinations did not reveal any alterations characteristic of AD, further studied will be required.
Collapse
Affiliation(s)
- K Andrä
- Preclinical Research, Sandoz Pharma Ltd, Basel, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Cadrin M, Martinoli MG. Alterations of intermediate filaments in various histopathological conditions. Biochem Cell Biol 1995; 73:627-34. [PMID: 8714682 DOI: 10.1139/o95-069] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Intermediate filament proteins belong to a multigene family and constitute an important cytoskeletal component of most vertebrate cells. Their pattern of expression is tissue specific and is highly controlled during embryonic development. Numerous pathologies are known to be associated with modifications of intermediate filament organisation, although their precise role has not yet been elucidated. The present review focuses on the most recent data concerning the possible causes of intermediate filaments disorganization in specific pathologic conditions affecting the epidermis, the liver, and the nervous system. We discuss the formation of abnormal intermediate filament networks that arise as a consequence of mutations that directly affect intermediate filament structure or are induced by multifactorial causes such as modifications of post-translational processes and changes in the levels of expression.
Collapse
Affiliation(s)
- M Cadrin
- Département de chimie-biologie, Université du Québec à Trois-Rivières, QC, Canada
| | | |
Collapse
|
23
|
Hsu C, Janicki S, Monteiro MJ. The first intron of the mouse neurofilament light gene (NF-L) increases gene expression. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1995; 32:241-51. [PMID: 7500835 DOI: 10.1016/0169-328x(95)00082-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Neurofilament expression is developmentally and post-transcriptionally controlled. Using transient transfection assays in mouse L cells, we demonstrate that the expression of the mouse neurofilament light subunit (NF-L) is influenced by intron sequences. NF-L expression was decreased twenty fold upon deletion of the three intron sequences. Elements contained principally within a 350 bp region of intron 1 were responsible for enhanced NF-L expression. Enhancement of expression did not occur when intron I was placed 3' to a heterologous chloramphenicol acetyl transferase (CAT) gene whose expression was driven by NF-L 5' sequences. The intron enhancement of NF-L expression was not promoter-specific and also occurred with the mouse sarcoma virus (MSV) LTR promoter. These data suggest intron sequences may be important in regulating NF gene expression.
Collapse
Affiliation(s)
- C Hsu
- Medical Biotechnology Center, University of Maryland Biotechnology Institute, Baltimore, USA
| | | | | |
Collapse
|
24
|
Ma D, Descarries L, Julien JP, Doucet G. Abnormal perikaryal accumulation of neurofilament light protein in the brain of mice transgenic for the human protein: sequence of postnatal development. Neuroscience 1995; 68:135-49. [PMID: 7477919 DOI: 10.1016/0306-4522(95)00088-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Adult mice transgenic for the human form of neurofilament light protein display abnormal perikaryal immunoreactivity for this protein in many regions of the CNS and notably the thalamus. To determine the sequence of development of these anomalies, we have compared normal and transgenic mice of different postnatal ages (P0-P70), using immunocytochemistry with primary antibodies recognizing both murine and human sequence of neurofilament light protein (NR-4) or the human form only (DP5-1-12). In normal mouse brainstem, several nuclei displayed immunoreactive perikarya at P0. The number of these perikarya culminated at P10, followed by a general decrease, some nuclei having lost all perikaryal immunostaining in adults. In transgenic mouse brainstem, the distribution of perikaryal immunoreactivity already resembled at P0 that of P10 in normal mouse, and remained unchanged in adults. Differences between normal and transgenic mice were even more pronounced in the forebrain. Some nuclei of normal mouse basal forebrain that were weakly immunopositive at P10 or P20, but no longer in adults, were already labeled at P0 and remained so or became more intense at later stages in transgenic mice. In the thalamus of normal mouse, perikaryal labeling was faint, confined to a few nuclei, and detected only transiently at P10, whereas in transgenics, it was already observed in some nuclei at P0, increased in intensity and extended to other nuclei at P10, and persisted thereafter. Strongly immunoreactive, inflated perikarya with excentric nuclei were prominent in these thalamic nuclei at P20, and even larger in size at P70. In the cerebral cortex of normal mice, layers II-III and layer V of many cytoarchitectonic areas showed immunoreactive cell bodies at P10, a distribution which became gradually restricted to the parietal cortex in adults. In transgenic mice, immunopositive cortical cell bodies were first detected at P3, filled layers II-III of numerous cortical areas at P10, and then rapidly decreased in number to approach the adult pattern at P20. In the cortex as well as thalamus of P10 transgenic mice, differences between the patterns of cellular staining with clones NR4 and DP5-1-12 antibodies indicated that both the murine and human proteins were accumulated in these neurons. Thus, neurofilament light protein accumulation in the transgenic mouse brain generally involved neurons displaying perikaryal immunoreactivity for the protein at least at some point during normal postnatal development.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- D Ma
- Département de pathologie, Faculté de médecine, Université de Montréal, Québec, Canada
| | | | | | | |
Collapse
|
25
|
Tu PH, Elder G, Lazzarini RA, Nelson D, Trojanowski JQ, Lee VM. Overexpression of the human NFM subunit in transgenic mice modifies the level of endogenous NFL and the phosphorylation state of NFH subunits. J Cell Biol 1995; 129:1629-40. [PMID: 7790359 PMCID: PMC2291190 DOI: 10.1083/jcb.129.6.1629] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Neurofilaments (NFs), the major intermediate filaments of central nervous system (CNS) and peripheral nervous system (PNS) neurons, are heteropolymers formed from the high (NFH), middle (NFM), and low (NFL) molecular weight NF subunits. To gain insights into how the expression of NF subunit proteins is regulated in vivo, two transgenes harboring coding sequences for human NFM (hNFM) with or without the hNFM multiphosphorylation repeat domain were introduced into mice. Expression of both hNFM constructs was driven by the hNFM promoter and resulted in increased levels of hNFM subunits concomitant with an elevation in the levels of mouse NFL (mNFL) proteins in the CNS of both lines of transgenic mice. The increased levels of mNFL appear specific to NFM because previous studies of transgenic mice overexpressing either NFL or NFH did not result in increased expression of either of the other two NF subunits. Further, levels of the most heavily phosphorylated isoforms of mouse NFH (mNFH) were reduced in the brains of these transgenic mice, and electron microscopic studies showed a higher packing density of NFs in large-diameter CNS axons of transgenic versus wild-type mice. Thus, reduced phosphorylation of the mNFH carboxy terminal domain may be a compensatory response of CNS neurons to the increase in NFs, and reduced negative charges on mNFH sidearms may allow axons to accommodate more NFs by increasing their packing density. Taken together, these studies imply that NFM may play a dominant role in the in vivo regulation of the levels of NFL protein, the stoichiometry of NF subunits, and the phosphorylation state of NFH. NFM and NFH proteins may assume similar functions in regulation of NF packing density in vivo.
Collapse
Affiliation(s)
- P H Tu
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia 19104-4283, USA
| | | | | | | | | | | |
Collapse
|
26
|
Moskowitz PF, Oblinger MM. Transcriptional and post-transcriptional mechanisms regulating neurofilament and tubulin gene expression during normal development of the rat brain. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1995; 30:211-22. [PMID: 7637572 DOI: 10.1016/0169-328x(95)00006-e] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The transcription of the beta II-, beta IV- and alpha 1-tubulin genes as well as that of the three neurofilament genes, NF-L, NF-M and NF-H, was examined during the course of postnatal brain development. Changes in the transcriptional activity of these genes were studied using run-off transcription assays with nuclei isolated from the rat cerebral cortex at postnatal days P2, P5, P10 and adult stages. Northern blotting of total RNA isolated from the cerebral cortex was used to compare changes in steady-state mRNA levels with transcriptional changes that occurred in the cerebral cortex during the postnatal interval. Nuclear run-off assays showed that beta II- and alpha 1-tubulin gene transcription rates were maximal from P2-P5 and declined at later times. Changes in the steady-state mRNA levels for these two genes followed the same general pattern as transcription, but in the case of beta II-tubulin mRNA, were more dramatic. beta IV-tubulin gene transcription dropped between P2 and P5 and then increased progressively to the adult stage, coordinate with an increase in beta IV-tubulin steady-state mRNA levels. NF-L and NF-H genes showed similar patterns of transcriptional change during the postnatal interval, with maximal rates of transcription at P5 followed by a decline at later times. The steady-state levels of NF-L and NF-H mRNAs changed in a manner opposite to that of transcription and increased progressively during the postnatal interval. This suggests that mRNA stabilization is the main factor regulating the steady-state levels of NF-L and NF-H mRNAs in postnatal brain. For the NF-M gene, the developmental transcription pattern was also dissociated from steady-state mRNA level changes, but differed from the transcription patterns of the NF-L and NF-H genes. This suggests the importance of post-transcriptional mechanisms in regulating NF-M mRNA levels in brain and also indicates that some differences exist in the regulatory mechanisms which control NF-M compared to NF-L and NF-H mRNA levels.
Collapse
Affiliation(s)
- P F Moskowitz
- Department of Cell Biology and Anatomy, Chicago Medical School, IL 60064, USA
| | | |
Collapse
|
27
|
Grant P, Tseng D, Gould RM, Gainer H, Pant HC. Expression of neurofilament proteins during development of the nervous system in the squid Loligo pealei. J Comp Neurol 1995; 356:311-26. [PMID: 7629321 DOI: 10.1002/cne.903560212] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The squid nervous system includes various brain ganglia, optic lobes (the visual center), and the stellate ganglia, the system of giant motor fibers responsible for rapid jet-propelled escape behavior. The large caliber of giant fibers is due, in part, to the accumulation of squid-specific neurofilaments (NFs) made up of a heavily phosphorylated NF 220 protein together with NF 70 and NF 60 subunits. Using antibodies prepared against known peptide sequences in these proteins, together with a mammalian-derived antibody that specifically recognizes phosphorylated squid NF 220, we studied the localization of NFs in adult tissues and during neural development. Immunoblot and immunohistochemical analyses showed that NFs were present in adult neural tissues, primarily in selected fibers, with giant axons showing the most robust expression. After the first neurons differentiated at stage 22, immunoblots showed NF 60- and NF 70-immunoreactive proteins at all stages. The NF 220 subunit, however, was not detected in immunoblots at any developmental stage. Phosphorylated NF 220 immunoreactivity, although absent in immunoblots, was first seen in selected fibers of the stellate ganglia at stage 25, increasing thereafter in all giant fibers until hatching (stage 30). The stellate ganglion is the first neural tissue to acquire a mature neurofilament complement (i.e., phosphorylated NF 220), shortly before the onset of jet-propelled escape behavior. The temporal pattern of expression of the NFs during development resembled that seen in vertebrates; i.e., the smaller NFs appeared before the larger subunit in most neural tissues. In the squid, the expression pattern seems to depend upon the post-transcriptional regulation of a single gene rather than upon transcriptional regulation of three independent genes as in vertebrates.
Collapse
Affiliation(s)
- P Grant
- Laboratory of Neurochemistry, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
28
|
Mathieu JF, Ma D, Descarries L, Vallée A, Parent A, Julien JP, Doucet G. CNS distribution and overexpression of neurofilament light proteins (NF-L) in mice transgenic for the human NF-L: aberrant accumulation in thalamic perikarya. Exp Neurol 1995; 132:134-46. [PMID: 7720822 DOI: 10.1016/0014-4886(95)90067-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Light microscopic immunocytochemistry with monoclonal antibodies recognizing both murine and human light neurofilament proteins (mNF-L and hNF-L) or hNF-L only was used to examine the distribution of NF-L in the CNS of adult mice, normal or transgenic for the human gene. In normal mice, major fiber bundles were immunoreactive to the first antibody, with few exceptions such as the internal capsule, anterior commissure, and corpus callosum. Strong immunoreactivity was also present in the perikarya of motoneurons in the spinal cord and brainstem, as well as in other brainstem nuclei. Faint cell body staining was visible in layers II, III, and V of the parietal cortex and layers V and VI of the retrosplenial cingulate cortex. In transgenic mice, all forebrain as well as brainstem fiber tracts were intensely immunoreactive to both antibodies. Cell body staining was more intense than in normal mouse and involved additional forebrain and brainstem regions, including extended areas of cerebral cortex. Abnormal cell body labeling was particularly striking in several thalamic nuclei, where numerous darkly stained perikarya were considerably enlarged by accumulated immunoreactive material and exhibited eccentric and fragmented nuclei. At the electron microscopic level, these perikarya were filled with disarrayed filaments displacing all other organelles against the cytoplasmic membrane. Such aberrant accumulation of NF-L was presumably the result of an overexpression in selective subpopulations of CNS neurons. It was compatible with prolonged survival of the animal and could provide a new experimental model of neurodegenerative disease.
Collapse
Affiliation(s)
- J F Mathieu
- Département de pathologie, Faculté de médecine, Université de Montréal, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
29
|
Côté F, Collard JF, Houle D, Julien JP. Copy-dependent and correct developmental expression of the human neurofilament heavy gene in transgenic mice. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1994; 26:99-105. [PMID: 7854073 DOI: 10.1016/0169-328x(94)90079-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We recently produced four lines of transgenic mice bearing a 34 kb DNA fragment that includes the human gene coding for the neurofilament heavy (NF-H) chain. Analysis of the NF-H transgenics revealed an increase in human NF-H mRNA and protein that parallels the increase in gene copy number, providing the first example of a transgene with copy-dependent expression in neurons. In addition, expression of the human NF-H transgene is induced post-natally following a developmental pattern similar to the endogenous mouse NF-H gene.
Collapse
Affiliation(s)
- F Côté
- Centre for Research in Neurosciences, McGill University, Montreal General Hospital Research Institute, Que., Canada
| | | | | | | |
Collapse
|
30
|
Abstract
Neurofilaments (NFs) are the major intermediate filaments in most mature neurons. Genetic approaches have now proven that NFs are an essential determinant for radial growth of axons. NF phosphorylation most probably plays an important role in this function. Further, forced over-expression of NF subunits in transgenic mice yields NF misaccumulation in motor neurons and, subsequently, causes motor neuron dysfunction. This has important implications for human motor neuron diseases because similar accumulations are nearly universally found in the early stages of many motor neuron disorders.
Collapse
Affiliation(s)
- Z Xu
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | | | | |
Collapse
|