1
|
Collins JE, Lee JW, Rocamora F, Saggu GS, Wendt KL, Pasaje CFA, Smick S, Santos NM, Paes R, Jiang T, Mittal N, Luth MR, Chin T, Chang H, McLellan JL, Morales-Hernandez B, Hanson KK, Niles JC, Desai SA, Winzeler EA, Cichewicz RH, Chakrabarti D. Antiplasmodial peptaibols act through membrane directed mechanisms. Cell Chem Biol 2024; 31:312-325.e9. [PMID: 37995692 PMCID: PMC10923054 DOI: 10.1016/j.chembiol.2023.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 08/29/2023] [Accepted: 10/27/2023] [Indexed: 11/25/2023]
Abstract
Our previous study identified 52 antiplasmodial peptaibols isolated from fungi. To understand their antiplasmodial mechanism of action, we conducted phenotypic assays, assessed the in vitro evolution of resistance, and performed a transcriptome analysis of the most potent peptaibol, HZ NPDG-I. HZ NPDG-I and 2 additional peptaibols were compared for their killing action and stage dependency, each showing a loss of digestive vacuole (DV) content via ultrastructural analysis. HZ NPDG-I demonstrated a stepwise increase in DV pH, impaired DV membrane permeability, and the ability to form ion channels upon reconstitution in planar membranes. This compound showed no signs of cross resistance to targets of current clinical candidates, and 3 independent lines evolved to resist HZ NPDG-I acquired nonsynonymous changes in the P. falciparum multidrug resistance transporter, pfmdr1. Conditional knockdown of PfMDR1 showed varying effects to other peptaibol analogs, suggesting differing sensitivity.
Collapse
Affiliation(s)
- Jennifer E Collins
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32826, USA
| | - Jin Woo Lee
- Department of Chemistry and Biochemistry, Institute for Natural Products Applications & Research Technologies, University of Oklahoma, Norman OK 73019, USA
| | - Frances Rocamora
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Gagandeep S Saggu
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD 20852, USA
| | - Karen L Wendt
- Department of Chemistry and Biochemistry, Institute for Natural Products Applications & Research Technologies, University of Oklahoma, Norman OK 73019, USA
| | - Charisse Flerida A Pasaje
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Sebastian Smick
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Natalia Mojica Santos
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32826, USA
| | - Raphaella Paes
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32826, USA
| | - Tiantian Jiang
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Nimisha Mittal
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Madeline R Luth
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Taylor Chin
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Howard Chang
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - James L McLellan
- Department of Molecular Microbiology and Immunology and South Texas Center for Emerging Infectious Diseases, University of Texas San Antonio, San Antonio, TX 78249, USA
| | - Beatriz Morales-Hernandez
- Department of Molecular Microbiology and Immunology and South Texas Center for Emerging Infectious Diseases, University of Texas San Antonio, San Antonio, TX 78249, USA
| | - Kirsten K Hanson
- Department of Molecular Microbiology and Immunology and South Texas Center for Emerging Infectious Diseases, University of Texas San Antonio, San Antonio, TX 78249, USA
| | - Jacquin C Niles
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Sanjay A Desai
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD 20852, USA
| | - Elizabeth A Winzeler
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA.
| | - Robert H Cichewicz
- Department of Chemistry and Biochemistry, Institute for Natural Products Applications & Research Technologies, University of Oklahoma, Norman OK 73019, USA.
| | - Debopam Chakrabarti
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32826, USA.
| |
Collapse
|
2
|
Feineis D, Bringmann G. Asian Ancistrocladus Lianas as Creative Producers of Naphthylisoquinoline Alkaloids. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2023; 119:1-335. [PMID: 36587292 DOI: 10.1007/978-3-031-10457-2_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This book describes a unique class of secondary metabolites, the mono- and dimeric naphthylisoquinoline alkaloids. They occur in lianas of the paleotropical Ancistrocladaceae and Dioncophyllaceae families, exclusively. Their unprecedented structures include stereogenic centers and rotationally hindered, and thus likewise stereogenic, axes. Extended recent investigations on six Ancistrocladus species from Asia, as reported in this review, shed light on their fascinating phytochemical productivity, with over 100 such intriguing natural products. This high chemodiversity arises from a likewise unique biosynthesis from acetate-malonate units, following a novel polyketidic pathway to plant-derived isoquinoline alkaloids. Some of the compounds show most promising antiparasitic activities. Likewise presented are strategies for the regio- and stereoselective total synthesis of the alkaloids, including the directed construction of the chiral axis.
Collapse
Affiliation(s)
- Doris Feineis
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Gerhard Bringmann
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany.
| |
Collapse
|
3
|
Vásquez-Ocmín PG, Gallard JF, Van Baelen AC, Leblanc K, Cojean S, Mouray E, Grellier P, Guerra CAA, Beniddir MA, Evanno L, Figadère B, Maciuk A. Biodereplication of Antiplasmodial Extracts: Application of the Amazonian Medicinal Plant Piper coruscans Kunth. Molecules 2022; 27:7638. [PMID: 36364460 PMCID: PMC9656727 DOI: 10.3390/molecules27217638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/01/2022] [Accepted: 11/05/2022] [Indexed: 09/08/2024] Open
Abstract
Improved methodological tools to hasten antimalarial drug discovery remain of interest, especially when considering natural products as a source of drug candidates. We propose a biodereplication method combining the classical dereplication approach with the early detection of potential antiplasmodial compounds in crude extracts. Heme binding is used as a surrogate of the antiplasmodial activity and is monitored by mass spectrometry in a biomimetic assay. Molecular networking and automated annotation of targeted mass through data mining were followed by mass-guided compound isolation by taking advantage of the versatility and finely tunable selectivity offered by centrifugal partition chromatography. This biodereplication workflow was applied to an ethanolic extract of the Amazonian medicinal plant Piper coruscans Kunth (Piperaceae) showing an IC50 of 1.36 µg/mL on the 3D7 Plasmodium falciparum strain. It resulted in the isolation of twelve compounds designated as potential antiplasmodial compounds by the biodereplication workflow. Two chalcones, aurentiacin (1) and cardamonin (3), with IC50 values of 2.25 and 5.5 µM, respectively, can be considered to bear the antiplasmodial activity of the extract, with the latter not relying on a heme-binding mechanism. This biodereplication method constitutes a rapid, efficient, and robust technique to identify potential antimalarial compounds in complex extracts such as plant extracts.
Collapse
Affiliation(s)
| | - Jean-François Gallard
- Institut de Chimie des Substances Naturelles CNRS UPR 2301, Université Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Anne-Cécile Van Baelen
- Université Paris-Saclay, CNRS, BioCIS, 91400 Orsay, France
- Département Médicaments et Technologies pour la Santé (DMTS), CEA, SIMoS, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - Karine Leblanc
- Université Paris-Saclay, CNRS, BioCIS, 91400 Orsay, France
| | | | - Elisabeth Mouray
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Muséum National d’Histoire Naturelle, CNRS, Sorbonne Universités, CP52, 57 Rue Cuvier, 75005 Paris, France
| | - Philippe Grellier
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Muséum National d’Histoire Naturelle, CNRS, Sorbonne Universités, CP52, 57 Rue Cuvier, 75005 Paris, France
| | - Carlos A. Amasifuén Guerra
- Dirección de Recursos Genéticos y Biotecnología (DRGB), Instituto Nacional de Innovación Agraria (INIA), Avenida La Molina N° 1981, La Molina, Lima 15024, Peru
| | | | - Laurent Evanno
- Université Paris-Saclay, CNRS, BioCIS, 91400 Orsay, France
| | - Bruno Figadère
- Université Paris-Saclay, CNRS, BioCIS, 91400 Orsay, France
| | | |
Collapse
|
4
|
Comparing infrared spectroscopic methods for the characterization of Plasmodium falciparum-infected human erythrocytes. Commun Chem 2021; 4:129. [PMID: 36697584 PMCID: PMC9814045 DOI: 10.1038/s42004-021-00567-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 08/11/2021] [Indexed: 01/28/2023] Open
Abstract
Malaria, caused by parasites of the species Plasmodium, is among the major life-threatening diseases to afflict humanity. The infectious cycle of Plasmodium is very complex involving distinct life stages and transitions characterized by cellular and molecular alterations. Therefore, novel single-cell technologies are warranted to extract details pertinent to Plasmodium-host cell interactions and underpinning biological transformations. Herein, we tested two emerging spectroscopic approaches: (a) Optical Photothermal Infrared spectroscopy and (b) Atomic Force Microscopy combined with infrared spectroscopy in contrast to (c) Fourier Transform InfraRed microspectroscopy, to investigate Plasmodium-infected erythrocytes. Chemical spatial distributions of selected bands and spectra captured using the three modalities for major macromolecules together with advantages and limitations of each method is presented here. These results indicate that O-PTIR and AFM-IR techniques can be explored for extracting sub-micron resolution molecular signatures within heterogeneous and dynamic samples such as Plasmodium-infected human RBCs.
Collapse
|
5
|
Rashidzadeh H, Tabatabaei Rezaei SJ, Adyani SM, Abazari M, Rahamooz Haghighi S, Abdollahi H, Ramazani A. Recent advances in targeting malaria with nanotechnology-based drug carriers. Pharm Dev Technol 2021; 26:807-823. [PMID: 34190000 DOI: 10.1080/10837450.2021.1948568] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Malaria, as one of the most common human infectious diseases, remains the greatest global health concern, since approximately 3.5 billion people around the world, especially those in subtropical areas, are at the risk of being infected by malaria. Due to the emergence and spread of drug resistance to the current antimalarials, malaria-related mortality and incidence rates have recently increased. To overcome the aforementioned obstacles, nano-vehicles based on biodegradable, natural, and non-toxic polymers have been developed. Accordingly, these systems are considered as a potential drug vehicle, which due to their unique properties such as the excellent safety profile, good biocompatibility, tunable structure, diversity, and the presence of functional groups within the polymer structure, could facilitate covalent attachment of targeting moieties and antimalarials to the polymeric nano-vehicles. In this review, we highlighted some recent developments of liposomes as unique nanoscale drug delivery vehicles and several polymeric nanovehicles, including hydrogels, dendrimers, self-assembled micelles, and polymer-drug conjugates for the effective delivery of antimalarials.
Collapse
Affiliation(s)
- Hamid Rashidzadeh
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran.,Laboratory of Novel Drug Delivery Systems, Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran.,Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Seyed Jamal Tabatabaei Rezaei
- Laboratory of Novel Drug Delivery Systems, Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran
| | - Seyed Masih Adyani
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Morteza Abazari
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Samaneh Rahamooz Haghighi
- Department of Plant Production and Genetics, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
| | - Hossien Abdollahi
- Department of Polymer Engineering, Faculty of Engineering, Urmia University, Urmia, Iran
| | - Ali Ramazani
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
6
|
Broichhagen J, Kilian N. Chemical Biology Tools To Investigate Malaria Parasites. Chembiochem 2021; 22:2219-2236. [PMID: 33570245 PMCID: PMC8360121 DOI: 10.1002/cbic.202000882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/10/2021] [Indexed: 02/06/2023]
Abstract
Parasitic diseases like malaria tropica have been shaping human evolution and history since the beginning of mankind. After infection, the response of the human host ranges from asymptomatic to severe and may culminate in death. Therefore, proper examination of the parasite's biology is pivotal to deciphering unique molecular, biochemical and cell biological processes, which in turn ensure the identification of treatment strategies, such as potent drug targets and vaccine candidates. However, implementing molecular biology methods for genetic manipulation proves to be difficult for many parasite model organisms. The development of fast and straightforward applicable alternatives, for instance small-molecule probes from the field of chemical biology, is essential. In this review, we will recapitulate the highlights of previous molecular and chemical biology approaches that have already created insight and understanding of the malaria parasite Plasmodium falciparum. We discuss current developments from the field of chemical biology and explore how their application could advance research into this parasite in the future. We anticipate that the described approaches will help to close knowledge gaps in the biology of P. falciparum and we hope that researchers will be inspired to use these methods to gain knowledge - with the aim of ending this devastating disease.
Collapse
Affiliation(s)
- Johannes Broichhagen
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)Robert-Roessle-Strasse 1013125BerlinGermany
| | - Nicole Kilian
- Centre for Infectious DiseasesParasitologyHeidelberg University HospitalIm Neuenheimer Feld 32469120HeidelbergGermany
| |
Collapse
|
7
|
Yang Y, Tang T, Feng B, Li S, Hou N, Ma X, Jiang L, Xin X, Chen Q. Disruption of Plasmodium falciparum histidine-rich protein 2 may affect haem metabolism in the blood stage. Parasit Vectors 2020; 13:611. [PMID: 33298142 PMCID: PMC7725123 DOI: 10.1186/s13071-020-04460-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 11/05/2020] [Indexed: 11/10/2022] Open
Abstract
Background Haem is a key metabolic factor in the life cycle of the malaria parasite. In the blood stage, the parasite acquires host haemoglobin to generate amino acids for protein synthesis and the by-product haem for metabolic use. The malaria parasite can also synthesize haem de novo on its own. Plasmodium falciparum-specific histidine-rich protein 2 (PfHRP2) has a haem-binding site to mediate the formation of haemozoin, a biocrystallized form of haem aggregates. Notably, the gene regulates the mechanism of haemoglobin-derived haem metabolism and the de novo haem biosynthetic pathway in the Pfhrp2-disrupted parasite line during the intraerythrocytic stages. Methods The CRISPR/Cas9 system was used to disrupt the gene locus of Pfhrp2. DNA was extracted from the transgenic parasite, and PCR, Southern blotting and Western blotting were used to confirm the establishment of transgenic parasites. RNA-sequencing and comparative transcriptome analysis were performed to identify differences in gene expression between 3D7 and Pfhrp2--3D7 parasites. Results Pfhrp2- transgenic parasites were successfully established by the CRISPR/Cas9 system. A total of 964, 1261, 3138, 1064, 2512 and 1778 differentially expressed genes (DEGs) were identified in the six comparison groups, respectively, with 373, 520, 1499, 353, 1253 and 742 of these DEGs upregulated and 591, 741, 1639, 711, 1259 and 1036 of them downregulated, respectively. Five DEGs related to haem metabolism and synthesis were identified in the comparison groups at six time points (0, 8, 16, 24, 32, and 40 h after merozoite invasion). The genes encoding delta-aminolevulinic acid synthetase and ferrochelatase, both related to haem biosynthesis, were found to be significantly upregulated in the comparison groups, and those encoding haem oxygenase, stromal-processing peptidase and porphobilinogen deaminase were found to be significantly downregulated. No GO terms were significantly enriched in haem-related processes (Q value = 1). Conclusion Our data revealed changes in the transcriptome expression profile of the Pfhrp2--3D7 parasite during the intraerythrocytic stages. The findings provide insight at the gene transcript level that will facilitate further research on and development of anti-malaria drugs.![]()
Collapse
Affiliation(s)
- Yingchao Yang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China. .,Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Beijing, China.
| | - Tongke Tang
- Unit of Human Parasite Molecular and Cell Biology, Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Bo Feng
- Beijing Red Cross Blood Center, Beijing, China
| | - Shanshan Li
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nan Hou
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao Ma
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Beijing, China
| | - Lubin Jiang
- Unit of Human Parasite Molecular and Cell Biology, Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xiaofang Xin
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Beijing, China
| | - Qijun Chen
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China. .,Key Laboratory of Zoonosis, Shenyang Agriculture University, Shenyang, China.
| |
Collapse
|
8
|
Lu KY, Pasaje CFA, Srivastava T, Loiselle DR, Niles JC, Derbyshire E. Phosphatidylinositol 3-phosphate and Hsp70 protect Plasmodium falciparum from heat-induced cell death. eLife 2020; 9:e56773. [PMID: 32975513 PMCID: PMC7518890 DOI: 10.7554/elife.56773] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 09/14/2020] [Indexed: 12/12/2022] Open
Abstract
Phosphatidylinositol 3-phosphate (PI(3)P) levels in Plasmodium falciparum correlate with tolerance to cellular stresses caused by artemisinin and environmental factors. However, PI(3)P function during the Plasmodium stress response was unknown. Here, we used PI3K inhibitors and antimalarial agents to examine the importance of PI(3)P under thermal conditions recapitulating malarial fever. Live cell microscopy using chemical and genetic reporters revealed that PI(3)P stabilizes the digestive vacuole (DV) under heat stress. We demonstrate that heat-induced DV destabilization in PI(3)P-deficient P. falciparum precedes cell death and is reversible after withdrawal of the stress condition and the PI3K inhibitor. A chemoproteomic approach identified PfHsp70-1 as a PI(3)P-binding protein. An Hsp70 inhibitor and knockdown of PfHsp70-1 phenocopy PI(3)P-deficient parasites under heat shock. Furthermore, PfHsp70-1 downregulation hypersensitizes parasites to heat shock and PI3K inhibitors. Our findings underscore a mechanistic link between PI(3)P and PfHsp70-1 and present a novel PI(3)P function in DV stabilization during heat stress.
Collapse
Affiliation(s)
- Kuan-Yi Lu
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke UniversityDurhamUnited States
- Department of Chemistry, Duke UniversityDurhamUnited States
| | | | | | - David R Loiselle
- Department of Pharmacology and Cancer Biology, School of Medicine, Duke UniversityDurhamUnited States
| | - Jacquin C Niles
- Department of Biological Engineering, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Emily Derbyshire
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke UniversityDurhamUnited States
- Department of Chemistry, Duke UniversityDurhamUnited States
| |
Collapse
|
9
|
Siddiqui AA, Saha D, Iqbal MS, Saha SJ, Sarkar S, Banerjee C, Nag S, Mazumder S, De R, Pramanik S, Debsharma S, Bandyopadhyay U. Rab7 of Plasmodium falciparum is involved in its retromer complex assembly near the digestive vacuole. Biochim Biophys Acta Gen Subj 2020; 1864:129656. [PMID: 32512169 DOI: 10.1016/j.bbagen.2020.129656] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/22/2020] [Accepted: 06/02/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Intracellular protein trafficking is crucial for survival of cell and proper functioning of the organelles; however, these pathways are not well studied in the malaria parasite. Its unique cellular architecture and organellar composition raise an interesting question to investigate. METHODS The interaction of Plasmodium falciparum Rab7 (PfRab7) with vacuolar protein sorting-associated protein 26 (PfVPS26) of retromer complex was shown by coimmunoprecipitation (co-IP). Confocal microscopy was used to show the localization of the complex in the parasite with respect to different organelles. Further chemical tools were employed to explore the role of digestive vacuole (DV) in retromer trafficking in parasite and GTPase activity of PfRab7 was examined. RESULTS PfRab7 was found to be interacting with retromer complex that assembled mostly near DV and the Golgi in trophozoites. Chemical disruption of DV by chloroquine (CQ) led to its disassembly that was further validated by using compound 5f, a heme polymerization inhibitor in the DV. PfRab7 exhibited Mg2+ dependent weak GTPase activity that was inhibited by a specific Rab7 GTPase inhibitor, CID 1067700, which prevented the assembly of retromer complex in P. falciparum and inhibited its growth suggesting the role of GTPase activity of PfRab7 in retromer assembly. CONCLUSION Retromer complex was found to be interacting with PfRab7 and the functional integrity of the DV was found to be important for retromer assembly in P. falciparum. GENERAL SIGNIFICANCE This study explores the retromer trafficking in P. falciparum and describes amechanism to validate DV targeting antiplasmodial molecules.
Collapse
Affiliation(s)
- Asim Azhar Siddiqui
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Debanjan Saha
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Mohd Shameel Iqbal
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Shubhra Jyoti Saha
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Souvik Sarkar
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Chinmoy Banerjee
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Shiladitya Nag
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Somnath Mazumder
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Rudranil De
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Saikat Pramanik
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Subhashis Debsharma
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Uday Bandyopadhyay
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India.
| |
Collapse
|
10
|
Kannan D, Yadav N, Ahmad S, Namdev P, Bhattacharjee S, Lochab B, Singh S. Pre-clinical study of iron oxide nanoparticles fortified artesunate for efficient targeting of malarial parasite. EBioMedicine 2019; 45:261-277. [PMID: 31255656 PMCID: PMC6642363 DOI: 10.1016/j.ebiom.2019.06.026] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 06/01/2019] [Accepted: 06/13/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Artesunate the most potent antimalarial is widely used for the treatment of multidrug-resistant malaria. The antimalarial cytotoxicity of artesunate has been mainly attributed to its selective, irreversible and iron- radical-mediated damage of parasite biomolecules. In the present research, iron oxide nanoparticle fortified artesunate was tested in P. falciparum and in an experimental malaria mouse model for enhancement in the selectivity and toxicity of artesunate towards parasite. Artesunate was fortified with nontoxic biocompatible surface modified iron oxide nanoparticle which is specially designed and synthesized for the sustained pH-dependent release of Fe2+ within the parasitic food vacuole for enhanced ROS spurt. METHODS Antimalarial efficacy of Iron oxide nanoparticle fortified artesunate was evaluated in wild type and artemisinin-resistant Plasmodium falciparum (R539T) grown in O + ve human blood and in Plasmodium berghei ANKA infected swiss albino mice. Internalization of nanoparticles, the pH-dependent release of Fe2+, production of reactive oxygen species and parasite biomolecule damage by iron oxide nanoparticle fortified artesunate was studied using various biochemical, biophysical, ultra-structural and fluorescence microscopy. For determining the efficacy of ATA-IONP+ART on resistant parasite ring survival assay was performed. RESULTS The nanoparticle fortified artesunate was highly efficient in the 1/8th concentration of artesunate IC50 and led to retarded growth of P. falciparum with significant damage to macromolecules mediated via enhanced ROS production. Similarly, preclinical In vivo studies also signified a radical reduction in parasitemia with ~8-10-fold reduced dosage of artesunate when fortified with iron oxide nanoparticles. Importantly, the ATA-IONP combination was efficacious against artemisinin-resistant parasites. INTERPRETATION Surface coated iron-oxide nanoparticle fortified artesunate can be developed into a potent therapeutic agent towards multidrug-resistant and artemisinin-resistant malaria in humans. FUND: This study is supported by the Centre for Study of Complex Malaria in India funded by the National Institute of Health, USA.
Collapse
Affiliation(s)
- Deepika Kannan
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar, India
| | - Nisha Yadav
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar, India
| | - Shakeel Ahmad
- Special Center for Molecular Medicine, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, India
| | - Pragya Namdev
- Special Center for Molecular Medicine, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, India
| | - Souvik Bhattacharjee
- Special Center for Molecular Medicine, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, India
| | - Bimlesh Lochab
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar, India.
| | - Shailja Singh
- Special Center for Molecular Medicine, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, India.
| |
Collapse
|
11
|
Mishra V, Rathore I, Arekar A, Sthanam LK, Xiao H, Kiso Y, Sen S, Patankar S, Gustchina A, Hidaka K, Wlodawer A, Yada RY, Bhaumik P. Deciphering the mechanism of potent peptidomimetic inhibitors targeting plasmepsins - biochemical and structural insights. FEBS J 2018; 285:3077-3096. [PMID: 29943906 DOI: 10.1111/febs.14598] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 06/10/2018] [Accepted: 06/22/2018] [Indexed: 11/28/2022]
Abstract
Malaria is a deadly disease killing worldwide hundreds of thousands people each year and the responsible parasite has acquired resistance to the available drug combinations. The four vacuolar plasmepsins (PMs) in Plasmodium falciparum involved in hemoglobin (Hb) catabolism represent promising targets to combat drug resistance. High antimalarial activities can be achieved by developing a single drug that would simultaneously target all the vacuolar PMs. We have demonstrated for the first time the use of soluble recombinant plasmepsin II (PMII) for structure-guided drug discovery with KNI inhibitors. Compounds used in this study (KNI-10742, 10743, 10395, 10333, and 10343) exhibit nanomolar inhibition against PMII and are also effective in blocking the activities of PMI and PMIV with the low nanomolar Ki values. The high-resolution crystal structures of PMII-KNI inhibitor complexes reveal interesting features modulating their differential potency. Important individual characteristics of the inhibitors and their importance for potency have been established. The alkylamino analog, KNI-10743, shows intrinsic flexibility at the P2 position that potentiates its interactions with Asp132, Leu133, and Ser134. The phenylacetyl tripeptides, KNI-10333 and KNI-10343, accommodate different ρ-substituents at the P3 phenylacetyl ring that determine the orientation of the ring, thus creating novel hydrogen-bonding contacts. KNI-10743 and KNI-10333 possess significant antimalarial activity, block Hb degradation inside the food vacuole, and show no cytotoxicity on human cells; thus, they can be considered as promising candidates for further optimization. Based on our structural data, novel KNI derivatives with improved antimalarial activity could be designed for potential clinical use. DATABASE: Structural data are available in the PDB under the accession numbers 5YIE, 5YIB, 5YID, 5YIC, and 5YIA.
Collapse
Affiliation(s)
- Vandana Mishra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Ishan Rathore
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Anagha Arekar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Lakshmi Kavitha Sthanam
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Huogen Xiao
- Department of Molecular and Cellular Biology, University of Guelph, ON, Canada
| | - Yoshiaki Kiso
- Laboratory of Peptide Sciences, Nagahama Institute of Bio-Science and Technology, Japan
| | - Shamik Sen
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Swati Patankar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Alla Gustchina
- Protein Structure Section, Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Koushi Hidaka
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Japan
| | - Alexander Wlodawer
- Protein Structure Section, Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Rickey Y Yada
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, Canada
| | - Prasenjit Bhaumik
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| |
Collapse
|
12
|
Nairz M, Dichtl S, Schroll A, Haschka D, Tymoszuk P, Theurl I, Weiss G. Iron and innate antimicrobial immunity-Depriving the pathogen, defending the host. J Trace Elem Med Biol 2018; 48:118-133. [PMID: 29773170 DOI: 10.1016/j.jtemb.2018.03.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/25/2018] [Accepted: 03/06/2018] [Indexed: 02/08/2023]
Abstract
The acute-phase response is triggered by the presence of infectious agents and danger signals which indicate hazards for the integrity of the mammalian body. One central feature of this response is the sequestration of iron into storage compartments including macrophages. This limits the availability of this essential nutrient for circulating pathogens, a host defence strategy known as 'nutritional immunity'. Iron metabolism and the immune response are intimately linked. In infections, the availability of iron affects both the efficacy of antimicrobial immune pathways and pathogen proliferation. However, host strategies to withhold iron from microbes vary according to the localization of pathogens: Infections with extracellular bacteria such as Staphylococcus aureus, Streptococcus, Klebsiella or Yersinia stimulate the expression of the iron-regulatory hormone hepcidin which targets the cellular iron-exporter ferroportin-1 causing its internalization and blockade of iron egress from absorptive enterocytes in the duodenum and iron-recycling macrophages. This mechanism disrupts both routes of iron delivery to the circulation, contributes to iron sequestration in the mononuclear phagocyte system and mediates the hypoferraemia of the acute phase response subsequently resulting in the development of anaemia of inflammation. When intracellular microbes are present, other strategies of microbial iron withdrawal are needed. For instance, in macrophages harbouring intracellular pathogens such as Chlamydia, Mycobacterium tuberculosis, Listeria monocytogenes or Salmonella Typhimurium, ferroportin-1-mediated iron export is turned on for the removal of iron from infected cells. This also leads to reduced iron availability for intra-macrophage pathogens which inhibits their growth and in parallel strengthens anti-microbial effector pathways of macrophages including the formation of inducible nitric oxide synthase and tumour necrosis factor. Iron plays a key role in infectious diseases both as modulator of the innate immune response and as nutrient for microbes. We need to gain a more comprehensive understanding of how the body can differentially respond to infection by extra- or intracellular pathogens. This knowledge may allow us to modulate mammalian iron homeostasis pharmaceutically and to target iron-acquisition systems of pathogens, thus enabling us to treat infections with novel strategies that act independent of established antimicrobials.
Collapse
Affiliation(s)
- Manfred Nairz
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Austria.
| | - Stefanie Dichtl
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Austria
| | - Andrea Schroll
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Austria
| | - David Haschka
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Austria
| | - Piotr Tymoszuk
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Austria
| | - Igor Theurl
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Austria
| | - Günter Weiss
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Austria
| |
Collapse
|
13
|
New insight into the action of tryptanthrins against Plasmodium falciparum: Pharmacophore identification via a novel submolecular QSAR descriptor. J Mol Graph Model 2018; 80:138-146. [DOI: 10.1016/j.jmgm.2017.12.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/20/2017] [Accepted: 12/21/2017] [Indexed: 11/22/2022]
|
14
|
High-Content Screening of the Medicines for Malaria Venture Pathogen Box for Plasmodium falciparum Digestive Vacuole-Disrupting Molecules Reveals Valuable Starting Points for Drug Discovery. Antimicrob Agents Chemother 2018; 62:AAC.02031-17. [PMID: 29311064 DOI: 10.1128/aac.02031-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/20/2017] [Indexed: 02/06/2023] Open
Abstract
Plasmodium falciparum infections leading to malaria have severe clinical manifestations and high mortality rates. Chloroquine (CQ), a former mainstay of malaria chemotherapy, has been rendered ineffective due to the emergence of widespread resistance. Recent studies, however, have unveiled a novel mode of action in which low-micromolar levels of CQ permeabilized the parasite's digestive vacuole (DV) membrane, leading to calcium efflux, mitochondrial depolarization, and DNA degradation. These phenotypes implicate the DV as an alternative target of CQ and suggest that DV disruption is an attractive target for exploitation by DV-disruptive antimalarials. In the current study, high-content screening of the Medicines for Malaria Venture (MMV) Pathogen Box (2015) was performed to select compounds which disrupt the DV membrane, as measured by the leakage of intravacuolar Ca2+ using the calcium probe Fluo-4 AM. The hits were further characterized by hemozoin biocrystallization inhibition assays and dose-response half-maximal (50%) inhibitory concentration (IC50) assays across resistant and sensitive strains. Three hits, MMV676380, MMV085071, and MMV687812, were shown to demonstrate a lack of CQ cross-resistance in parasite strains and field isolates. Through systematic analyses, MMV085071 emerged as the top hit due to its rapid parasiticidal effect, low-nanomolar IC50, and good efficacy in triggering DV disruption, mitochondrial degradation, and DNA fragmentation in P. falciparum These programmed cell death (PCD)-like phenotypes following permeabilization of the DV suggests that these compounds kill the parasite by a PCD-like mechanism. From the drug development perspective, MMV085071, which was identified to be a potent DV disruptor, offers a promising starting point for subsequent hit-to-lead generation and optimization through structure-activity relationships.
Collapse
|
15
|
Araújo-Vilges KMD, Oliveira SVD, Couto SCP, Fokoue HH, Romero GAS, Kato MJ, Romeiro LAS, Leite JRSA, Kuckelhaus SAS. Effect of piplartine and cinnamides on Leishmania amazonensis, Plasmodium falciparum and on peritoneal cells of Swiss mice. PHARMACEUTICAL BIOLOGY 2017; 55:1601-1607. [PMID: 28415906 PMCID: PMC6130495 DOI: 10.1080/13880209.2017.1313870] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 03/14/2017] [Accepted: 03/23/2017] [Indexed: 06/07/2023]
Abstract
CONTEXT Plants of the Piperaceae family produce piplartine that was used to synthesize the cinnamides. OBJECTIVE To assess the effects of piplartine (1) and cinnamides (2-5) against the protozoa responsible for malaria and leishmaniasis, and peritoneal cells of Swiss mice. MATERIALS AND METHODS Cultures of Leishmania amazonensis, Plasmodium falciparum-infected erythrocytes, and peritoneal cells were incubated, in triplicate, with different concentrations of the compounds (0 to 256 μg/mL). The inhibitory concentration (IC50) in L. amazonensis and cytotoxic concentration (CC50) in peritoneal cell were assessed by the MTT method after 6 h of incubation, while the IC50 for P. falciparum-infected erythrocytes was determined by optical microscopy after 48 or 72 h of incubation; the Selectivity Index (SI) was calculated by CC50/IC50. RESULTS All compounds inhibited the growth of microorganisms, being more effective against P. falciparum after 72 h of incubation, especially for the compounds 1 (IC50 = 3.2 μg/mL) and 5 (IC50 = 6.6 μg/mL), than to L. amazonensis (compound 1 = 179.0 μg/mL; compound 5 = 106.0 μg/mL). Despite all compounds reducing the viability of peritoneal cells, the SI were <10 to L. amazonensis, whereas in the cultures of P. falciparum the SI >10 for the piplartine (>37.4) and cinnamides 4 (>10.7) and 5 (= 38.4). DISCUSSION AND CONCLUSION The potential of piplartine and cinnamides 4 and 5 in the treatment of malaria suggest further pre-clinical studies to evaluate their effects in murine malaria and to determine their mechanisms in cells of the immune system.
Collapse
Affiliation(s)
| | - Stefan Vilges de Oliveira
- b Laboratory of Medical Parasitology and Vector Biology, Faculty of Medicine , University of Brasilia , Brasilia - DF , Brazil
| | - Shirley Claudino Pereira Couto
- a Laboratory of Cell Immunology, Faculty of Medicine , University of Brasilia Campus Darcy Ribeiro , Brasilia - DF , Brazil
| | | | - Gustavo Adolfo Sierra Romero
- c Laboratory of Leishmaniasis, Nucleo of Tropical Medicine, Faculty of Medicine , University of Brasilia, Campus Darcy Ribeiro , Brasilia - DF , Brazil
| | - Massuo Jorge Kato
- d Institute of Chemistry , University of São Paulo , São Paulo , SP , Brazil
| | - Luiz Antonio Soares Romeiro
- e Laboratory of Development and Therapeutic Innovation, Nucleo of Tropical Medicine, Faculty of Medicine , University of Brasilia, Campus Darcy Ribeiro , Brasilia - DF , Brazil
| | | | - Selma Aparecida Souza Kuckelhaus
- a Laboratory of Cell Immunology, Faculty of Medicine , University of Brasilia Campus Darcy Ribeiro , Brasilia - DF , Brazil
- f Laboratory of Morphology Faculty of Medicine , University of Brasilia Campus Darcy Ribeiro , Brasilia - DF , Brazil
| |
Collapse
|
16
|
Roy KK. Targeting the active sites of malarial proteases for antimalarial drug discovery: approaches, progress and challenges. Int J Antimicrob Agents 2017; 50:287-302. [PMID: 28668681 DOI: 10.1016/j.ijantimicag.2017.04.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 04/12/2017] [Accepted: 04/27/2017] [Indexed: 02/08/2023]
Abstract
Malaria is an infectious disease causing vast mortality and morbidity worldwide. Although antimalarial drugs are effective in several parts of the world, there is a serious threat to malaria control as malaria parasites are continuously developing widespread resistance against currently available antimalarial drugs, including artemisinin. Such widespread antimalarial drug resistance confirms the need to improve the efficacy of existing or new drugs as well as to develop alternative treatments through the identification of novel drug targets and the development of candidate drugs. Similar to proteases in other parasitic diseases such as leishmaniasis, schistosomiasis, Chagas disease and African sleeping sickness, malarial proteases constitute the major virulence factors in malaria. Malarial proteases belong to several classes and many of them have been targeted for the design and discovery of antimalarial agents. This review summarises the approaches, progress and challenges in the design of small-molecule inhibitors as antimalarial drugs targeting the inhibition of various malarial proteases.
Collapse
Affiliation(s)
- Kuldeep K Roy
- National Institute of Pharmaceutical Education and Research (NIPER), 4 Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India.
| |
Collapse
|
17
|
Labarbuta P, Duckett K, Botting CH, Chahrour O, Malone J, Dalton JP, Law CJ. Recombinant vacuolar iron transporter family homologue PfVIT from human malaria-causing Plasmodium falciparum is a Fe 2+/H +exchanger. Sci Rep 2017; 7:42850. [PMID: 28198449 PMCID: PMC5309874 DOI: 10.1038/srep42850] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 01/18/2017] [Indexed: 02/08/2023] Open
Abstract
Vacuolar iron transporters (VITs) are a poorly understood family of integral membrane proteins that can function in iron homeostasis via sequestration of labile Fe2+ into vacuolar compartments. Here we report on the heterologous overexpression and purification of PfVIT, a vacuolar iron transporter homologue from the human malaria-causing parasite Plasmodium falciparum. Use of synthetic, codon-optimised DNA enabled overexpression of functional PfVIT in the inner membrane of Escherichia coli which, in turn, conferred iron tolerance to the bacterial cells. Cells that expressed PfVIT had decreased levels of total cellular iron compared with cells that did not express the protein. Qualitative transport assays performed on inverted vesicles enriched with PfVIT revealed that the transporter catalysed Fe2+/H+ exchange driven by the proton electrochemical gradient. Furthermore, the PfVIT transport function in this system did not require the presence of any Plasmodium-specific factor such as post-translational phosphorylation. PfVIT purified as a monomer and, as measured by intrinsic protein fluorescence quenching, bound Fe2+ in detergent solution with low micromolar affinity. This study of PfVIT provides material for future detailed biochemical, biophysical and structural studies to advance understanding of the vacuolar iron transporter family of membrane proteins from important human pathogens.
Collapse
Affiliation(s)
- Paola Labarbuta
- School of Biological Sciences, Medical Biology Centre, Queen's University Belfast, Belfast BT9 7BL, United Kingdom
| | - Katie Duckett
- School of Biological Sciences, Medical Biology Centre, Queen's University Belfast, Belfast BT9 7BL, United Kingdom
| | - Catherine H Botting
- School of Biology, Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, United Kingdom
| | - Osama Chahrour
- Spectroscopy Group, Analytical Services, Almac, 20 Seagoe Industrial Estate, Craigavon BT63 5QD, United Kingdom
| | - John Malone
- Spectroscopy Group, Analytical Services, Almac, 20 Seagoe Industrial Estate, Craigavon BT63 5QD, United Kingdom
| | - John P Dalton
- School of Biological Sciences, Medical Biology Centre, Queen's University Belfast, Belfast BT9 7BL, United Kingdom
| | - Christopher J Law
- School of Biological Sciences, Medical Biology Centre, Queen's University Belfast, Belfast BT9 7BL, United Kingdom
| |
Collapse
|
18
|
Ridley RG, Dorn A, Vippagunta SR, Vennerstrom JL. Haematin (haem) polymerization and its inhibition by quinoline antimalarials. ANNALS OF TROPICAL MEDICINE AND PARASITOLOGY 2016. [DOI: 10.1080/00034983.1997.11813174] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
19
|
The prosegment catalyzes native folding of Plasmodium falciparum plasmepsin II. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:1356-62. [DOI: 10.1016/j.bbapap.2016.06.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/29/2016] [Accepted: 06/30/2016] [Indexed: 01/15/2023]
|
20
|
Zhang H, Wang Z, Gong H, Cao J, Zhou Y, Zhou J. Identification and functional study of a novel 2-cys peroxiredoxin (BmTPx-1) of Babesia microti. Exp Parasitol 2016; 170:21-27. [PMID: 27567985 DOI: 10.1016/j.exppara.2016.08.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Revised: 07/19/2016] [Accepted: 08/22/2016] [Indexed: 12/20/2022]
Abstract
Babesia microti is an emerging human pathogen and the primary causative agent of human babesiosis in many regions of the world. Although the peroxiredoxins (Prxs) or thioredoxin peroxidases (TPx) enzymes of this parasite have been sequenced and annotated, their biological properties remain largely unknown. Prxs are a family of antioxidant enzymes that protect biological molecules against metabolically produced reactive oxygen species (ROS) and reduce hydrogen peroxide (H2O2) to water in both eukaryotes and prokaryotes. In this study, TPx-1 cDNA was cloned from B. microti (designated BmTPx-1). Recombinant BmTPx-1 (rBmTPx-1) was expressed in Escherichia coli as a histidine fusion protein and purified using Ni-NTA His bind resin. To test the defense capacity of enzymatic antioxidants against the effect of ROS, a mixed-function oxidation system was utilized with the recombinant BmTPx-1 protein. A decreased ability of rBmTPx-1 to donate electrons to the thioredoxin (Trx)/TrxR reductase system was clarified by reaction with H2O2. These results suggest that BmTPx-1 has a great impact on protecting parasites from oxidative stress in the erythrocytic stage.
Collapse
Affiliation(s)
- Houshuang Zhang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Zhonghua Wang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Haiyan Gong
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Jie Cao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Yongzhi Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Jinlin Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| |
Collapse
|
21
|
Chakraborty A. Emerging drug resistance in Plasmodium falciparum: A review of well-characterized drug targets for novel antimalarial chemotherapy. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2016. [DOI: 10.1016/s2222-1808(16)61090-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
22
|
Sadashiva MP, Gowda R, Wu X, Inamdar GS, Kuzu OF, Rangappa KS, Robertson GP, Gowda DC. A non-cytotoxic N-dehydroabietylamine derivative with potent antimalarial activity. Exp Parasitol 2015; 155:68-73. [PMID: 25982031 DOI: 10.1016/j.exppara.2015.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 05/04/2015] [Accepted: 05/11/2015] [Indexed: 12/30/2022]
Abstract
Malaria caused by the Plasmodium parasites continues to be an enormous global health problem owing to wide spread drug resistance of parasites to many of the available antimalarial drugs. Therefore, development of new classes of antimalarial agents is essential to effectively treat malaria. In this study, the efficacy of naturally occurring diterpenoids, dehydroabietylamine and abietic acid, and their synthetic derivatives was assessed for antimalarial activity. Dehydroabietylamine and its N-trifluoroacetyl, N-tribromoacetyl, N-benzoyl, and N-benzyl derivatives showed excellent activity against P. falciparum parasites with IC50 values of 0.36 to 2.6 µM. Interestingly, N-dehydroabietylbenzamide showed potent antimalarial activity (IC50 0.36), and negligible cytotoxicity (IC50 >100 µM) to mammalian cells; thus, this compound can be an important antimalarial drug. In contrast, abietic acid was only marginally effective, exhibiting an IC50 value of ~82 µM. Several carboxylic group-derivatives of abietic acid were moderately active with IC50 values of ~8.2 to ~13.3 µM. These results suggest that a detailed understanding of the structure-activity relationship of abietane diterpenoids might provide strategies to exploit this class of compounds for malaria treatment.
Collapse
Affiliation(s)
- Maralinganadoddi P Sadashiva
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA; Department of Chemistry, University of Mysore, Manasagangothri, Mysore, 570 006, India.
| | - Raghavendra Gowda
- Department of Pharmacology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Xianzhu Wu
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Gajanan S Inamdar
- Department of Pharmacology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Omer F Kuzu
- Department of Pharmacology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | | | - Gavin P Robertson
- Department of Pharmacology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - D Channe Gowda
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| |
Collapse
|
23
|
Kaderi Kibria KM, Rawat K, Klinger CM, Datta G, Panchal M, Singh S, Iyer GR, Kaur I, Sharma V, Dacks JB, Mohmmed A, Malhotra P. A role for adaptor protein complex 1 in protein targeting to rhoptry organelles in Plasmodium falciparum. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:699-710. [PMID: 25573429 DOI: 10.1016/j.bbamcr.2014.12.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 12/12/2014] [Accepted: 12/25/2014] [Indexed: 12/20/2022]
Abstract
The human malaria parasite Plasmodium falciparum possesses sophisticated systems of protein secretion to modulate host cell invasion and remodeling. In the present study, we provide insights into the function of the AP-1 complex in P. falciparum. We utilized GFP fusion constructs for live cell imaging, as well as fixed parasites in immunofluorescence analysis, to study adaptor protein mu1 (Pfμ1) mediated protein trafficking in P. falciparum. In trophozoites Pfμ1 showed similar dynamic localization to that of several Golgi/ER markers, indicating Golgi/ER localization. Treatment of transgenic parasites with Brefeldin A altered the localization of Golgi-associated Pfμ1, supporting the localization studies. Co-localization studies showed considerable overlap of Pfμ1 with the resident rhoptry proteins, rhoptry associated protein 1 (RAP1) and Cytoadherence linked asexual gene 3.1 (Clag3.1) in schizont stage. Immunoprecipitation experiments with Pfμ1 and PfRAP1 revealed an interaction, which may be mediated through an intermediate transmembrane cargo receptor. A specific role for Pfμ1 in trafficking was suggested by treatment with AlF4, which resulted in a shift to a predominantly ER-associated compartment and consequent decrease in co-localization with the Golgi marker GRASP. Together, these results suggest a role for the AP-1 complex in rhoptry protein trafficking in P. falciparum.
Collapse
Affiliation(s)
- K M Kaderi Kibria
- Malaria Research Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Khushboo Rawat
- Malaria Research Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Christen M Klinger
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | - Gaurav Datta
- Malaria Research Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Manoj Panchal
- Malaria Research Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Shailja Singh
- Malaria Research Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Gayatri R Iyer
- Malaria Research Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Inderjeet Kaur
- Malaria Research Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Veena Sharma
- Department of Bioscience and Biotechnology, Banasthali University, Banasthali-304022, Rajasthan, India
| | - Joel B Dacks
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada.
| | - Asif Mohmmed
- Malaria Research Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India.
| | - Pawan Malhotra
- Malaria Research Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India.
| |
Collapse
|
24
|
New insight into the mechanism of accumulation and intraerythrocytic compartmentation of albitiazolium, a new type of antimalarial. Antimicrob Agents Chemother 2014; 58:5519-27. [PMID: 25001307 DOI: 10.1128/aac.00040-14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bis-thiazolium salts constitute a new class of antihematozoan drugs that inhibit parasite phosphatidylcholine biosynthesis. They specifically accumulate in Plasmodium- and Babesia-infected red blood cells (IRBC). Here, we provide new insight into the choline analogue albitiazolium, which is currently being clinically tested against severe malaria. Concentration-dependent accumulation in P. falciparum-infected erythrocytes reached steady state after 90 to 120 min and was massive throughout the blood cycle, with cellular accumulation ratios of up to 1,000. This could not occur through a lysosomotropic effect, and the extent did not depend on the food vacuole pH, which was the case for the weak base chloroquine. Analysis of albitiazolium accumulation in P. falciparum IRBC revealed a high-affinity component that was restricted to mature stages and suppressed by pepstatin A treatment, and thus likely related to drug accumulation in the parasite food vacuole. Albitiazolium also accumulated in a second high-capacity component present throughout the blood cycle that was likely not related to the food vacuole and also observed with Babesia divergens-infected erythrocytes. Accumulation was strictly glucose dependent, drastically inhibited by H+/K+ and Na+ ionophores upon collapse of ionic gradients, and appeared to be energized by the proton-motive force across the erythrocyte plasma membrane, indicating the importance of transport steps for this permanently charged new type of antimalarial agent. This specific, massive, and irreversible accumulation allows albitiazolium to restrict its toxicity to hematozoa-infected erythrocytes. The intraparasitic compartmentation of albitiazolium corroborates a dual mechanism of action, which could make this new type of antimalarial agent resistant to parasite resistance.
Collapse
|
25
|
Coronado LM, Nadovich CT, Spadafora C. Malarial hemozoin: from target to tool. Biochim Biophys Acta Gen Subj 2014; 1840:2032-41. [PMID: 24556123 DOI: 10.1016/j.bbagen.2014.02.009] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 01/26/2014] [Accepted: 02/10/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND Malaria is an extremely devastating disease that continues to affect millions of people each year. A distinctive attribute of malaria infected red blood cells is the presence of malarial pigment or the so-called hemozoin. Hemozoin is a biocrystal synthesized by Plasmodium and other blood-feeding parasites to avoid the toxicity of free heme derived from the digestion of hemoglobin during invasion of the erythrocytes. SCOPE OF REVIEW Hemozoin is involved in several aspects of the pathology of the disease as well as in important processes such as the immunogenicity elicited. It is known that the once best antimalarial drug, chloroquine, exerted its effect through interference with the process of hemozoin formation. In the present review we explore what is known about hemozoin, from hemoglobin digestion, to its final structural analysis, to its physicochemical properties, its role in the disease and notions of the possible mechanisms that could kill the parasite by disrupting the synthesis or integrity of this remarkable crystal. MAJOR CONCLUSIONS The importance and peculiarities of this biocrystal have given researchers a cause to consider it as a target for new antimalarials and to use it through unconventional approaches for diagnostics and therapeutics against the disease. GENERAL SIGNIFICANCE Hemozoin plays an essential role in the biology of malarial disease. Innovative ideas could use all the existing data on the unique chemical and biophysical properties of this macromolecule to come up with new ways of combating malaria.
Collapse
Affiliation(s)
- Lorena M Coronado
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología, Ciudad del Saber, Panama; Department of Biotechnology, Acharya Nagarjuna University, Guntur 522 510, A.P., India
| | | | - Carmenza Spadafora
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología, Ciudad del Saber, Panama.
| |
Collapse
|
26
|
Food vacuole associated enolase in plasmodium undergoes multiple post-translational modifications: evidence for atypical ubiquitination. PLoS One 2013; 8:e72687. [PMID: 24009698 PMCID: PMC3751847 DOI: 10.1371/journal.pone.0072687] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 07/18/2013] [Indexed: 01/05/2023] Open
Abstract
Plasmodium enolase localizes to several sub-cellular compartments viz. cytosol, nucleus, cell membrane, food vacuole (FV) and cytoskeleton, without having any organelle targeting signal sequences. This enzyme has been shown to undergo multiple post-translational modifications (PTMs) giving rise to several variants that show organelle specific localization. It is likely that these PTMs may be responsible for its diverse distribution and moonlighting functions. While most variants have a MW of ~50 kDa and are likely to arise due to changes in pI, food vacuole (FV) associated enolase showed three forms with MW~50, 65 and 75 kDa. Evidence from immuno-precipitation and western analysis indicates that the 65 and 75 kDa forms of FV associated enolase are ubiquitinated. Using mass spectrometry (MS), definitive evidence is obtained for the nature of PTMs in FV associated variants of enolase. Results showed several modifications, viz. ubiquitination at K147, phosphorylation at Y148 and acetylation at K142 and K384. MS data also revealed the conjugation of three ubiquitin (Ub) molecules to enolase through K147. Trimeric ubiquitin has a linear peptide linkage between the NH2-terminal methionine of the first ubiquitin (Ub1) and the C-terminal G76 of the second (Ub2). Ub2 and third ubiquitin (Ub3) were linked through an atypical isopeptide linkage between K6 of Ub2 and G76 of Ub3, respectively. Further, the tri-ubiquitinated form was found to be largely associated with hemozoin while the 50 and 65 kDa forms were present in the NP-40 soluble fraction of FV. Mass spectrometry results also showed phosphorylation of S42 in the cytosolic enolase from P. falciparum and T337 in the cytoskeleton associated enolase from P. yoelii. The composition of food vacuolar proteome and likely interactors of enolase are also being reported.
Collapse
|
27
|
Affiliation(s)
- Paloma F. Salas
- Medicinal Inorganic Chemistry
Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia
V6T 1Z1, Canada
| | - Christoph Herrmann
- Medicinal Inorganic Chemistry
Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia
V6T 1Z1, Canada
- Advanced
Applied Physics Solutions, TRIUMF, 4004
Wesbrook Mall, Vancouver, British Columbia
V6T 2A3, Canada
| | - Chris Orvig
- Medicinal Inorganic Chemistry
Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia
V6T 1Z1, Canada
| |
Collapse
|
28
|
Use and importance of quina (Cinchona spp.) and ipeca (Carapichea ipecacuanha (Brot.) L. Andersson): Plants for medicinal use from the 16th century to the present. J Herb Med 2012. [DOI: 10.1016/j.hermed.2012.07.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Alam A, Goyal M, Iqbal MS, Pal C, Dey S, Bindu S, Maity P, Bandyopadhyay U. Novel antimalarial drug targets: hope for new antimalarial drugs. Expert Rev Clin Pharmacol 2012; 2:469-89. [PMID: 22112223 DOI: 10.1586/ecp.09.28] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Malaria is a major global threat, that results in more than 2 million deaths each year. The treatment of malaria is becoming extremely difficult due to the emergence of drug-resistant parasites, the absence of an effective vaccine, and the spread of insecticide-resistant vectors. Thus, malarial therapy needs new chemotherapeutic approaches leading to the search for new drug targets. Here, we discuss different approaches to identifying novel antimalarial drug targets. We have also given due attention to the existing validated targets with a view to develop novel, rationally designed lead molecules. Some of the important parasite proteins are claimed to be the targets; however, further in vitro or in vivo structure-function studies of such proteins are crucial to validate these proteins as suitable targets. The interactome analysis among apicoplast, mitochondrion and genomic DNA will also be useful in identifying vital pathways or proteins regulating critical pathways for parasite growth and survival, and could be attractive targets. Molecules responsible for parasite invasion to host erythrocytes and ion channels of infected erythrocytes, essential for intra-erythrocyte survival and stage progression of parasites are also becoming attractive targets. This review will discuss and highlight the current understanding regarding the potential antimalarial drug targets, which could be utilized to develop novel antimalarials.
Collapse
Affiliation(s)
- Athar Alam
- Division of Infectious Diseases and Immunology, Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata-700032, West Bengal, India.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Orjih AU. Hemozoin accumulation in Garnham bodies of Plasmodium falciparum gametocytes. Parasitol Res 2012; 111:2353-9. [PMID: 22926648 DOI: 10.1007/s00436-012-3090-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 08/13/2012] [Indexed: 11/30/2022]
Abstract
Garnham bodies are curious objects exclusive in erythrocytes containing sexual forms (gametocytes) of Plasmodium falciparum. Although the name is familiar, only a few photographs of Garnham bodies (G-bodies) have been published. Considering that other objects in malaria-infected erythrocytes, such as Schuffner's dots of Plasmodium vivax and Maurer's clefts of P. falciparum, have been found to have some functions, it has become necessary to pay closer attention to G-bodies. The present study presents previously unknown features of G-bodies and suggests a protective role for them. Wild isolates of P. falciparum were encouraged to grow in vitro under conditions that promote gametocytogenesis. Thin and thick smears of the cells were stained with Giemsa stain and examined under a light microscope. Production of G-bodies was detected in two isolates both in immature and mature gametocytes. Sometimes, the objects are found both at the top and below the parasite, contrary to previous suggestion of it being only on one side. They are highly diverse in morphology, including those that are shaped like m or S. Hemozoin accumulation was detected in some of the bodies, indicating direct opening into the cystoplasm of the parasite. It is possible that hemozoin was first produced in the parasite's food vacuole before being transported to G-bodies. Alternatively, hemoglobin transport vesicles could first accumulate in G-bodies where metabolically released ferriprotoporphyrin IX (FP) could be polymerized; but this would need acidic environment comparable to that in food vacuole. Electron microscopy has revealed that G-bodies consist of membranous whorls and it has been demonstrated experimentally that both infected and uninfected membranes promote β-hematin formation. Whatever the mechanism, storing hemozoin in G-bodies outside the cytoplasm of the parasite could provide intraerythrocytic sexual forms of P. falciparum additional protection against FP toxicity.
Collapse
Affiliation(s)
- Augustine U Orjih
- Faculty of Allied Health Sciences, Department of Medical Laboratory Sciences, Kuwait University, PO Box 31740, Sulaibikhat 90805, Kuwait.
| |
Collapse
|
31
|
Orjih AU, Mathew TC, Cherian PT. Erythrocyte membranes convert monomeric ferriprotoporphyrin IX to β-hematin in acidic environment at malarial fever temperature. Exp Biol Med (Maywood) 2012; 237:884-93. [PMID: 22890028 DOI: 10.1258/ebm.2012.012013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hemozoin production makes it possible for intraerythrocytic malaria parasites to digest massive quantities of hemoglobin but still avoid potential ferriprotoporphyrin IX (FP) toxicity, which they cannot decompose further. Some antimalarial drugs, such as chloroquine, work by inhibiting this production, forcing the parasite to starve to death. As part of the efforts to identify possible biological mechanisms of FP polymerization, we have used normal human erythrocyte membranes as a model, to promote β-hematin (β-h) synthesis. Hemin in 35% aqueous dimethyl sulfoxide (DMSO) was reacted with isolated erythrocyte membranes and incubated overnight in sodium acetate buffer, pH 4.8, at 41°C. Infrared spectroscopy and electron microscopy showed that β-h was produced. Hemin in 10% was less effective as the substrate than when it was in 35% DMSO. A high malarial temperature seemed to be necessary, because FP polymerization was less at 37°C than at 41°C. Production was partially inhibited by chloroquine. These observations are of interest because other investigators have reported that membrane lipids mediated FP polymerization, but whole membranes were ineffective. On the other hand, our hypothesis is that the transport vesicles (TV) in malaria parasites could provide the receptor for FP and the lipids that promote hemozoin formation. Erythrocyte membranes may not be directly involved, but Plasmodium species transport hemoglobin in membrane-bound TV into food vacuoles, where hemoglobin catabolism is completed and hemozoin crystals are stored.
Collapse
Affiliation(s)
- Augustine U Orjih
- Department of Medical Laboratory Sciences, Kuwait University, Kuwait, Arabian Gulf.
| | | | | |
Collapse
|
32
|
Pou S, Winter RW, Nilsen A, Kelly JX, Li Y, Doggett JS, Riscoe EW, Wegmann KW, Hinrichs DJ, Riscoe MK. Sontochin as a guide to the development of drugs against chloroquine-resistant malaria. Antimicrob Agents Chemother 2012; 56:3475-80. [PMID: 22508305 PMCID: PMC3393441 DOI: 10.1128/aac.00100-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Accepted: 04/09/2012] [Indexed: 11/20/2022] Open
Abstract
Sontochin was the original chloroquine replacement drug, arising from research by Hans Andersag 2 years after chloroquine (known as "resochin" at the time) had been shelved due to the mistaken perception that it was too toxic for human use. We were surprised to find that sontochin, i.e., 3-methyl-chloroquine, retains significant activity against chloroquine-resistant strains of Plasmodium falciparum in vitro. We prepared derivatives of sontochin, "pharmachins," with alkyl or aryl substituents at the 3 position and with alterations to the 4-position side chain to enhance activity against drug-resistant strains. Modified with an aryl substituent in the 3 position of the 7-chloro-quinoline ring, Pharmachin 203 (PH-203) exhibits low-nanomolar 50% inhibitory concentrations (IC(50)s) against drug-sensitive and multidrug-resistant strains and in vivo efficacy against patent infections of Plasmodium yoelii in mice that is superior to chloroquine. Our findings suggest that novel 3-position aryl pharmachin derivatives have the potential for use in treating drug resistant malaria.
Collapse
Affiliation(s)
- Sovitj Pou
- VA Medical Center, Portland, Oregon, USA
| | - Rolf W. Winter
- VA Medical Center, Portland, Oregon, USA
- Department of Chemistry, Portland State University, Portland, Oregon, USA
| | | | - Jane Xu Kelly
- VA Medical Center, Portland, Oregon, USA
- Department of Chemistry, Portland State University, Portland, Oregon, USA
| | - Yuexin Li
- VA Medical Center, Portland, Oregon, USA
| | - J. Stone Doggett
- VA Medical Center, Portland, Oregon, USA
- Department of Medicine, Division of Infectious Diseases, Oregon Health & Science University, Portland, Oregon, USA
| | - Erin W. Riscoe
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, USA
| | | | - David J. Hinrichs
- VA Medical Center, Portland, Oregon, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, USA
| | - Michael K. Riscoe
- VA Medical Center, Portland, Oregon, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, USA
- Department of Chemistry, Portland State University, Portland, Oregon, USA
| |
Collapse
|
33
|
Yadav N, Dixit SK, Bhattacharya A, Mishra LC, Sharma M, Awasthi SK, Bhasin VK. Antimalarial activity of newly synthesized chalcone derivatives in vitro. Chem Biol Drug Des 2012; 80:340-7. [PMID: 22429524 DOI: 10.1111/j.1747-0285.2012.01383.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Twenty-seven novel chalcone derivatives were synthesized using Claisen-Schmidt condensation and their antimalarial activity against asexual blood stages of Plasmodium falciparum was determined. Antiplasmodial IC(50) (half-maximal inhibitory concentration) activity of a compound against malaria parasites in vitro provides a good first screen for identifying the antimalarial potential of the compound. The most active compound was 1-(4-benzimidazol-1-yl-phenyl)-3-(2, 4-dimethoxy-phenyl)-propen-1-one with IC(50) of 1.1 μg/mL, while that of the natural phytochemical, licochalcone A is 1.43 μg/mL. The presence of methoxy groups at position 2 and 4 in chalcone derivatives appeared to be favorable for antimalarial activity as compared to other methoxy-substituted chalcones. Furthermore, 3, 4, 5-trimethoxy groups on chalcone derivative probably cause steric hindrance in binding to the active site of cysteine protease enzyme, explaining the relative lower inhibitory activity.
Collapse
Affiliation(s)
- Neesha Yadav
- Department of Chemistry, University of Delhi, Delhi 110007, India Department of Zoology, University of Delhi, Delhi 110007, India
| | | | | | | | | | | | | |
Collapse
|
34
|
Qiu W, Dong A, Pizarro JC, Botchkarsev A, Min J, Wernimont AK, Hills T, Hui R, Artz JD. Crystal structures from the Plasmodium peroxiredoxins: new insights into oligomerization and product binding. BMC STRUCTURAL BIOLOGY 2012; 12:2. [PMID: 22429898 PMCID: PMC3337327 DOI: 10.1186/1472-6807-12-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 03/19/2012] [Indexed: 11/10/2022]
Abstract
Abstract
Background
Plasmodium falciparum is the protozoan parasite primarily responsible for more than one million malarial deaths, annually, and is developing resistance to current therapies. Throughout its lifespan, the parasite is subjected to oxidative attack, so Plasmodium antioxidant defences are essential for its survival and are targets for disease control.
Results
To further understand the molecular aspects of the Plasmodium redox system, we solved 4 structures of Plasmodium peroxiredoxins (Prx). Our study has confirmed Pv Trx-Px1 to be a hydrogen peroxide (H2O2)-sensitive peroxiredoxin. We have identified and characterized the novel toroid octameric oligomer of Py Trx-Px1, which may be attributed to the interplay of several factors including: (1) the orientation of the conserved surface/buried arginine of the NNLA(I/L)GRS-loop; and (2) the C-terminal tail positioning (also associated with the aforementioned conserved loop) which facilitates the intermolecular hydrogen bond between dimers (in an A-C fashion). In addition, a notable feature of the disulfide bonds in some of the Prx crystal structures is discussed. Finally, insight into the latter stages of the peroxiredoxin reaction coordinate is gained. Our structure of Py Prx6 is not only in the sulfinic acid (RSO2H) form, but it is also with glycerol bound in a way (not previously observed) indicative of product binding.
Conclusions
The structural characterization of Plasmodium peroxiredoxins provided herein provides insight into their oligomerization and product binding which may facilitate the targeting of these antioxidant defences. Although the structural basis for the octameric oligomerization is further understood, the results yield more questions about the biological implications of the peroxiredoxin oligomerization, as multiple toroid configurations are now known. The crystal structure depicting the product bound active site gives insight into the overoxidation of the active site and allows further characterization of the leaving group chemistry.
Collapse
|
35
|
Xiao H, Dee D, Yada RY. The native conformation of plasmepsin II is kinetically trapped at neutral pH. Arch Biochem Biophys 2011; 513:102-9. [PMID: 21767524 DOI: 10.1016/j.abb.2011.06.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 06/29/2011] [Accepted: 06/30/2011] [Indexed: 10/18/2022]
Abstract
Plasmepsin II (PMII), an aspartic protease from the malarial parasite Plasmodium falciparum, represents a model for understanding protease structure/function relationships due to its unique structure and properties. The present study undertook a thermodynamic and kinetic analysis of the PMII folding mechanism and a pH stability profile. Differential scanning calorimetry revealed that the native state of PMII (Np) was irreversibly unfolded, and in the pH range of 6.5-8.0, PMII refolds to a denatured state (Rp) with higher thermal stability than Np. Rp could also be formed upon partially unfolding PMII at pH 11.0 and 37 °C for 2h, followed by adjustment to a pH in the range of 6.5-8.0. While Rp could be folded/unfolded reversibly, Np was shown to exist as a kinetically trapped state. By examining the unfolding kinetics of Np and the kinetics of Rp folding to Np at 25 °C, it was found that Np is kinetically trapped by an unfolding barrier of 25.5 kcal/mol, and yet once unfolded, is prevented from folding by a comparable folding barrier. The folding mechanism of PMII is similar to that reported for pepsin. It is hypothesized that the PMII zymogen also utilizes a prosegment-catalyzed folding mechanism.
Collapse
Affiliation(s)
- Huogen Xiao
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada N1G2W1
| | | | | |
Collapse
|
36
|
Abstract
Peroxidoxins are a recently described family of antioxidants. They have an ancient origin, being present in organisms as primitive as the archaea, and they appear to be ubiquitous in living cells. Here, Sharon McGonigle, John Dalton and Eric James review the present understanding of the functions and mechanism of action of these enzymes and suggest that these antioxidants may represent the ;missing link' in the metabolism of reactive oxygen species by some protozoan and helminth parasites. Also, by performing sequence comparisons of homologues entered in the public databases, they have classified the parasite peroxidoxins as 1-cys or 2-cys enzymes. The discovery of these antioxidants may change our understanding of how reactive oxygen species, of parasite or host origin, are managed by parasites.
Collapse
Affiliation(s)
- S McGonigle
- Department of Ophthalmology, Medical University of South Carolina, 171 Ashley Ave, Charleston, SC 29425, USA
| | | | | |
Collapse
|
37
|
Matrix Metalloproteinase-9 and Haemozoin: Wedding Rings for Human Host and Plasmodium falciparum Parasite in Complicated Malaria. J Trop Med 2011; 2011:628435. [PMID: 21760809 PMCID: PMC3134216 DOI: 10.1155/2011/628435] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Accepted: 03/07/2011] [Indexed: 11/17/2022] Open
Abstract
It is generally accepted that the combination of both Plasmodium falciparum parasite and human host factors is involved in the pathogenesis of complicated severe malaria, including cerebral malaria (CM). Among parasite products, the malarial pigment haemozoin (HZ) has been shown to impair the functions of mononuclear and endothelial cells. Different CM models were associated with enhanced levels of matrix metalloproteinases (MMPs), a family of proteolytic enzymes able to disrupt subendothelial basement membrane and tight junctions and shed, activate, or inactivate cytokines, chemokines, and other MMPs through cleavage from their precursors. Among MMPs, a good candidate for targeted therapy might be MMP-9, whose mRNA and protein expression enhancement as well as direct proenzyme activation by HZ have been recently investigated in a series of studies by our group and others. In the present paper the role of HZ and MMP-9 in complicated malaria, as well as their interactions, will be discussed.
Collapse
|
38
|
Plasmodium falciparum enolase complements yeast enolase functions and associates with the parasite food vacuole. Mol Biochem Parasitol 2011; 179:8-17. [PMID: 21600245 DOI: 10.1016/j.molbiopara.2011.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 04/30/2011] [Accepted: 05/02/2011] [Indexed: 01/07/2023]
Abstract
Plasmodium falciparum enolase (Pfeno) localizes to the cytosol, nucleus, cell membrane and cytoskeletal elements, suggesting multiple non-glycolytic functions for this protein. Our recent observation of association of enolase with the food vacuole (FV) in immuno-gold electron microscopic images of P. falciparum raised the possibility for yet another moonlighting function for this protein. Here we provide additional support for this localization by demonstrating the presence of Pfeno in purified FVs by immunoblotting. To examine the potential functional role of FV-associated Pfeno, we assessed the ability of Pfeno to complement a mutant Saccharomyces cervisiae strain deficient in enolase activity. In this strain (Tetr-Eno2), the enolase 1 gene is deleted and expression of the enolase 2 gene is under the control of a tetracycline repressible promoter. Enolase deficiency in this strain was previously shown to cause growth retardation, vacuolar fragmentation and altered expression of certain vacuolar proteins. Expression of Pfeno in the enolase-deficient yeast strain restored all three phenotypic effects. However, transformation of Tetr-eno2 with an enzymatically active, monomeric mutant form of Pfeno (Δ(5)Pfeno) fully restored cell growth, but only partially rescued the fragmented vacuolar phenotype, suggesting that the dimeric structure of Pfeno is required for the optimal vacuolar functions. Bioinformatic searches revealed the presence of Plasmodium orthologs of several yeast vacuolar proteins that are predicted to form complexes with Pfeno. Together, these observations raise the possibility that association of Pfeno with food vacuole in Plasmodium may have physiological function(s).
Collapse
|
39
|
Affiliation(s)
- P Olliaro
- UNDP/World Bank /WHO Special Programme for Research and Training in Tropical Diseases (TDR), Geneva, Switzerland
| | - D Wirth
- UNDP/World Bank /WHO Special Programme for Research and Training in Tropical Diseases (TDR), Geneva, Switzerland
- Harvard School of Tropical Public Health, Boston MA, USA
| |
Collapse
|
40
|
Affiliation(s)
- Robert G Ridley
- F. Hoffmann-La Roche, Pharmaceuticals Division, Pharma Research, CH-4070 Basel, Switzerland
| |
Collapse
|
41
|
Overcoming the heme paradox: heme toxicity and tolerance in bacterial pathogens. Infect Immun 2010; 78:4977-89. [PMID: 20679437 DOI: 10.1128/iai.00613-10] [Citation(s) in RCA: 217] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Virtually all bacterial pathogens require iron to infect vertebrates. The most abundant source of iron within vertebrates is in the form of heme as a cofactor of hemoproteins. Many bacterial pathogens have elegant systems dedicated to the acquisition of heme from host hemoproteins. Once internalized, heme is either degraded to release free iron or used intact as a cofactor in catalases, cytochromes, and other bacterial hemoproteins. Paradoxically, the high redox potential of heme makes it a liability, as heme is toxic at high concentrations. Although a variety of mechanisms have been proposed to explain heme toxicity, the mechanisms by which heme kills bacteria are not well understood. Nonetheless, bacteria employ various strategies to protect against and eliminate heme toxicity. Factors involved in heme acquisition and detoxification have been found to contribute to virulence, underscoring the physiological relevance of heme stress during pathogenesis. Herein we describe the current understanding of the mechanisms of heme toxicity and how bacterial pathogens overcome the heme paradox during infection.
Collapse
|
42
|
Xiao H, Briere LAK, Dunn SD, Yada RY. Characterization of the monomer-dimer equilibrium of recombinant histo-aspartic protease from Plasmodium falciparum. Mol Biochem Parasitol 2010; 173:17-24. [PMID: 20435072 DOI: 10.1016/j.molbiopara.2010.04.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 04/21/2010] [Accepted: 04/22/2010] [Indexed: 11/30/2022]
Abstract
Histo-aspartic protease (HAP) from Plasmodium falciparum is an intriguing aspartic protease due to its unique structure. Our previous study reported the first recombinant expression of soluble HAP, in its truncated form (lys77p-Leu328) (p denotes prosegment), as a thioredoxin (Trx) fusion protein Trx-tHAP. The present study found that the recombinant Trx-tHAP fusion protein aggregated during purification which could be prevented through the addition of 0.2% CHAPS. Trx-tHAP fusion protein was processed into a mature form of tHAP (mtHAP) by both autoactivation, and activation with either enterokinase or plasmepsin II. Using gel filtration chromatography as well as sedimentation velocity and equilibrium ultracentrifugation, it was shown that the recombinant mtHAP exists in a dynamic monomer-dimer equilibrium with an increasing dissociation constant in the presence of CHAPS. Enzymatic activity data indicated that HAP was most active as a monomer. The dominant monomeric form showed a K(m) of 2.0 microM and a turnover number, k(cat), of 0.036s(-1) using the internally quenched fluorescent synthetic peptide substrate EDANS-CO-CH(2)-CH(2)-CO-Ala-Leu-Glu-Arg-Met-Phe-Leu-Ser-Phe-Pro-Dap-(DABCYL)-OH (2837b) at pH 5.2.
Collapse
Affiliation(s)
- Huogen Xiao
- Department of Food Science, University of Guelph, ON, Canada
| | | | | | | |
Collapse
|
43
|
Abu Bakar N, Klonis N, Hanssen E, Chan C, Tilley L. Digestive-vacuole genesis and endocytic processes in the early intraerythrocytic stages of Plasmodium falciparum. J Cell Sci 2010; 123:441-50. [PMID: 20067995 DOI: 10.1242/jcs.061499] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The digestive vacuole of the malaria parasite Plasmodium falciparum is the site of haemoglobin digestion and haem detoxification, and is the target of chloroquine and other antimalarials. The mechanisms for genesis of the digestive vacuole and transfer of haemoglobin from the host cytoplasm are still debated. Here, we use live-cell imaging and photobleaching to monitor the uptake of the pH-sensitive fluorescent tracer SNARF-1-dextran from the erythrocyte cytoplasm in ring-stage and trophozoite-stage parasites. We compare these results with electron tomography of serial sections of parasites at different stages of growth. We show that uptake of erythrocyte cytoplasm is initiated in mid-ring-stage parasites. The host cytoplasm is internalised via cytostome-derived invaginations and concentrated into several acidified peripheral structures. Haemoglobin digestion and haemozoin formation take place in these vesicles. The ring-stage parasites can adopt a deeply invaginated cup shape but do not take up haemoglobin via macropinocytosis. As the parasite matures, the haemozoin-containing compartments coalesce to form a single acidic digestive vacuole that is fed by haemoglobin-containing vesicles. There is also evidence for haemoglobin degradation in compartments outside the digestive vacuole. The work has implications for the stage specificity of quinoline and endoperoxide antimalarials.
Collapse
|
44
|
Guetzoyan L, Yu XM, Ramiandrasoa F, Pethe S, Rogier C, Pradines B, Cresteil T, Perrée-Fauvet M, Mahy JP. Antimalarial acridines: synthesis, in vitro activity against P. falciparum and interaction with hematin. Bioorg Med Chem 2009; 17:8032-9. [PMID: 19879150 DOI: 10.1016/j.bmc.2009.10.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 10/02/2009] [Accepted: 10/05/2009] [Indexed: 10/20/2022]
Abstract
A series of acridine derivatives were synthesised and their in vitro antimalarial activity was evaluated against one chloroquine-susceptible strain (3D7) and three chloroquine-resistant strains (W2, Bre1 and FCR3) of Plasmodium falciparum. Structure-activity relationship showed that two positives charges as well as 6-chloro and 2-methoxy substituents on the acridine ring were required to exert a good antimalarial activity. The best compounds possessing these features inhibited the growth of the chloroquine-susceptible strain with an IC(50)0.07 microM, close to that of chloroquine itself, and that of the three chloroquine-resistant strains better than chloroquine with IC(50)0.3 microM. These acridine derivatives inhibited the formation of beta-hematin, suggesting that, like CQ, they act on the haem crystallization process. Finally, in vitro cytotoxicity was also evaluated upon human KB cells, which showed that one of them 9-(6-ammonioethylamino)-6-chloro-2-methoxyacridinium dichloride 1 displayed a promising antimalarial activity in vitro with a quite good selectivity index versus mammalian cell on the CQ-susceptible strain and promising selectivity on other strains.
Collapse
Affiliation(s)
- Lucie Guetzoyan
- Equipe de Chimie Bioorganique et Bioinorganique, Institut de Chimie Moléculaire et des Matériaux d'Orsay, Bât. 420, CNRS UMR 8182, Univ Paris-Sud, 91405 Orsay Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Bhowmick IP, Kumar N, Sharma S, Coppens I, Jarori GK. Plasmodium falciparum enolase: stage-specific expression and sub-cellular localization. Malar J 2009; 8:179. [PMID: 19642995 PMCID: PMC2794028 DOI: 10.1186/1475-2875-8-179] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Accepted: 07/30/2009] [Indexed: 11/13/2022] Open
Abstract
Background In an earlier study, it was observed that the vaccination with Plasmodium falciparum enolase can confer partial protection against malaria in mice. Evidence has also build up to indicate that enolases may perform several non-glycolytic functions in pathogens. Investigating the stage-specific expression and sub-cellular localization of a protein may provide insights into its moonlighting functions. Methods Sub-cellular localization of P. falciparum enolase was examined using immunofluorescence assay, immuno-gold electron microscopy and western blotting. Results Enolase protein was detected at every stage in parasite life cycle examined. In asexual stages, enolase was predominantly (≥85–90%) present in soluble fraction, while in sexual stages it was mostly associated with particulate fraction. Apart from cytosol, enolase was found to be associated with nucleus, food vacuole, cytoskeleton and plasma membrane. Conclusion Diverse localization of enolase suggests that apart from catalyzing the conversion of 2-phosphoglycericacid into phosphoenolpyruvate in glycolysis, enolase may be involved in a host of other biological functions. For instance, enolase localized on the merozoite surface may be involved in red blood cell invasion; vacuolar enolase may be involved in food vacuole formation and/or development; nuclear enolase may play a role in transcription.
Collapse
Affiliation(s)
- Ipsita Pal Bhowmick
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai-400005, India.
| | | | | | | | | |
Collapse
|
46
|
Discovery of dual function acridones as a new antimalarial chemotype. Nature 2009; 459:270-3. [PMID: 19357645 DOI: 10.1038/nature07937] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Accepted: 02/25/2009] [Indexed: 11/08/2022]
Abstract
Preventing and delaying the emergence of drug resistance is an essential goal of antimalarial drug development. Monotherapy and highly mutable drug targets have each facilitated resistance, and both are undesirable in effective long-term strategies against multi-drug-resistant malaria. Haem remains an immutable and vulnerable target, because it is not parasite-encoded and its detoxification during haemoglobin degradation, critical to parasite survival, can be subverted by drug-haem interaction as in the case of quinolines and many other drugs. Here we describe a new antimalarial chemotype that combines the haem-targeting character of acridones, together with a chemosensitizing component that counteracts resistance to quinoline antimalarial drugs. Beyond the essential intrinsic characteristics common to deserving candidate antimalarials (high potency in vitro against pan-sensitive and multi-drug-resistant Plasmodium falciparum, efficacy and safety in vivo after oral administration, inexpensive synthesis and favourable physicochemical properties), our initial lead, T3.5 (3-chloro-6-(2-diethylamino-ethoxy)-10-(2-diethylamino-ethyl)-acridone), demonstrates unique synergistic properties. In addition to 'verapamil-like' chemosensitization to chloroquine and amodiaquine against quinoline-resistant parasites, T3.5 also results in an apparently mechanistically distinct synergism with quinine and with piperaquine. This synergy, evident in both quinoline-sensitive and quinoline-resistant parasites, has been demonstrated both in vitro and in vivo. In summary, this innovative acridone design merges intrinsic potency and resistance-counteracting functions in one molecule, and represents a new strategy to expand, enhance and sustain effective antimalarial drug combinations.
Collapse
|
47
|
Abstract
The structure-function relationships of aspartic peptidases (APs) (EC 3.4.23.X) have been extensively investigated, yet much remains to be elucidated regarding the various molecular mechanisms of these enzymes. Over the past years, APs have received considerable interest for food applications (e.g. cheese, fermented foods) and as potential targets for pharmaceutical intervention in human diseases including hypertension, cancer, Alzheimer's disease, AIDS (acquired immune deficiency syndrome), and malaria. A deeper understanding of the structure and function of APs, therefore, will have a direct impact on the design of peptidase inhibitors developed to treat such diseases. Most APs are synthesized as zymogens which contain an N-terminal prosegment (PS) domain that is removed at acidic pH by proteolytic cleavage resulting in the active enzyme. While the nature of the AP PS function is not entirely understood, the PS can be important in processes such as the initiation of correct folding, protein stability, blockage of the active site, pH-dependence of activation, and intracellular sorting of the zymogen. This review summarizes the current knowledge of AP PS function (especially within the A1 family), with particular emphasis on protein folding, cellular sorting, and inhibition.
Collapse
|
48
|
|
49
|
Bousejra-El Garah F, Pitié M, Vendier L, Meunier B, Robert A. Alkylating ability of artemisinin after Cu(I)-induced activation. J Biol Inorg Chem 2009; 14:601-10. [DOI: 10.1007/s00775-009-0474-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Accepted: 01/23/2009] [Indexed: 11/30/2022]
|
50
|
Parr CL, Tanaka T, Xiao H, Yada RY. The catalytic significance of the proposed active site residues in Plasmodium falciparum histoaspartic protease. FEBS J 2008; 275:1698-707. [PMID: 18312598 DOI: 10.1111/j.1742-4658.2008.06325.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Alanine mutations of the proposed catalytically essential residues in histoaspartic protease (HAP) (H34A, S37A and D214A) were generated to investigate whether: (a) HAP is a serine protease with a catalytic triad of His34, Ser37 and Asp214 [Andreeva N, Bogdanovich P, Kashparov I, Popov M & Stengach M (2004) Proteins55, 705-710]; or (b) HAP is a novel protease with Asp214 acting as both the acid and the base during substrate catalysis with His34 providing critical stabilization [Bjelic S & Aqvist J (2004) Biochemistry43, 14521-14528]. Our results indicated that recombinant wild-type HAP, S37A and H34A were capable of autoactivation, whereas D214A was not. The inability of D214A to autoactivate highlighted the importance of Asp214 for catalysis. H34A and S37A mutants hydrolyzed synthetic substrate indicating that neither His34 nor Ser37 was essential for substrate catalysis. Both mutants did, however, have reduced catalytic efficiency (P < or = 0.05) compared with wild-type HAP, which was attributed to the stabilizing role of His34 and Ser37 during catalysis. The mature forms of wild-type HAP, H34A and S37A all exhibited high activity over a broad pH range of 5.0-8.5 with maximum activity occurring between pH 7.5 and 8.0. Inhibition studies indicated that wild-type HAP, H34A and S37A were strongly inhibited by the serine protease inhibitor phenylmethanesulfonyl fluoride, but only weakly inhibited by pepstatin A. The data, in concert with molecular modeling, suggest a novel mode of catalysis with a single aspartic acid residue performing both the acid and base roles.
Collapse
Affiliation(s)
- Charity L Parr
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | | | | | | |
Collapse
|