1
|
Boyd R, Richerson PJ. Cultural evolution: Where we have been and where we are going (maybe). Proc Natl Acad Sci U S A 2024; 121:e2322879121. [PMID: 39556734 PMCID: PMC11621844 DOI: 10.1073/pnas.2322879121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024] Open
Abstract
The study of cultural evolution using ideas from population biology began about 50 y ago, with the work of L.L. Cavalli-Sforza, Marcus Feldman, and ourselves. It has grown from this small beginning into a vital field with many publications and its own scientific society. In this essay, we give our perspective on the origins of the field and current unanswered questions.
Collapse
Affiliation(s)
- Robert Boyd
- School of Human Evolution and Social Change, Institute for Human Origins, Arizona State University, Tempe, AZ85281
| | - Peter J. Richerson
- Department of Environmental Science and Policy, University of California, Davis, AZ95616
| |
Collapse
|
2
|
Lala KN, Feldman MW. Genes, culture, and scientific racism. Proc Natl Acad Sci U S A 2024; 121:e2322874121. [PMID: 39556747 PMCID: PMC11621800 DOI: 10.1073/pnas.2322874121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024] Open
Abstract
Quantitative studies of cultural evolution and gene-culture coevolution (henceforth "CE" and "GCC") emerged in the 1970s, in the aftermath of the "race and intelligence quotient (IQ)" and "human sociobiology" debates, as a counter to extreme hereditarian positions. These studies incorporated cultural transmission and its interaction with genetics in contributing to patterns of human variation. Neither CE nor GCC results were consistent with racist claims of ubiquitous genetic differences between socially defined races. We summarize how genetic data refute the notion of racial substructure for human populations and address naive interpretations of race across the biological sciences, including those related to ancestry, health, and intelligence, that help to perpetuate racist ideas. A GCC perspective can refute reductionist and determinist claims while providing a more inclusive multidisciplinary framework in which to interpret human variation.
Collapse
Affiliation(s)
- Kevin N. Lala
- School of Biology, Centre for Biological Diversity, University of St. Andrews, St. Andrews KY16 9TF, United Kingdom
| | | |
Collapse
|
3
|
Pooladvand P, Kendal JR, Tanaka MM. How cultural innovations trigger the emergence of new pathogens. Proc Natl Acad Sci U S A 2024; 121:e2322882121. [PMID: 39556748 PMCID: PMC11621466 DOI: 10.1073/pnas.2322882121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 08/14/2024] [Indexed: 11/20/2024] Open
Abstract
Cultural practices perceived to be adaptive-from clearing land for food production to medical innovations-can disseminate quickly through human populations. However, these same practices often have unintended maladaptive effects. A particularly consequential effect is the emergence of diseases. In numerous instances, a cultural change is followed by the appearance of a new pathogen. Here, we develop mathematical models to analyze the population processes through which cultural evolution precipitates the emergence of a new disease. We find that when a risk-bearing cultural practice spreads, emergence can be an unavoidable cost even if a safer alternative practice eventually evolves from the original. Social learning and a fitness advantage associated with the evolving practice drive early disease emergence but the two factors have distinct effects on the time to mutation of the pathogen and significant stochastic variation is observed. For example, a disease can take longer to emerge in a population that adopts the risk-bearing practice quickly than in a population that is slow to transition. Extending the model to explore the effects of an alternative practice evolving from the original, we find a nonmonotonic relationship between relative risk of the two practices and the median time to disease emergence. Our findings contribute to understanding how cultural evolution can shape pathogen evolution and highlight the unpredictability of disease emergence.
Collapse
Affiliation(s)
- Pantea Pooladvand
- School of Biotechnology and Biomedical Sciences, University of New South Wales, Sydney, NSW2052, Australia
- Evolution and Ecology Research Centre, University of New South Wales, Sydney, NSW2052, Australia
| | - Jeremy R. Kendal
- Department of Anthropology, Durham University, Durham DH1 3LE, United Kingdom
| | - Mark M. Tanaka
- School of Biotechnology and Biomedical Sciences, University of New South Wales, Sydney, NSW2052, Australia
- Evolution and Ecology Research Centre, University of New South Wales, Sydney, NSW2052, Australia
| |
Collapse
|
4
|
Dalla Ragione A, Ross CT, Redhead D. A gene-culture co-evolutionary perspective on the puzzle of human twinship. EVOLUTIONARY HUMAN SCIENCES 2024; 6:e47. [PMID: 39600623 PMCID: PMC11588562 DOI: 10.1017/ehs.2024.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/19/2024] [Accepted: 06/12/2024] [Indexed: 11/29/2024] Open
Abstract
Natural selection should favour litter sizes that optimise trade-offs between brood-size and offspring viability. Across the primate order, the modal litter size is one, suggesting a deep history of selection favouring minimal litters in primates. Humans, however - despite having the longest juvenile period and slowest life-history of all primates - still produce twin births at appreciable rates, even though such births are costly. This presents an evolutionary puzzle. Why is twinning still expressed in humans despite its cost? More puzzling still is the discordance between the principal explanations for human twinning and extant empirical data. Such explanations propose that twinning is regulated by phenotypic plasticity in polyovulation, permitting the production of larger sib sets if and when resources are abundant. However, comparative data suggest that twinning rates are actually highest in poorer economies and lowest in richer, more developed economies. We propose that a historical dynamic of gene-culture co-evolution might better explain this geographic patterning. Our explanation distinguishes geminophilous and geminophobic cultural contexts, as those celebrating twins (e.g. through material support) and those hostile to twins (e.g. through sanction of twin-infanticide). Geminophilous institutions, in particular, may buffer the fitness cost associated with twinning, potentially reducing selection pressures against polyovulation. We conclude by synthesising a mathematical and empirical research programme that might test our ideas.
Collapse
Affiliation(s)
- Augusto Dalla Ragione
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Cody T. Ross
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Daniel Redhead
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Sociology, University of Groningen, Grote Rozenstraat 31, 9712 TG Groningen, The Netherlands
- Inter-University Center for Social Science Theory and Methodology, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
5
|
Lee ED, Flack JC, Krakauer DC. Constructing stability: optimal learning in noisy ecological niches. Proc Biol Sci 2024; 291:20241606. [PMID: 39471866 PMCID: PMC11606325 DOI: 10.1098/rspb.2024.1606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/06/2024] [Accepted: 09/04/2024] [Indexed: 11/01/2024] Open
Abstract
Organisms can learn in response to environmental inputs as well as actively modify their environments through niche construction on slower evolutionary time scales. How quickly should an organism respond to a changing environment, and when possible, should organisms adjust the time scale of environmental change? We formulate these questions using a model of learning costs that considers optimal time scales of both memory and environment. We derive a general, sublinear scaling law for optimal memory as a function of environmental persistence. This encapsulates a trade-off between remembering and forgetting. We place learning strategies within a niche construction dynamics in a game theoretic setting. Niche construction is found to reduce or stabilize environmental volatility when learned environmental resources can be monopolized. When learned resources are shared, niche destructors evolve to degrade the shared environment. We integrate these results into a metabolic scaling framework in order to derive learning strategies as a function of body size.
Collapse
Affiliation(s)
- Edward D. Lee
- Complexity Science Hub, Josefstædter Strasse 39, Vienna1080, Austria
| | | | | |
Collapse
|
6
|
Mitteroecker P, Fischer B. Evolution of the human birth canal. Am J Obstet Gynecol 2024; 230:S841-S855. [PMID: 38462258 DOI: 10.1016/j.ajog.2022.09.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 03/12/2024]
Abstract
It seems puzzling why humans have evolved such a small and rigid birth canal that entails a relatively complex process of labor compared with the birth canal of our closest relatives, the great apes. This study reviewed insights into the evolution of the human birth canal from recent theoretical and empirical studies and discussed connections to obstetrics, gynecology, and orthopedics. Originating from the evolution of bipedality and the large human brain million years ago, the evolution of the human birth canal has been characterized by complex trade-off dynamics among multiple biological, environmental, and sociocultural factors. The long-held notion that a wider pelvis has not evolved because it would be disadvantageous for bipedal locomotion has not yet been empirically verified. However, recent clinical and biomechanical studies suggest that a larger birth canal would compromise pelvic floor stability and increase the risk of incontinence and pelvic organ prolapse. Several mammals have neonates that are equally large or even larger than human neonates compared to the size of the maternal birth canal. In these species, the pubic symphysis opens widely to allow successful delivery. Biomechanical and developmental constraints imposed by bipedality have hindered this evolutionary solution in humans and led to the comparatively rigid pelvic girdle in pregnant women. Mathematical models have shown why the evolutionary compromise to these antagonistic selective factors inevitably involves a certain rate of fetopelvic disproportion. In addition, these models predict that cesarean deliveries have disrupted the evolutionary equilibrium and led to new and ongoing evolutionary changes. Different forms of assisted birth have existed since the stone age and have become an integral part of human reproduction. Paradoxically, by buffering selection, they may also have hindered the evolution of a larger birth canal. Many of the biological, environmental, and sociocultural factors that have influenced the evolution of the human birth canal vary globally and are subject to ongoing transitions. These differences may have contributed to the global variation in the form of the birth canal and the difficulty of labor, and they likely continue to change human reproductive anatomy.
Collapse
Affiliation(s)
- Philipp Mitteroecker
- Unit for Theoretical Biology, Department of Evolutionary Biology, University of Vienna, Vienna, Austria.
| | - Barbara Fischer
- Unit for Theoretical Biology, Department of Evolutionary Biology, University of Vienna, Vienna, Austria
| |
Collapse
|
7
|
Xiao C, Patrician PA, Montgomery AP, Wang Y, Jablonski R, Markaki A. Filial piety and older adult caregiving among Chinese and Chinese-American families in the United States: a concept analysis. BMC Nurs 2024; 23:115. [PMID: 38347512 PMCID: PMC10863110 DOI: 10.1186/s12912-024-01789-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 02/01/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND The culturally sensitive nursing practice has not embedded filial piety as a cultural value and stance pertaining to caregiving among aging Chinese and Chinese-American (CCA) families in the United States, yet it is critical for healthy aging among CCAs. PURPOSE To understand filial piety when caring for aging CCAs and conceptualize an operational definition and framework. METHODS A systematic search was conducted in CINAHL, PubMed, Scopus, and PsycINFO databases. Analysis of the concept of filial piety among CCAs used Walker and Avant's methods. Twenty-six studies were selected in the final full-text analysis. FINDINGS Synthesis of evidence identified four antecedents: (a) filial obligation as a 'cultural gene', (b) sense of altruism, (c) familial solidarity, and (d) societal expectation of 'birth right'. Attributes included familial material and emotional support, obedience, pious reverence, and societal norms. Consequences were related to caregiver burden, psychological and physical well-being, quality of life, and health equity. CONCLUSION Filial piety is an intrinsic desire to support aging parents and an extrinsic desire to adhere to Chinese societal moral tenets. The proposed operational framework "Caregiving for aging CCAs in the United States" merits further study.
Collapse
Affiliation(s)
- Chunhong Xiao
- University of Alabama at Birmingham School of Nursing, 1720 2nd Avenue South, Birmingham, AL, 35294-1210, USA.
| | - Patricia A Patrician
- University of Alabama at Birmingham School of Nursing, 1720 2nd Avenue South, Birmingham, AL, 35294-1210, USA
| | - Aoyjai P Montgomery
- University of Alabama at Birmingham School of Public Health, 1665, 2nd Avenue South, Birmingham, AL, 35294-1210, USA
| | - Youhua Wang
- College of State Governance, Southwest University, No. 2 Tianshen Road, Chongqing, 400715, Beibei District, China
| | - Rita Jablonski
- University of Alabama at Birmingham School of Nursing, 1720 2nd Avenue South, Birmingham, AL, 35294-1210, USA
| | - Adelais Markaki
- University of Alabama at Birmingham School of Nursing, 1720 2nd Avenue South, Birmingham, AL, 35294-1210, USA
| |
Collapse
|
8
|
Dixit T. A synthesis of coevolution across levels of biological organization. Evolution 2024; 78:211-220. [PMID: 38085659 DOI: 10.1093/evolut/qpad082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 04/16/2023] [Accepted: 04/28/2023] [Indexed: 02/03/2024]
Abstract
In evolutionary ecology, coevolution is typically defined as reciprocal evolution of interacting species. However, outside the context of interacting species, the term "coevolution" is also used at levels of biological organization within species (e.g., between males and females, between cells, and between genes or proteins). Furthermore, although evolution is typically defined as "genetic change over time", coevolution need not involve genetic changes in the interacting parties, since cultures can also evolve. In this review, I propose that coevolution be defined more broadly as "reciprocal adaptive evolution at any level of biological organisation". The classification of reciprocal evolution at all levels of biological organization as coevolution would maintain consistency in terminology. More importantly, the broader definition should facilitate greater integration of coevolution research across disciplines. For example, principles usually discussed only in the context of coevolution between species or coevolution between genes (e.g., tight and diffuse coevolution, and compensatory coevolution, respectively) could be more readily applied to new fields. The application of coevolutionary principles to new contexts could also provide benefits to society, for instance in deducing the dynamics of coevolution between cancer cells and cells of the human immune system.
Collapse
Affiliation(s)
- Tanmay Dixit
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
- DST-NRF Centre of Excellence at the FitzPatrick Institute of African Ornithology, University of Cape Town, Rondebosch, Cape Town, South Africa
| |
Collapse
|
9
|
Driscoll C. Can human nature be saved? STUDIES IN HISTORY AND PHILOSOPHY OF SCIENCE 2024; 103:39-45. [PMID: 38039603 DOI: 10.1016/j.shpsa.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 11/13/2023] [Accepted: 11/20/2023] [Indexed: 12/03/2023]
Abstract
This paper argues that the best interpretation of the human nature concept used in evolutionary social science (ESS) is as the human adaptive complex. This understanding of the concept enables us to make sense of the features of human nature that are described in that literature as symptomatic of traits which are part of human nature, rather than being constitutive of human nature itself. This enables this proposal to make better sense of how the human nature concept is used than other current proposals for how to understand that concept.
Collapse
Affiliation(s)
- Catherine Driscoll
- Dept. of Philosophy and Religious Studies, North Carolina State University, USA.
| |
Collapse
|
10
|
Lo RF, Sasaki JY. Lay Misperceptions of Culture as "Biological" and Suggestions for Reducing Them. PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2024; 19:295-311. [PMID: 37493140 PMCID: PMC10790513 DOI: 10.1177/17456916231181139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Culture is typically studied as socialized and learned. Yet lay intuitions may hold that culture is associated with biology via perceptions of race, presenting a problem for those who study culture: There may be a mismatch between how psychologists study culture and how their research is interpreted by lay audiences. This article is a call to researchers to recognize this mismatch as a problem and to critically evaluate the way we study culture. We first describe evidence that laypeople tend to associate culture with notions of folk biology. Next, we propose three suggestions for researchers: explicitly address whether biological processes are, or are not, relevant for studying culture in their work; consider using multiple methods because different methods for studying culture may come with assumptions about culture as more tied to socialization or biology; and represent all people as cultural by studying multiple forms of culture and by contextualizing all psychological research. Last, we provide an example for how researchers can implement these suggestions to encourage more accurate interpretations of findings.
Collapse
Affiliation(s)
| | - Joni Y. Sasaki
- Department of Psychology, University of Hawai‘i at Ma-noa
| |
Collapse
|
11
|
DuVal EH, Fitzpatrick CL, Hobson EA, Servedio MR. Inferred Attractiveness: A generalized mechanism for sexual selection that can maintain variation in traits and preferences over time. PLoS Biol 2023; 21:e3002269. [PMID: 37788233 PMCID: PMC10547189 DOI: 10.1371/journal.pbio.3002269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/22/2023] [Indexed: 10/05/2023] Open
Abstract
Sexual selection by mate choice is a powerful force that can lead to evolutionary change, and models of why females choose particular mates are central to understanding its effects. Predominant mate choice theories assume preferences are determined solely by genetic inheritance, an assumption still lacking widespread support. Moreover, preferences often vary among individuals or populations, fail to correspond with conspicuous male traits, or change with context, patterns not predicted by dominant models. Here, we propose a new model that explains this mate choice complexity with one general hypothesized mechanism, "Inferred Attractiveness." In this model, females acquire mating preferences by observing others' choices and use context-dependent information to infer which traits are attractive. They learn to prefer the feature of a chosen male that most distinguishes him from other available males. Over generations, this process produces repeated population-level switches in preference and maintains male trait variation. When viability selection is strong, Inferred Attractiveness produces population-wide adaptive preferences superficially resembling "good genes." However, it results in widespread preference variation or nonadaptive preferences under other predictable circumstances. By casting the female brain as the central selective agent, Inferred Attractiveness captures novel and dynamic aspects of sexual selection and reconciles inconsistencies between mate choice theory and observed behavior.
Collapse
Affiliation(s)
- Emily H. DuVal
- Department of Biological Sciences, Florida State University, Tallahassee, Florida, United States of America
| | - Courtney L. Fitzpatrick
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - Elizabeth A. Hobson
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, United States of America
- Santa Fe Institute, Santa Fe, New Mexico, United States of America
| | - Maria R. Servedio
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
12
|
Young AS. Estimation of indirect genetic effects and heritability under assortative mating. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.10.548458. [PMID: 37503158 PMCID: PMC10369881 DOI: 10.1101/2023.07.10.548458] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Both direct genetic effects (effects of alleles in an individual on that individual) and indirect genetic effects - effects of alleles in an individual (e.g. parents) on another individual (e.g. offspring) - can contribute to phenotypic variation and genotype-phenotype associations. Here, we consider a phenotype affected by direct and parental indirect genetic effects under assortative mating at equilibrium. We generalize classical theory to derive a decomposition of the equilibrium phenotypic variance in terms of direct and indirect genetic effect components. We extend this theory to show that popular methods for estimating indirect genetic effects or 'genetic nurture' through analysis of parental and offspring polygenic predictors (called polygenic indices or scores - PGIs or PGSs) are substantially biased by assortative mating. We propose an improved method for estimating indirect genetic effects while accounting for assortative mating that can also correct heritability estimates for bias due to assortative mating. We validate our method in simulations and apply it to PGIs for height and educational attainment (EA), estimating that the equilibrium heritability of height is 0.699 (S.E. = 0.075 ) and finding no evidence for indirect genetic effects on height. We estimate a very high correlation between parents' underlying genetic components for EA, 0.755 (S.E. = 0.035), which is inconsistent with twin based estimates of the heritability of EA, possibly due to confounding in the EA PGI and/or in twin studies. We implement our method in the software package snipar, enabling researchers to apply the method to data including observed and/or imputed parental genotypes. We provide a theoretical framework for understanding the results of PGI analyses and a practical methodology for estimating heritability and indirect genetic effects while accounting for assortative mating.
Collapse
Affiliation(s)
- Alexander Strudwick Young
- UCLA Anderson School of Management, Los Angeles, CA, USA
- Human Genetics Department, UCLA David Geffen School of Medicine, Los Angeles, CA, US
| |
Collapse
|
13
|
Davison DR, Michod RE. Steps to individuality in biology and culture. Philos Trans R Soc Lond B Biol Sci 2023; 378:20210407. [PMID: 36688387 PMCID: PMC9869451 DOI: 10.1098/rstb.2021.0407] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 08/07/2022] [Indexed: 01/24/2023] Open
Abstract
Did human culture arise through an evolutionary transition in individuality (ETI)? To address this question, we examine the steps of biological ETIs to see how they could apply to the evolution of human culture. For concreteness, we illustrate the ETI stages using a well-studied example, the evolution of multicellularity in the volvocine algae. We then consider how those stages could apply to a cultural transition involving integrated groups of cultural traditions and the hominins that create and transmit traditions. We focus primarily on the early Pleistocene and examine hominin carnivory and the cultural change from Oldowan to Acheulean technology. We use Pan behaviour as an outgroup comparison. We summarize the important similarities and differences we find between ETI stages in the biological and cultural realms. As we are not cultural anthropologists, we may overlook or be mistaken in the processes we associate with each step. We hope that by clearly describing these steps to individuality and illustrating them with cultural principles and processes, other researchers may build upon our initial exercise. Our analysis supports the hypothesis that human culture has undergone an ETI beginning with a Pan-like ancestor, continuing during the Pleistocene, and culminating in modern human culture. This article is part of the theme issue 'Human socio-cultural evolution in light of evolutionary transitions'.
Collapse
Affiliation(s)
- Dinah R. Davison
- Department of Ecology and Evolutionary Biology, College of Science, University of Arizona, Tucson, AZ 85721, USA
| | - Richard E. Michod
- Department of Ecology and Evolutionary Biology, College of Science, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
14
|
Human-Plant Coevolution: A modelling framework for theory-building on the origins of agriculture. PLoS One 2022; 17:e0260904. [PMID: 36070287 PMCID: PMC9451104 DOI: 10.1371/journal.pone.0260904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 07/21/2022] [Indexed: 11/23/2022] Open
Abstract
The domestication of plants and the origin of agricultural societies has been the focus of much theoretical discussion on why, how, when, and where these happened. The ‘when’ and ‘where’ have been substantially addressed by different branches of archaeology, thanks to advances in methodology and the broadening of the geographical and chronological scope of evidence. However, the ‘why’ and ‘how’ have lagged behind, holding on to relatively old models with limited explanatory power. Armed with the evidence now available, we can return to theory by revisiting the mechanisms allegedly involved, disentangling their connection to the diversity of trajectories, and identifying the weight and role of the parameters involved. We present the Human-Plant Coevolution (HPC) model, which represents the dynamics of coevolution between a human and a plant population. The model consists of an ecological positive feedback system (mutualism), which can be reinforced by positive evolutionary feedback (coevolution). The model formulation is the result of wiring together relatively simple simulation models of population ecology and evolution, through a computational implementation in R. The HPC model captures a variety of potential scenarios, though which conditions are linked to the degree and timing of population change and the intensity of selective pressures. Our results confirm that the possible trajectories leading to neolithisation are diverse and involve multiple factors. However, simulations also show how some of those factors are entangled, what are their effects on human and plant populations under different conditions, and what might be the main causes fostering agriculture and domestication.
Collapse
|
15
|
Artificial Intelligence for Sustainable Complex Socio-Technical-Economic Ecosystems. COMPUTATION 2022. [DOI: 10.3390/computation10060095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The strong and functional couplings among ecological, economic, social, and technological processes explain the complexification of human-made systems, and phenomena such as globalization, climate change, the increased urbanization and inequality of human societies, the power of information, and the COVID-19 syndemic. Among complexification’s features are non-decomposability, asynchronous behavior, components with many degrees of freedom, increased likelihood of catastrophic events, irreversibility, nonlinear phase spaces with immense combinatorial sizes, and the impossibility of long-term, detailed prediction. Sustainability for complex systems implies enough efficiency to explore and exploit their dynamic phase spaces and enough flexibility to coevolve with their environments. This, in turn, means solving intractable nonlinear semi-structured dynamic multi-objective optimization problems, with conflicting, incommensurable, non-cooperative objectives and purposes, under dynamic uncertainty, restricted access to materials, energy, and information, and a given time horizon. Given the high-stakes; the need for effective, efficient, diverse solutions; their local and global, and present and future effects; and their unforeseen short-, medium-, and long-term impacts; achieving sustainable complex systems implies the need for Sustainability-designed Universal Intelligent Agents (SUIAs). The proposed philosophical and technological SUIAs will be heuristic devices for harnessing the strong functional coupling between human, artificial, and nonhuman biological intelligence in a non-zero-sum game to achieve sustainability.
Collapse
|
16
|
Bessa J, Biro D, Hockings K. Inter-community behavioural variation confirmed through indirect methods in four neighbouring chimpanzee communities in Cantanhez NP, Guinea-Bissau. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211518. [PMID: 35223060 PMCID: PMC8864369 DOI: 10.1098/rsos.211518] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/31/2022] [Indexed: 05/03/2023]
Abstract
Culture, while long viewed as exclusively human, has now been demonstrated across diverse taxa and contexts. However, most animal culture data are constrained to well-studied, habituated groups. This is the case for chimpanzees, arguably the most 'cultural' non-human species. While much progress has been made charting wild chimpanzees' cultural repertoire, large gaps remain in our knowledge of the majority of the continent's chimpanzees. Furthermore, few studies have compared neighbouring communities, despite such comparisons providing the strongest evidence for culture, and few have studied communities living in anthropogenic habitats although their culture is in imminent danger of disappearing. Here we combine direct, indirect and remote methods, including camera traps, to study, over 2 years, four unhabituated neighbouring chimpanzee communities inhabiting human-impacted habitats in Cantanhez NP, Guinea-Bissau. From traces collected during 1089 km of reconnaissance walks and 4197 videos from 56 camera trap locations, we identified 18 putative cultural traits. These included some noteworthy novel behaviours for these communities, and behaviours possibly new to the species. We created preliminary behavioural profiles for each community, and found inter-community differences spanning tool use, communication, and social behaviour, demonstrating the importance of comparing neighbouring communities and of studying previously neglected communities including those inhabiting anthropogenic landscapes.
Collapse
Affiliation(s)
- Joana Bessa
- Department of Zoology, University of Oxford, Oxford, UK
- Centre for Research in Anthropology (CRIA NOVA FCSH), Lisbon, Portugal
| | - Dora Biro
- Department of Zoology, University of Oxford, Oxford, UK
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY, USA
| | - Kimberley Hockings
- Centre for Research in Anthropology (CRIA NOVA FCSH), Lisbon, Portugal
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn, UK
| |
Collapse
|
17
|
Altman A, Shennan S, Odling-Smee J. Ornamental plant domestication by aesthetics-driven human cultural niche construction. TRENDS IN PLANT SCIENCE 2022; 27:124-138. [PMID: 34629220 DOI: 10.1016/j.tplants.2021.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 08/17/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Unlike plants that were domesticated to secure food, the domestication and breeding of ornamental plants are driven by aesthetic values. Here, we examine the major elements of the extended evolutionary synthesis (EES) theory that bridges the gap between the biology of ornamental plant domestication and the sociocultural motivations behind it. We propose that it involves specific elements of cumulative cultural evolution (CCE), plant gene-human culture coevolution (PGHCC), and niche construction (NC). Moreover, ornamental plant domestication represents an aesthetics-driven dimension of human niche construction that coevolved with socioeconomic changes and the adoption of new scientific technologies. Initially functioning as symbolic and aesthetic assets, ornamental plants became globally marketed material commodities as a result of the co-dependence of human CCE and prestige-competition motivations.
Collapse
Affiliation(s)
- Arie Altman
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agricultural, Food and Environmental Quality Sciences, The Hebrew University of Jerusalem, POB 12, 76100 Rehovot, Israel; Institute of Archaeology, University College of London, WC1H 0PY, London, UK.
| | - Stephen Shennan
- Institute of Archaeology, University College of London, WC1H 0PY, London, UK
| | | |
Collapse
|
18
|
OUP accepted manuscript. Biol J Linn Soc Lond 2022. [DOI: 10.1093/biolinnean/blac048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
19
|
Robin AN, Denton KK, Horna Lowell ES, Dulay T, Ebrahimi S, Johnson GC, Mai D, O’Fallon S, Philson CS, Speck HP, Zhang XP, Nonacs P. Major Evolutionary Transitions and the Roles of Facilitation and Information in Ecosystem Transformations. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.711556] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A small number of extraordinary “Major Evolutionary Transitions” (METs) have attracted attention among biologists. They comprise novel forms of individuality and information, and are defined in relation to organismal complexity, irrespective of broader ecosystem-level effects. This divorce between evolutionary and ecological consequences qualifies unicellular eukaryotes, for example, as a MET although they alone failed to significantly alter ecosystems. Additionally, this definition excludes revolutionary innovations not fitting into either MET type (e.g., photosynthesis). We recombine evolution with ecology to explore how and why entire ecosystems were newly created or radically altered – as Major System Transitions (MSTs). In doing so, we highlight important morphological adaptations that spread through populations because of their immediate, direct-fitness advantages for individuals. These are Major Competitive Transitions, or MCTs. We argue that often multiple METs and MCTs must be present to produce MSTs. For example, sexually-reproducing, multicellular eukaryotes (METs) with anisogamy and exoskeletons (MCTs) significantly altered ecosystems during the Cambrian. Therefore, we introduce the concepts of Facilitating Evolutionary Transitions (FETs) and Catalysts as key events or agents that are insufficient themselves to set a MST into motion, but are essential parts of synergies that do. We further elucidate the role of information in MSTs as transitions across five levels: (I) Encoded; (II) Epigenomic; (III) Learned; (IV) Inscribed; and (V) Dark Information. The latter is ‘authored’ by abiotic entities rather than biological organisms. Level IV has arguably allowed humans to produce a MST, and V perhaps makes us a FET for a future transition that melds biotic and abiotic life into one entity. Understanding the interactive processes involved in past major transitions will illuminate both current events and the surprising possibilities that abiotically-created information may produce.
Collapse
|
20
|
Das Bairagya J, Mondal SS, Chowdhury D, Chakraborty S. Game-environment feedback dynamics in growing population: Effect of finite carrying capacity. Phys Rev E 2021; 104:044407. [PMID: 34781515 DOI: 10.1103/physreve.104.044407] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/28/2021] [Indexed: 11/07/2022]
Abstract
The tragedy of the commons (TOC) is an unfortunate situation where a shared resource is exhausted due to uncontrolled exploitation by the selfish individuals of a population. Recently, the paradigmatic replicator equation has been used in conjunction with a phenomenological equation for the state of the shared resource to gain insight into the influence of the games on the TOC. The replicator equation, by construction, models a fixed infinite population undergoing microevolution. Thus, it is unable to capture any effect of the population growth and the carrying capacity of the population although the TOC is expected to be dependent on the size of the population. Therefore, in this paper, we present a mathematical framework that incorporates the density dependent payoffs and the logistic growth of the population in the eco-evolutionary dynamics modeling the game-resource feedback. We discover a bistability in the dynamics: a finite carrying capacity can either avert or cause the TOC depending on the initial states of the resource and the initial fraction of cooperators. In fact, depending on the type of strategic game-theoretic interaction, a finite carrying capacity can either avert or cause the TOC when it is exactly the opposite for the corresponding case with infinite carrying capacity.
Collapse
Affiliation(s)
- Joy Das Bairagya
- Department of Physics, Indian Institute of Technology, Kanpur 208016, India
| | | | | | - Sagar Chakraborty
- Department of Physics, Indian Institute of Technology, Kanpur 208016, India
| |
Collapse
|
21
|
Nieberding CM, Marcantonio M, Voda R, Enriquez T, Visser B. The Evolutionary Relevance of Social Learning and Transmission in Non-Social Arthropods with a Focus on Oviposition-Related Behaviors. Genes (Basel) 2021; 12:genes12101466. [PMID: 34680861 PMCID: PMC8536077 DOI: 10.3390/genes12101466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/15/2021] [Accepted: 09/21/2021] [Indexed: 12/04/2022] Open
Abstract
Research on social learning has centered around vertebrates, but evidence is accumulating that small-brained, non-social arthropods also learn from others. Social learning can lead to social inheritance when socially acquired behaviors are transmitted to subsequent generations. Using oviposition site selection, a critical behavior for most arthropods, as an example, we first highlight the complementarities between social and classical genetic inheritance. We then discuss the relevance of studying social learning and transmission in non-social arthropods and document known cases in the literature, including examples of social learning from con- and hetero-specifics. We further highlight under which conditions social learning can be adaptive or not. We conclude that non-social arthropods and the study of oviposition behavior offer unparalleled opportunities to unravel the importance of social learning and inheritance for animal evolution.
Collapse
Affiliation(s)
- Caroline M. Nieberding
- Evolutionary Ecology and Genetics Group, Earth and Life Institute, UCLouvain, 1348 Louvain-la-Neuve, Belgium; (M.M.); (R.V.)
- Correspondence:
| | - Matteo Marcantonio
- Evolutionary Ecology and Genetics Group, Earth and Life Institute, UCLouvain, 1348 Louvain-la-Neuve, Belgium; (M.M.); (R.V.)
| | - Raluca Voda
- Evolutionary Ecology and Genetics Group, Earth and Life Institute, UCLouvain, 1348 Louvain-la-Neuve, Belgium; (M.M.); (R.V.)
| | - Thomas Enriquez
- Evolution and Ecophysiology Group, Earth and Life Institute, UCLouvain, 1348 Louvain-la-Neuve, Belgium; (T.E.); (B.V.)
| | - Bertanne Visser
- Evolution and Ecophysiology Group, Earth and Life Institute, UCLouvain, 1348 Louvain-la-Neuve, Belgium; (T.E.); (B.V.)
| |
Collapse
|
22
|
Hämäläinen L, Hoppitt W, Rowland HM, Mappes J, Fulford AJ, Sosa S, Thorogood R. Social transmission in the wild can reduce predation pressure on novel prey signals. Nat Commun 2021; 12:3978. [PMID: 34172738 PMCID: PMC8233390 DOI: 10.1038/s41467-021-24154-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 05/21/2021] [Indexed: 02/05/2023] Open
Abstract
Social transmission of information is taxonomically widespread and could have profound effects on the ecological and evolutionary dynamics of animal communities. Demonstrating this in the wild, however, has been challenging. Here we show by field experiment that social transmission among predators can shape how selection acts on prey defences. Using artificial prey and a novel approach in statistical analyses of social networks, we find that blue tit (Cyanistes caeruleus) and great tit (Parus major) predators learn about prey defences by watching others. This shifts population preferences rapidly to match changes in prey profitability, and reduces predation pressure from naïve predators. Our results may help resolve how costly prey defences are maintained despite influxes of naïve juvenile predators, and suggest that accounting for social transmission is essential if we are to understand coevolutionary processes.
Collapse
Affiliation(s)
- Liisa Hämäläinen
- Department of Zoology, University of Cambridge, Cambridge, UK.
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia.
- Department of Biological and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland.
| | - William Hoppitt
- School of Biological Sciences, Royal Holloway, University of London, Egham, UK
| | - Hannah M Rowland
- Department of Zoology, University of Cambridge, Cambridge, UK
- Max Planck Institute for Chemical Ecology, Jena, Germany
- Institute of Zoology, Zoological Society of London, London, UK
| | - Johanna Mappes
- Department of Biological and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland
- Research Programme in Organismal and Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | | | - Sebastian Sosa
- Université de Strasbourg, CNRS, IPHC, UMR 7178, Strasbourg, France
| | - Rose Thorogood
- Department of Zoology, University of Cambridge, Cambridge, UK
- Research Programme in Organismal and Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
23
|
Richerson PJ, Gavrilets S, de Waal FBM. Modern theories of human evolution foreshadowed by Darwin's Descent of Man. Science 2021; 372:372/6544/eaba3776. [PMID: 34016754 DOI: 10.1126/science.aba3776] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/15/2021] [Indexed: 12/17/2022]
Abstract
Charles Darwin's The Descent of Man, published 150 years ago, laid the grounds for scientific studies into human origins and evolution. Three of his insights have been reinforced by modern science. The first is that we share many characteristics (genetic, developmental, physiological, morphological, cognitive, and psychological) with our closest relatives, the anthropoid apes. The second is that humans have a talent for high-level cooperation reinforced by morality and social norms. The third is that we have greatly expanded the social learning capacity that we see already in other primates. Darwin's emphasis on the role of culture deserves special attention because during an increasingly unstable Pleistocene environment, cultural accumulation allowed changes in life history; increased cognition; and the appearance of language, social norms, and institutions.
Collapse
Affiliation(s)
- Peter J Richerson
- Department of Environmental Science and Policy, University of California, Davis, CA 95616, USA
| | - Sergey Gavrilets
- Department of Ecology and Evolutionary Biology, Department of Mathematics, National Institute for Mathematical and Biological Synthesis, Center for the Dynamics of Social Complexity, University of Tennessee, Knoxville, TN 37996, USA.
| | | |
Collapse
|
24
|
Mullon C, Wakano JY, Ohtsuki H. Coevolutionary dynamics of genetic traits and their long-term extended effects under non-random interactions. J Theor Biol 2021; 525:110750. [PMID: 33957155 DOI: 10.1016/j.jtbi.2021.110750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 04/25/2021] [Accepted: 04/28/2021] [Indexed: 11/15/2022]
Abstract
Organisms continuously modify their living conditions via extended genetic effects on their environment, microbiome, and in some species culture. These effects can impact the fitness of current but also future conspecifics due to non-genetic transmission via ecological or cultural inheritance. In this case, selection on a gene with extended effects depends on the degree to which current and future genetic relatives are exposed to modified conditions. Here, we detail the selection gradient on a quantitative trait with extended effects in a patch-structured population, when gene flow between patches is limited and ecological inheritance within patches can be biased towards offspring. Such a situation is relevant to understand evolutionary driven changes in individual condition that can be preferentially transmitted from parent to offspring, such as cellular state, micro-environments (e.g., nests), pathogens, microbiome, or culture. Our analysis quantifies how the interaction between limited gene flow and biased ecological inheritance influences the joint evolutionary dynamics of traits together with the conditions they modify, helping understand adaptation via non-genetic modifications. As an illustration, we apply our analysis to a gene-culture coevolution scenario in which genetically-determined learning strategies coevolve with adaptive knowledge. In particular, we show that when social learning is synergistic, selection can favour strategies that generate remarkable levels of knowledge under intermediate levels of both vertical cultural transmission and limited dispersal. More broadly, our theory yields insights into the interplay between genetic and non-genetic inheritance, with implications for how organisms evolve to transform their environments.
Collapse
Affiliation(s)
- Charles Mullon
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland; Department of Evolutionary Studies of Biosystems, School of Advanced Sciences, SOKENDAI (The Graduate University for Advanced Studies), Shonan Village, Hayama, Kanagawa 240-0193, Japan.
| | - Joe Yuichiro Wakano
- Meiji Institute for Advanced Study of Mathematical Sciences, Nakano, Tokyo 164-8525, Japan
| | - Hisashi Ohtsuki
- Department of Evolutionary Studies of Biosystems, School of Advanced Sciences, SOKENDAI (The Graduate University for Advanced Studies), Shonan Village, Hayama, Kanagawa 240-0193, Japan
| |
Collapse
|
25
|
Sindermann C, Sariyska R, Elhai JD, Montag C. Molecular genetics of neurotransmitters and neuropeptides involved in Internet use disorders including first insights on a potential role of hypothalamus' oxytocin hormone. HANDBOOK OF CLINICAL NEUROLOGY 2021; 182:389-400. [PMID: 34266607 DOI: 10.1016/b978-0-12-819973-2.00026-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This chapter covers the phenomenon of Internet use disorders (IUDs) and putative associations with different neurotransmitter and neuropeptide systems. Genes coding for such messengers can be seen as an important starting point in the complicated quest to understand human behavior including new phenomena such as IUDs. Therefore, a special focus of this chapter will lie on individual differences in molecular genetic underpinnings of neurotransmitter and neuropeptide systems and their associations with individual differences in tendencies towards IUDs. By shedding light on these associations, putative predisposing molecular genetic factors for the emergence and maintenance of IUDs can be carved out. Therefore, first an introduction to IUDs and a model that can guide research on putative associations of IUDs with different specific neurotransmitters and neuropeptides will be presented. Subsequently, twin studies on the heritability of IUDs are reviewed. Finally, studies on differences in molecular genetic predispositions and their associations with differences in IUDs will be presented and discussed, including targets related to the dopaminergic and serotonergic system as well as the hypothalamic neuropeptide oxytocin. The chapter closes with a conclusion about what is already known and what needs to be investigated in future studies to gain further insights into putative associations between molecular genetic markers and IUDs.
Collapse
Affiliation(s)
| | - Rayna Sariyska
- Department of Molecular Psychology, Ulm University, Ulm, Germany
| | - Jon D Elhai
- Departments of Psychology and of Psychiatry, University of Toledo, Toledo, OH, United States
| | - Christian Montag
- Department of Molecular Psychology, Ulm University, Ulm, Germany
| |
Collapse
|
26
|
Tonna M, Ponzi D, Palanza P, Marchesi C, Parmigiani S. Proximate and ultimate causes of ritual behavior. Behav Brain Res 2020; 393:112772. [PMID: 32544508 DOI: 10.1016/j.bbr.2020.112772] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/23/2020] [Accepted: 06/08/2020] [Indexed: 01/24/2023]
Abstract
Ritual behaviour, intended as a specific, repetitive and rigid form of action flow, appears both in social and non-social environmental contexts, representing an ubiquitous phenomenon in animal life including human individuals and cultures. The purpose of this contribution is to investigate an evolutionary continuum in proximate and ultimate causes of ritual behavior. A phylogenetic homology in proximal mechanisms can be found, based on the repetition of genetically programmed and/or epigenetically acquired action patterns of behavior. As far as its adaptive significance, ethological comparative studies show that the tendency to ritualization is driven by the unpredictability of social or ecological environmental stimuli. In this perspective, rituals may have a "homeostatic" function over unpredictable environments, as further highlighted by psychopathological compulsions. In humans, a circular loop may have occurred among ritual practices and symbolic activity to deal with a novel culturally-mediated world. However, we suggest that the compulsion to action patterns repetition, typical of all rituals, has a genetically inborn motor foundation, thus precognitive and pre-symbolic. Rooted in such phylogenetically conserved motor structure (proximate causes), the evolution of cognitive and symbolic capacities have generated the complexity of human rituals, though maintaining the original adaptive function (ultimate causes) to cope with unpredictable environments.
Collapse
Affiliation(s)
- Matteo Tonna
- Department of Mental Health, Local Health Service, Parma, Italy.
| | - Davide Ponzi
- Department of Medicine and Surgery, Neuroscience Unit, University of Parma, Italy
| | - Paola Palanza
- Department of Medicine and Surgery, Neuroscience Unit, University of Parma, Italy
| | - Carlo Marchesi
- Department of Medicine and Surgery, Neuroscience Unit, University of Parma, Italy
| | - Stefano Parmigiani
- Department of Chemistry, Life Sciences and Environmental Sustainaibility, Unit of Behavioral Biology, University of Parma, Italy
| |
Collapse
|
27
|
Søgaard Jørgensen P, Folke C, Henriksson PJ, Malmros K, Troell M, Zorzet A. Coevolutionary Governance of Antibiotic and Pesticide Resistance. Trends Ecol Evol 2020; 35:484-494. [DOI: 10.1016/j.tree.2020.01.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 01/22/2020] [Accepted: 01/28/2020] [Indexed: 01/01/2023]
|
28
|
Hong Z. Modelling the on-going natural selection of educational attainment in contemporary societies. J Theor Biol 2020; 493:110210. [PMID: 32092304 DOI: 10.1016/j.jtbi.2020.110210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 12/19/2022]
Abstract
There has been substantial increase in education attainment (EA) in both developing and developed countries over the past century. I present a simulation model to examine the potential evolutionary trajectories of EA under current selective pressure in western populations. With the assumption that EA is negatively correlated with fitness and has both a genetic component and a cultural component, I show that when prestige-biased transmission of the EA (i.e. people with more education are more likely to be copied) is present, the phenotype of EA is likely to keep increasing in the short term, yet the genetic component of EA may undergo a constant decline and become the limiting factor in further phenotypic increase.
Collapse
Affiliation(s)
- Ze Hong
- Department of Human Evolutionary Biology, Harvard University, 11 Divinity Avenue, Cambridge MA, 02138, USA.
| |
Collapse
|
29
|
Mehta RS, Rosenberg NA. Modelling anti-vaccine sentiment as a cultural pathogen. EVOLUTIONARY HUMAN SCIENCES 2020; 2:e21. [PMID: 37588376 PMCID: PMC10427458 DOI: 10.1017/ehs.2020.17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Culturally transmitted traits that have deleterious effects on health-related traits can be regarded as cultural pathogens. A cultural pathogen can produce coupled dynamics with its associated health-related traits, so that understanding the dynamics of a health-related trait benefits from consideration of the dynamics of the associated cultural pathogen. Here, we treat anti-vaccine sentiment as a cultural pathogen, modelling its 'infection' dynamics with the infection dynamics of the associated vaccine-preventable disease. In a coupled susceptible-infected-resistant (SIR) model, consisting of an SIR model for the anti-vaccine sentiment and an interacting SIR model for the infectious disease, we explore the effect of anti-vaccine sentiment on disease dynamics. We find that disease endemism is contingent on the presence of the sentiment, and that presence of sentiment can enable diseases to become endemic when they would otherwise have disappeared. Furthermore, the sentiment dynamics can create situations in which the disease suddenly returns after a long period of dormancy. We study the effect of assortative sentiment-based interactions on the dynamics of sentiment and disease, identifying a tradeoff whereby assortative meeting aids the spread of a disease but hinders the spread of sentiment. Our results can contribute to finding strategies that reduce the impact of a cultural pathogen on disease, illuminating the value of cultural evolutionary modelling in the analysis of disease dynamics.
Collapse
Affiliation(s)
- Rohan S. Mehta
- Department of Biology, Stanford University, Stanford, CA94305, USA
| | | |
Collapse
|
30
|
Lewin-Epstein O, Hadany L. Host-microbiome coevolution can promote cooperation in a rock-paper-scissors dynamics. Proc Biol Sci 2020; 287:20192754. [PMID: 32075531 PMCID: PMC7031668 DOI: 10.1098/rspb.2019.2754] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cooperation is a fundamental behaviour observed in all forms of life. The evolution of cooperation has been widely studied, but almost all theories focused on the cooperating individual and its genes. We suggest a different approach, taking into account the microbes carried by the interacting individuals. Accumulating evidence reveals that microbes can affect their host's well-being and behaviour, yet hosts can evolve mechanisms to resist the manipulations of their microbes. We thus propose that coevolution of microbes with their hosts may favour microbes that induce their host to cooperate. Using computational modelling, we show that microbe-induced cooperation can evolve and be maintained in a wide range of conditions, including when facing hosts' resistance to the microbial effect. We find that host-microbe coevolution leads the population to a rock-paper-scissors dynamics that enables maintenance of cooperation in a polymorphic state. Our results suggest a mechanism for the evolution and maintenance of cooperation that may be relevant to a wide variety of organisms, including cases that are difficult to explain by current theories. This study provides a new perspective on the coevolution of hosts and their microbiome, emphasizing the potential role of microbes in shaping their host's behaviour.
Collapse
Affiliation(s)
- Ohad Lewin-Epstein
- Department of Molecular Biology and Ecology of Plants, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Lilach Hadany
- Department of Molecular Biology and Ecology of Plants, Tel-Aviv University, Tel-Aviv 6997801, Israel
| |
Collapse
|
31
|
Theriault JE, Young L, Barrett LF. The sense of should: A biologically-based framework for modeling social pressure. Phys Life Rev 2020; 36:100-136. [PMID: 32008953 DOI: 10.1016/j.plrev.2020.01.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 01/21/2020] [Indexed: 11/17/2022]
Abstract
What is social pressure, and how could it be adaptive to conform to others' expectations? Existing accounts highlight the importance of reputation and social sanctions. Yet, conformist behavior is multiply determined: sometimes, a person desires social regard, but at other times she feels obligated to behave a certain way, regardless of any reputational benefit-i.e. she feels a sense of should. We develop a formal model of this sense of should, beginning from a minimal set of biological premises: that the brain is predictive, that prediction error has a metabolic cost, and that metabolic costs are prospectively avoided. It follows that unpredictable environments impose metabolic costs, and in social environments these costs can be reduced by conforming to others' expectations. We elaborate on a sense of should's benefits and subjective experience, its likely developmental trajectory, and its relation to embodied mental inference. From this individualistic metabolic strategy, the emergent dynamics unify social phenomenon ranging from status quo biases, to communication and motivated cognition. We offer new solutions to long-studied problems (e.g. altruistic behavior), and show how compliance with arbitrary social practices is compelled without explicit sanctions. Social pressure may provide a foundation in individuals on which societies can be built.
Collapse
Affiliation(s)
| | - Liane Young
- Department of Psychology, Boston College, Chestnut Hill, MA, USA
| | - Lisa Feldman Barrett
- Department of Psychology, Northeastern University, Boston, MA, USA; Psychiatric Neuroimaging Division, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
32
|
Ma X, Chen Q, Yu Y, Sun Y, Ma L, Zhu Z. A Two-Level Transfer Learning Algorithm for Evolutionary Multitasking. Front Neurosci 2020; 13:1408. [PMID: 31992969 PMCID: PMC6971124 DOI: 10.3389/fnins.2019.01408] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 12/12/2019] [Indexed: 11/17/2022] Open
Abstract
Different from conventional single-task optimization, the recently proposed multitasking optimization (MTO) simultaneously deals with multiple optimization tasks with different types of decision variables. MTO explores the underlying similarity and complementarity among the component tasks to improve the optimization process. The well-known multifactorial evolutionary algorithm (MFEA) has been successfully introduced to solve MTO problems based on transfer learning. However, it uses a simple and random inter-task transfer learning strategy, thereby resulting in slow convergence. To deal with this issue, this paper presents a two-level transfer learning (TLTL) algorithm, in which the upper-level implements inter-task transfer learning via chromosome crossover and elite individual learning, and the lower-level introduces intra-task transfer learning based on information transfer of decision variables for an across-dimension optimization. The proposed algorithm fully uses the correlation and similarity among the component tasks to improve the efficiency and effectiveness of MTO. Experimental studies demonstrate the proposed algorithm has outstanding ability of global search and fast convergence rate.
Collapse
Affiliation(s)
- Xiaoliang Ma
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China.,Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, China.,National Engineering Laboratory for Big Data System Computing Technology, Shenzhen University, Shenzhen, China
| | - Qunjian Chen
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China.,Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, China.,National Engineering Laboratory for Big Data System Computing Technology, Shenzhen University, Shenzhen, China
| | - Yanan Yu
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China.,Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, China.,National Engineering Laboratory for Big Data System Computing Technology, Shenzhen University, Shenzhen, China
| | - Yiwen Sun
- School of Medicine, Shenzhen University, Shenzhen, China
| | - Lijia Ma
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China.,Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, China.,National Engineering Laboratory for Big Data System Computing Technology, Shenzhen University, Shenzhen, China
| | - Zexuan Zhu
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China.,Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, China.,National Engineering Laboratory for Big Data System Computing Technology, Shenzhen University, Shenzhen, China
| |
Collapse
|
33
|
Snyder BF. The genetic and cultural evolution of unsustainability. SUSTAINABILITY SCIENCE 2020; 15:1087-1099. [PMID: 32292525 PMCID: PMC7133775 DOI: 10.1007/s11625-020-00803-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 03/25/2020] [Indexed: 05/11/2023]
Abstract
Anthropogenic changes are accelerating and threaten the future of life on earth. While the proximate mechanisms of these anthropogenic changes are well studied (e.g., climate change, biodiversity loss, population growth), the evolutionary causality of these anthropogenic changes have been largely ignored. Anthroecological theory (AET) proposes that the ultimate cause of anthropogenic environmental change is multi-level selection for niche construction and ecosystem engineering. Here, we integrate this theory with Lotka's Maximum Power Principle and propose a model linking energy extraction from the environment with genetic, technological and cultural evolution to increase human ecosystem carrying capacity. Carrying capacity is partially determined by energetic factors such as the net energy a population can acquire from its environment and the efficiency of conversion from energy input to offspring output. These factors are under Darwinian genetic selection in all species, but in humans, they are also determined by technology and culture. If there is genetic or non-genetic heritable variation in the ability of an individual or social group to increase its carrying capacity, then we hypothesize that selection or cultural evolution will act to increase carrying capacity. Furthermore, if this evolution of carrying capacity occurs faster than the biotic components of the ecological system can respond via their own evolution, then we hypothesize that unsustainable ecological changes will result.
Collapse
Affiliation(s)
- Brian F. Snyder
- Department of Environmental Science, Louisiana State University, Baton Rouge, USA
| |
Collapse
|
34
|
Majolo B. Warfare in an evolutionary perspective. Evol Anthropol 2019; 28:321-331. [PMID: 31691443 DOI: 10.1002/evan.21806] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 05/07/2019] [Accepted: 09/18/2019] [Indexed: 11/11/2022]
Abstract
The importance of warfare for human evolution is hotly debated in anthropology. Some authors hypothesize that warfare emerged at least 200,000-100,000 years BP, was frequent, and significantly shaped human social evolution. Other authors claim that warfare is a recent phenomenon, linked to the emergence of agriculture, and mostly explained by cultural rather than evolutionary forces. Here I highlight and critically evaluate six controversial points on the evolutionary bases of warfare. I argue that cultural and evolutionary explanations on the emergence of warfare are not alternative but analyze biological diversity at two distinct levels. An evolved propensity to act aggressively toward outgroup individuals may emerge irrespective of whether warfare appeared early/late during human evolution. Finally, I argue that lethal violence and aggression toward outgroup individuals are two linked but distinct phenomena, and that war and peace are complementary and should not always be treated as two mutually exclusive behavioral responses.
Collapse
Affiliation(s)
- Bonaventura Majolo
- School of Psychology, University of Lincoln, Sarah Swift Building, Lincoln, UK
| |
Collapse
|
35
|
Community through Culture: From Insects to Whales. Bioessays 2019; 41:e1900060. [DOI: 10.1002/bies.201900060] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 08/07/2019] [Indexed: 12/12/2022]
|
36
|
|
37
|
Chekalin E, Rubanovich A, Tatarinova TV, Kasianov A, Bender N, Chekalina M, Staub K, Koepke N, Rühli F, Bruskin S, Morozova I. Changes in Biological Pathways During 6,000 Years of Civilization in Europe. Mol Biol Evol 2019; 36:127-140. [PMID: 30376122 DOI: 10.1093/molbev/msy201] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The beginning of civilization was a turning point in human evolution. With increasing separation from the natural environment, mankind stimulated new adaptive reactions in response to new environmental factors. In this paper, we describe direct signs of these reactions in the European population during the past 6,000 years. By comparing whole-genome data between Late Neolithic/Bronze Age individuals and modern Europeans, we revealed biological pathways that are significantly differently enriched in nonsynonymous single nucleotide polymorphisms in these two groups and which therefore could be shaped by cultural practices during the past six millennia. They include metabolic transformations, immune response, signal transduction, physical activity, sensory perception, reproduction, and cognitive functions. We demonstrated that these processes were influenced by different types of natural selection. We believe that our study opens new perspectives for more detailed investigations about when and how civilization has been modifying human genomes.
Collapse
Affiliation(s)
- Evgeny Chekalin
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Alexandr Rubanovich
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Tatiana V Tatarinova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia.,Department of Biology, University of La Verne, La Verne, CA.,A. A. Kharkevich Institute for Information Transmission Problems, Moscow, Russia.,Department of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, Russia
| | - Artem Kasianov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia.,Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Nicole Bender
- Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland
| | - Marina Chekalina
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Kaspar Staub
- Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland
| | - Nikola Koepke
- Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland
| | - Frank Rühli
- Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland
| | - Sergey Bruskin
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Irina Morozova
- Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
38
|
Whitehead H, Laland KN, Rendell L, Thorogood R, Whiten A. The reach of gene-culture coevolution in animals. Nat Commun 2019; 10:2405. [PMID: 31160560 PMCID: PMC6546714 DOI: 10.1038/s41467-019-10293-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/02/2019] [Indexed: 12/26/2022] Open
Abstract
Culture (behaviour based on socially transmitted information) is present in diverse animal species, yet how it interacts with genetic evolution remains largely unexplored. Here, we review the evidence for gene-culture coevolution in animals, especially birds, cetaceans and primates. We describe how culture can relax or intensify selection under different circumstances, create new selection pressures by changing ecology or behaviour, and favour adaptations, including in other species. Finally, we illustrate how, through culturally mediated migration and assortative mating, culture can shape population genetic structure and diversity. This evidence suggests strongly that animal culture plays an important evolutionary role, and we encourage explicit analyses of gene-culture coevolution in nature.
Collapse
Affiliation(s)
- Hal Whitehead
- Department of Biology, Dalhousie University, Halifax, B3H 4R2, Canada.
| | - Kevin N Laland
- Centre for Social Learning and Cognitive Evolution, School of Biology, University of St Andrews, St Andrews, KY16 9TF, United Kingdom
| | - Luke Rendell
- Centre for Social Learning and Cognitive Evolution, School of Biology, University of St Andrews, St Andrews, KY16 9TF, United Kingdom
| | - Rose Thorogood
- Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, United Kingdom
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, 00014, Finland
- Faculty of Biological and Environmental Sciences (Research Program in Organismal & Evolutionary Biology), University of Helsinki, Helsinki, 00014, Finland
| | - Andrew Whiten
- Centre for Social Learning and Cognitive Evolution, School of Psychology and Neuroscience, University of St Andrews, St Andrews, KY16 9JP, United Kingdom
| |
Collapse
|
39
|
Mesoudi A, Thornton A. What is cumulative cultural evolution? Proc Biol Sci 2019; 285:rspb.2018.0712. [PMID: 29899071 PMCID: PMC6015846 DOI: 10.1098/rspb.2018.0712] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 05/23/2018] [Indexed: 02/03/2023] Open
Abstract
In recent years, the phenomenon of cumulative cultural evolution (CCE) has become the focus of major research interest in biology, psychology and anthropology. Some researchers argue that CCE is unique to humans and underlies our extraordinary evolutionary success as a species. Others claim to have found CCE in non-human species. Yet others remain sceptical that CCE is even important for explaining human behavioural diversity and complexity. These debates are hampered by multiple and often ambiguous definitions of CCE. Here, we review how researchers define, use and test CCE. We identify a core set of criteria for CCE which are both necessary and sufficient, and may be found in non-human species. We also identify a set of extended criteria that are observed in human CCE but not, to date, in other species. Different socio-cognitive mechanisms may underlie these different criteria. We reinterpret previous theoretical models and observational and experimental studies of both human and non-human species in light of these more fine-grained criteria. Finally, we discuss key issues surrounding information, fitness and cognition. We recommend that researchers are more explicit about what components of CCE they are testing and claiming to demonstrate.
Collapse
Affiliation(s)
- Alex Mesoudi
- Human Behaviour and Cultural Evolution Group, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Alex Thornton
- Human Behaviour and Cultural Evolution Group, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| |
Collapse
|
40
|
Uy JAC, Irwin DE, Webster MS. Behavioral Isolation and Incipient Speciation in Birds. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2018. [DOI: 10.1146/annurev-ecolsys-110617-062646] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Behavioral changes, such as those involved in mating, foraging, and migration, can generate reproductive barriers between populations. Birds, in particular, are known for their great diversity in these behaviors, and so behavioral isolation is often proposed to be the major driver of speciation. Here, we review empirical evidence to evaluate the importance of behavioral isolation in the early stages of avian speciation. Experimentally measured mating preferences indicate that changes in mating behavior can result in premating barriers, with their strength depending on the extent of divergence in mating signals. Differences in migratory and foraging behavior also can play important roles in generating reproductive barriers in the early stages of speciation. However, because premating behavioral isolation is imperfect, extrinsic postzygotic barriers, in the form of selection against hybrids having intermediate phenotypes, also play an important role in avian diversification, especially in completing the speciation process.
Collapse
Affiliation(s)
- J. Albert C. Uy
- Department of Biology, University of Miami, Coral Gables, Florida 33146, USA
| | - Darren E. Irwin
- Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Michael S. Webster
- Cornell Lab of Ornithology and Department of Neurobiology and Behavior, Cornell University, Ithaca, New York 14850, USA
| |
Collapse
|
41
|
Aslam B, Wang W, Arshad MI, Khurshid M, Muzammil S, Rasool MH, Nisar MA, Alvi RF, Aslam MA, Qamar MU, Salamat MKF, Baloch Z. Antibiotic resistance: a rundown of a global crisis. Infect Drug Resist 2018; 11:1645-1658. [PMID: 30349322 PMCID: PMC6188119 DOI: 10.2147/idr.s173867] [Citation(s) in RCA: 1241] [Impact Index Per Article: 177.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The advent of multidrug resistance among pathogenic bacteria is imperiling the worth of antibiotics, which have previously transformed medical sciences. The crisis of antimicrobial resistance has been ascribed to the misuse of these agents and due to unavailability of newer drugs attributable to exigent regulatory requirements and reduced financial inducements. Comprehensive efforts are needed to minimize the pace of resistance by studying emergent microorganisms, resistance mechanisms, and antimicrobial agents. Multidisciplinary approaches are required across health care settings as well as environment and agriculture sectors. Progressive alternate approaches including probiotics, antibodies, and vaccines have shown promising results in trials that suggest the role of these alternatives as preventive or adjunct therapies in future.
Collapse
Affiliation(s)
- Bilal Aslam
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Wei Wang
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Muhammad Imran Arshad
- Institute of Microbiology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Mohsin Khurshid
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan.,College of Allied Health Professionals, Directorate of Medical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Saima Muzammil
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | | | - Muhammad Atif Nisar
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ruman Farooq Alvi
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Aamir Aslam
- Institute of Microbiology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Usman Qamar
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | | | - Zulqarnain Baloch
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China,
| |
Collapse
|
42
|
Davies HB, White DJ. Specializations in cognition generalize across contexts: cowbirds are consistent in nest prospecting and foraging tasks. Anim Behav 2018. [DOI: 10.1016/j.anbehav.2018.07.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
43
|
de la Sablonnière R, Lina JM, Cárdenas D. Rethinking current models in social psychology: A Bayesian framework to understand dramatic social change. BRITISH JOURNAL OF SOCIAL PSYCHOLOGY 2018; 58:175-195. [PMID: 30178517 DOI: 10.1111/bjso.12273] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 07/16/2018] [Indexed: 11/27/2022]
Abstract
Dramatic social change (DSC) is the new normal, affecting millions of people around the world. However, not all events plunge societies into DSC. According to de la Sablonnière (2017, Front. Psychol., 8, 1), events that have a rapid pace of change, that rupture an entire group's social and normative structures, and that threaten the group's cultural identity will result in DSC. This perspective provokes important unanswered questions: What is the chance that a DSC will occur if an event takes place? And, when will other societal states arise from such events? Addressing these questions is pivotal for a genuine psychology of social change to emerge. The goal of this article was to describe a methodology that attempts to answer these questions via a probabilistic decision tree within a Bayesian framework. According to our analysis, a DSC should occur 6.25% of the time that an event takes place in a stable society (68.75% of the time for incremental social change, 12.5% for inertia, and 12.5% for stability). The Bayesian probabilistic decision tree could be applied to specific event and thus serve as a guide for a programmatic study of social change and ultimately inform policymakers who need to plan and prepare for events that lead to DSC.
Collapse
Affiliation(s)
| | - Jean-Marc Lina
- École de Technologie Supérieure (ÉTS), Centre de Recherches Mathématiques (CRM), Université de Montréal, Québec, Canada
| | | |
Collapse
|
44
|
A touch-scaffolded model of human prosociality. Neurosci Biobehav Rev 2018; 92:453-463. [DOI: 10.1016/j.neubiorev.2018.07.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 05/21/2018] [Accepted: 07/11/2018] [Indexed: 01/10/2023]
|
45
|
Behar H, Feldman MW. Gene-culture coevolution under selection. Theor Popul Biol 2018; 121:33-44. [PMID: 29641980 DOI: 10.1016/j.tpb.2018.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/21/2018] [Accepted: 03/02/2018] [Indexed: 11/29/2022]
Abstract
The joint evolutionary dynamics of phenotypes and genotypes are usually couched in terms of genetic variance contributions to changes in the phenotypic mean. Here, we study the evolution of a dichotomous phenotype whose transmission is controlled by one multi-allelic locus. The phenotype is under selection, which may be genotype-dependent. We answer classical population genetic questions about the phenogenotypic evolution, including the conditions for phenotypic and genotypic polymorphism, in terms of selection coefficients and rates of phenotypic transmission.
Collapse
Affiliation(s)
- Hilla Behar
- Department of Biology, Stanford University, Stanford, CA 94305-5020, United States.
| | - Marcus W Feldman
- Department of Biology, Stanford University, Stanford, CA 94305-5020, United States.
| |
Collapse
|
46
|
Kolodny O, Feldman MW, Creanza N. Integrative studies of cultural evolution: crossing disciplinary boundaries to produce new insights. Philos Trans R Soc Lond B Biol Sci 2018; 373:20170048. [PMID: 29440515 PMCID: PMC5812962 DOI: 10.1098/rstb.2017.0048] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2017] [Indexed: 11/12/2022] Open
Abstract
Culture evolves according to dynamics on multiple temporal scales, from individuals' minute-by-minute behaviour to millennia of cultural accumulation that give rise to population-level differences. These dynamics act on a range of entities-including behavioural sequences, ideas and artefacts as well as individuals, populations and whole species-and involve mechanisms at multiple levels, from neurons in brains to inter-population interactions. Studying such complex phenomena requires an integration of perspectives from a diverse array of fields, as well as bridging gaps between traditionally disparate areas of study. In this article, which also serves as an introduction to the current special issue, we highlight some specific respects in which the study of cultural evolution has benefited and should continue to benefit from an integrative approach. We showcase a number of pioneering studies of cultural evolution that bring together numerous disciplines. These studies illustrate the value of perspectives from different fields for understanding cultural evolution, such as cognitive science and neuroanatomy, behavioural ecology, population dynamics, and evolutionary genetics. They also underscore the importance of understanding cultural processes when interpreting research about human genetics, neuroscience, behaviour and evolution.This article is part of the theme issue 'Bridging cultural gaps: interdisciplinary studies in human cultural evolution'.
Collapse
Affiliation(s)
- Oren Kolodny
- Department of Biology, Stanford University, Stanford, CA, USA
| | | | - Nicole Creanza
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37212, USA
| |
Collapse
|
47
|
The evolution of culture (or the lack thereof): mapping the conceptual space. J Genet 2017; 96:513-516. [PMID: 28761015 DOI: 10.1007/s12041-017-0795-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
This short essay is based on a lecture that I gave at short notice on a subject in which I am by no means an expert. The combination of lack of expertise and time for preparation, created an unexpectedly unique opportunity for thinking outside the box. I decided not to try to read up (as there was no time in any case) but instead to organize the little that I already knew about cultural evolution in a systematic schema-I attempted to create a scaffolding, on which I could hang everything I knew about cultural evolution, and hopefully, everything I might ever discover about cultural evolution in the future. I considered three dimensions of the study of cultural evolution, namely (i) the phenomenon of cultural evolution, (ii) production of knowledge in the field of cultural evolution, and (iii) the consequences or applications of an understanding of the evolution of culture.
Collapse
|
48
|
Invasion fitness for gene–culture co-evolution in family-structured populations and an application to cumulative culture under vertical transmission. Theor Popul Biol 2017; 116:33-46. [DOI: 10.1016/j.tpb.2017.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 06/19/2017] [Accepted: 06/26/2017] [Indexed: 11/23/2022]
|
49
|
Creanza N, Kolodny O, Feldman MW. Cultural evolutionary theory: How culture evolves and why it matters. Proc Natl Acad Sci U S A 2017; 114:7782-7789. [PMID: 28739941 PMCID: PMC5544263 DOI: 10.1073/pnas.1620732114] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Human cultural traits-behaviors, ideas, and technologies that can be learned from other individuals-can exhibit complex patterns of transmission and evolution, and researchers have developed theoretical models, both verbal and mathematical, to facilitate our understanding of these patterns. Many of the first quantitative models of cultural evolution were modified from existing concepts in theoretical population genetics because cultural evolution has many parallels with, as well as clear differences from, genetic evolution. Furthermore, cultural and genetic evolution can interact with one another and influence both transmission and selection. This interaction requires theoretical treatments of gene-culture coevolution and dual inheritance, in addition to purely cultural evolution. In addition, cultural evolutionary theory is a natural component of studies in demography, human ecology, and many other disciplines. Here, we review the core concepts in cultural evolutionary theory as they pertain to the extension of biology through culture, focusing on cultural evolutionary applications in population genetics, ecology, and demography. For each of these disciplines, we review the theoretical literature and highlight relevant empirical studies. We also discuss the societal implications of the study of cultural evolution and of the interactions of humans with one another and with their environment.
Collapse
Affiliation(s)
- Nicole Creanza
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235
| | - Oren Kolodny
- Department of Biology, Stanford University, Stanford, CA 94305
| | | |
Collapse
|
50
|
Whiten A, Ayala FJ, Feldman MW, Laland KN. The extension of biology through culture. Proc Natl Acad Sci U S A 2017; 114:7775-7781. [PMID: 28739924 PMCID: PMC5544333 DOI: 10.1073/pnas.1707630114] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Andrew Whiten
- Centre for Social Learning and Cognitive Evolution, School of Psychology and Neuroscience, University of St. Andrews, St. Andrews KY16 9JP, United Kingdom;
| | - Francisco J Ayala
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697
| | | | - Kevin N Laland
- Centre for Social Learning and Cognitive Evolution, School of Biology, University of St. Andrews, St. Andrews KY16 9JP, United Kingdom
| |
Collapse
|