1
|
Hypothalamic Norepinephrine Concentration and Heart Mass in Hypertensive ISIAH Rats Are Associated with a Genetic Locus on Chromosome 18. J Pers Med 2021; 11:jpm11020067. [PMID: 33498741 PMCID: PMC7911892 DOI: 10.3390/jpm11020067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 12/23/2022] Open
Abstract
The relationship between activation of the sympathetic nervous system and cardiac hypertrophy has long been known. However, the molecular genetic basis of this association is poorly understood. Given the known role of hypothalamic norepinephrine in the activation of the sympathetic nervous system, the aim of the work was to carry out genetic mapping using Quantitative Trait Loci (QTL) analysis and determine the loci associated both with an increase in the concentration of norepinephrine in the hypothalamus and with an increase in heart mass in Inherited Stress-Induced Arterial Hypertension (ISIAH) rats simulating the stress-sensitive form of arterial hypertension. The work describes a genetic locus on chromosome 18, in which there are genes that control the development of cardiac hypertrophy associated with an increase in the concentration of norepinephrine in the hypothalamus, i.e., genes involved in enhanced sympathetic myocardial stimulation. No association of this locus with the blood pressure was found. Taking into consideration previously obtained results, it was concluded that the contribution to the development of heart hypertrophy in the ISIAH rats is controlled by different genetic loci, one of which is associated with the concentration of norepinephrine in the hypothalamus (on chromosome 18) and the other is associated with high blood pressure (on chromosome 1). Nucleotide substitutions that may be involved in the formation or absence of association with blood pressure in different rat strains are discussed.
Collapse
|
2
|
Harbachova EL, Chernigovskaya EV, Glazova MV, Nikitina LS. Audiogenic kindling activates expression of vasopressin in the hypothalamus of Krushinsky-Molodkina rats genetically prone to reflex epilepsy. J Neuroendocrinol 2020; 32:e12846. [PMID: 32301211 DOI: 10.1111/jne.12846] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 12/20/2022]
Abstract
The present study analysed the effects of audiogenic kindling on the functional state of the vasopressinergic system of Krushinsky-Molodkina (KM) rats. KM rats represent a genetic model of audiogenic reflex epilepsy. Multiple audiogenic seizures in KM rats lead to the involvement of the limbic structures and neocortex in the epileptic network. The phenomenon of epileptic activity that overspreads from the brain stem to the forebrain is called audiogenic kindling and represents a model of limbic epilepsy. In the present study, audiogenic kindling was induced by 25 repetitive audiogenic seizures (AGS) with 1 AGS per day. A proportion of KM rats did not express AGS to sound stimuli, and these rats were characterised as the AGS-resistant group. The data demonstrated that audiogenic kindling did not change activity of extracellular signal-regulated kinase 1/2 or cAMP response element-binding protein, although it led to an increase in vasopressin (VP) expression in the supraoptic nucleus (SON) and in the magnocellular division of the paraventricular nucleus (PVN). Additionally, we observed a decrease in GABAergic innervation of the hypothalamic neuroendocrine neurones after audiogenic kindling, whereas glutamatergic innervation of the SON and PVN was not altered. By contrast, analysis of AGS-resistant KM rats did not reveal any changes in the activity of the VP-ergic system, confirming that the activation of VP expression was caused by repetitive AGS expression, rather than by repetitive acoustic stress. Thus, we suggest that overspread of epileptiform activity in the brain is the main factor that affects VP expression in the hypothalamic magnocellular neurones.
Collapse
Affiliation(s)
- Eugenia L Harbachova
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint-Petersburg, Russia
| | - Elena V Chernigovskaya
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint-Petersburg, Russia
| | - Margarita V Glazova
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint-Petersburg, Russia
| | - Liubov S Nikitina
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint-Petersburg, Russia
| |
Collapse
|
3
|
Wsół A, Cudnoch-Je drzejewska A, Szczepanska-Sadowska E, Kowalewski S, Dobruch J. Central oxytocin modulation of acute stress-induced cardiovascular responses after myocardial infarction in the rat. Stress 2009; 12:517-25. [PMID: 20102320 DOI: 10.3109/10253890802687688] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The present study was aimed at determining the role of centrally released oxytocin in regulation of blood pressure and heart rate (HR) under resting conditions and during an acute air-jet stress in rats with a myocardial infarction and controls infarcted. Four weeks after ligation of a coronary artery or sham surgery, conscious Sprague Dawley rats were subjected to one of the following intracerebroventricular (ICV) infusions: (1) 0.9% NaCl (control), (2) oxytocin, (3) oxytocin receptor antagonist {desGly-NH(2)-d(CH(2))(5)[D-Tyr(2)Thr(4)]OVT}(OXYANT). Resting arterial blood pressure and HR were not affected by any of the ICV infusions either in the infarcted or sham-operated rats. In the control experiments, the pressor and tachycardic responses to the air jet of infarcted rats were significantly greater than in the sham-operated rats. OXYANT significantly enhanced the cardiovascular responses to stress only in the sham-operated rats whereas oxytocin significantly attenuated both responses in the infarcted but not in the sham-operated rats. The results suggest that centrally released endogenous oxytocin significantly reduces the cardiovascular responses to the acute stressor in control rats. This buffering function of the brain-oxytocin system is not efficient during the post-myocardial infarction state, however it may be restored by central administration of exogenous oxytocin.
Collapse
Affiliation(s)
- Agnieszka Wsół
- Department of Experimental and Clinical Physiology, Medical University of Warsaw, Warsaw, Poland
| | | | | | | | | |
Collapse
|
4
|
Fonseca AGAR, Santos RAS, Moraes MFD, Leite MF, Doretto MC. Vasopressinergic hypothalamic neurons are recruited during the audiogenic seizure of WARs. Brain Res 2005; 1038:32-40. [PMID: 15748870 DOI: 10.1016/j.brainres.2004.12.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2004] [Revised: 12/16/2004] [Accepted: 12/17/2004] [Indexed: 11/30/2022]
Abstract
The Wistar Audiogenic Rat (WAR) is a genetic model of reflex epilepsy with seizures induced by high-intensity sound stimulation (120 dB SPL). In spite of the known neural substrates involved in WAR seizure phenotype, neuroendocrine hypothalamic neurons were never investigated. In this work, AVP immunohistochemistry in the hypothalamus and radioimmunoassay (RIA) in plasma and in hypothalamic and hypophysial tissues were performed on both controls and WARs in order to evaluate the dynamics of AVP release due to seizure induction. Susceptible animals (WARs) displayed at least tonic-clonic convulsions followed by clonic spasms, while resistant Wistar rats (R) had no convulsive behavior. Animals were sacrificed at 3 instances: basal condition (without stimulus) and at 3 and 10 min after sound stimulation. For the immunohistochemistry AVP study, brains were harvested and processed by the avidin-biotin-peroxidase detection method. Optic densitometry was used for quantifying AVP labeling in supraoptic (SON) and paraventricular (PVN) hypothalamic nuclei. SON presented higher densitometry levels (%D--relative to background) for both WARs and R when compared to PVN. Nevertheless, both nuclei presented a marked decrease, referenced to basal levels, in %D for WARs at 3 min (approximately 35%) against a discrete change for R (approximately 90%). RIA results were significantly higher in the hypophysis of WARs when compared to R rats, at 3 min. Also, at 3 min, plasma AVP in WARs (89.32 +/- 24.81 pg/mL) were higher than in R (12.01 +/- 2.39 pg/mL). We conclude, based on the AVP releasing profiles, that vasopressinergic hypothalamic neurons are recruited during the audiogenic seizure of WARs.
Collapse
Affiliation(s)
- A G A R Fonseca
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Avenue, Antonio Carlos, 6627, CEP 31270-901-Campus Pampulha Belo Horizonte MG, Brazil
| | | | | | | | | |
Collapse
|
5
|
Veerasingham SJ, Yamazato M, Berecek KH, Wyss JM, Raizada MK. Increased PI3-kinase in presympathetic brain areas of the spontaneously hypertensive rat. Circ Res 2005; 96:277-9. [PMID: 15662030 DOI: 10.1161/01.res.0000156275.06641.b2] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Existing evidence led us to hypothesize that increases in p85alpha, a regulatory subunit of PI3-kinase, in presympathetic brain areas contribute to hypertension. PI3-kinase p85alpha, p110alpha, and p110delta mRNA was 1.5- to 2-fold higher in the paraventricular nucleus (PVN) of spontaneously hypertensive rats (SHR) compared with their controls, Wistar Kyoto rats (WKY). The increase in p85alpha/p110delta was attenuated in SHR treated with captopril, an angiotensin (Ang)-converting enzyme inhibitor, from in utero to 6 months of age. In the rostral ventrolateral medulla (RVLM), p110delta mRNA was approximately 2-fold higher in SHR than in WKY. Moreover, the increases in mRNA were associated with higher PI3-kinase activity in both nuclei. The functional relevance was studied in neuronal cultures because SHR neurons reflect the augmented p85alpha mRNA and PI3-kinase activity. Expression of a p85 dominant-negative mutant decreased norepinephrine (NE) transporter mRNA and [3H]NE uptake by approximately 60% selectively in SHR neurons. In summary, increased p85alpha/p110delta expression in the PVN and RVLM is associated with increased PI3-kinase activity in the SHR. Furthermore, normalized PI3-kinase p85alpha/p110delta expression within the PVN might contribute to the overall effect of captopril, perhaps attributable to a consequent decrease in NE availability.
Collapse
Affiliation(s)
- Shereeni J Veerasingham
- Department of Physiology and Functional Genomics, University of Florida, Gainesville 32610, USA
| | | | | | | | | |
Collapse
|
6
|
Abstract
Most forms of hypertension are associated with a wide variety of functional changes in the hypothalamus. Alterations in the following substances are discussed: catecholamines, acetylcholine, angiotensin II, natriuretic peptides, vasopressin, nitric oxide, serotonin, GABA, ouabain, neuropeptide Y, opioids, bradykinin, thyrotropin-releasing factor, vasoactive intestinal polypeptide, tachykinins, histamine, and corticotropin-releasing factor. Functional changes in these substances occur throughout the hypothalamus but are particularly prominent rostrally; most lead to an increase in sympathetic nervous activity which is responsible for the rise in arterial pressure. A few appear to be depressor compensatory changes. The majority of the hypothalamic changes begin as the pressure rises and are particularly prominent in the young rat; subsequently they tend to fluctuate and overall to diminish with age. It is proposed that, with the possible exception of the Dahl salt-sensitive rat, the hypothalamic changes associated with hypertension are caused by renal and intrathoracic cardiopulmonary afferent stimulation. Renal afferent stimulation occurs as a result of renal ischemia and trauma as in the reduced renal mass rat. It is suggested that afferents from the chest arise, at least in part, from the observed increase in left auricular pressure which, it is submitted, is due to the associated documented impaired ability to excrete sodium. It is proposed, therefore, that the hypothalamic changes in hypertension are a link in an integrated compensatory natriuretic response to the kidney's impaired ability to excrete sodium.
Collapse
Affiliation(s)
- H E de Wardener
- Department of Clinical Chemistry, Imperial College School of Medicine, Charing Cross Campus, London, United Kingdom.
| |
Collapse
|
7
|
Hattori T, Sundberg DK, Morris M. Central and systemic oxytocin release: a study of the paraventricular nucleus by in vivo microdialysis. Brain Res Bull 1992; 28:257-63. [PMID: 1596746 DOI: 10.1016/0361-9230(92)90187-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The mechanisms controlling central and systemic oxytocin (OT) release were examined using in vivo microdialysis of the paraventricular (PVN) region. Dialysate and plasma samples were collected from conscious male rats and stimuli were administered via the dialysate fluid. Characterization studies showed that microdialysis was a viable technique for the study of peptide secretion in the conscious animal. OT was consistently detected in the PVN dialysate and a partially purified extract crossreacted in parallel fashion with the synthetic peptide. In vitro studies showed that peptide recovery was positively correlated with the pore size of the dialysis membrane and that there was an inverse relationship between flow rate and recovery. Hypertonic saline administered centrally caused an increase in dialysate and plasma oxytocin while the intravenous injection affected only plasma oxytocin. The excitatory amino acid, glutamate (0.05-0.5 M), caused an increase in plasma, but not dialysate oxytocin, while depolarization with potassium chloride (0.05-0.15 M) had no significant effects. Histological examination showed that the dialysis probe was located in the rostral, lateral PVN. Our results show that in vivo microdialysis provides a method for the delivery of drugs into specific brain regions as well as a useful technique for the evaluation of in vivo neuropeptide release.
Collapse
Affiliation(s)
- T Hattori
- Department of Physiology and Pharmacology, Bowman Gray School of Medicine, Wake Forest University Winston-Salem, NC 27103
| | | | | |
Collapse
|
8
|
Berecek KH, Wyss JM, Swords BH. Alterations in vasopressin mechanisms in captopril-treated spontaneously hypertensive rats. CLINICAL AND EXPERIMENTAL HYPERTENSION. PART A, THEORY AND PRACTICE 1991; 13:1019-31. [PMID: 1773493 DOI: 10.3109/10641969109042108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The effects of lifetime captopril treatment on vasopressin (VP) were assessed in spontaneously hypertensive rats (SHR). Pregnant and nursing dams were treated with oral Captopril (100 mg/kg/day). After weaning, the pups were maintained on Captopril (50/kg/day) for 19-20 wks. Blood pressures of Captopril-treated SHR were in the normotensive range and significantly lower (p less than .001) than SHR control rats. Control and Captopril-treated SHR were perfused and brains were sectioned for immunohistochemical staining with a polyclonal antibody directed against vasopressin (VP). Compared to control SHR, Captopril-treated rats displayed decreased VP-like immunoreactivity in the paraventricular (PVN) and supraoptic (SON) nuclei of the hypothalamus. Captopril treatment also selectively decreased the number of brightly labeled cell bodies in the SON and PVN and reduced VP-like labeling in the axons of the neurons in these nuclei. Concurrent with a decrease in VP-like immunoreactivity, Captopril treatment reduced plasma VP levels (RIA) (p less than 0.01, Captopril, 5.6 +/- 0.5 pg/ml; control, 11.8 +/- 2.2 pg/ml). Scatchard analysis of 3H-VP binding indicated that Captopril treatment increased the number but not the affinity of VP receptors in the hypothalamus and brain stem of SHR. These results suggest that in SHR oral Captopril treatment attenuates the synthesis and release of VP, an effect that may contribute to the blood pressure lowering effect of converting enzyme inhibitors.
Collapse
Affiliation(s)
- K H Berecek
- Department of Physiology and Biophysics, University of Alabama, Birmingham 35294
| | | | | |
Collapse
|
9
|
Hattori T, Morris M, Alexander N, Sundberg DK. Extracellular oxytocin in the paraventricular nucleus: hyperosmotic stimulation by in vivo microdialysis. Brain Res 1990; 506:169-71. [PMID: 2105821 DOI: 10.1016/0006-8993(90)91216-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The effect of central osmotic stimulation on oxytocin (OT) secretion from the paraventricular nucleus (PVN) was examined using a newly developed in vivo microdialysis technique. A dialysis probe was inserted into the PVN region and microdialysis was performed in conscious animals. Hyperosmotic solutions were delivered via the dialysis probe, and perfusate and blood samples were collected. OT was consistently detected in the PVN dialysate. Hyperosmotic sodium chloride (1 M) produced a significant increase in dialysate and plasma OT, whereas D-mannitol (2 M) had no effect. These results suggest that (1) in vivo microdialysis may provide a useful technique for the evaluation of neuropeptide secretion from specific brain regions and (2) there are sodium-sensitive cells in the PVN region which respond to increases in extracellular sodium, resulting in an increase in central and peripheral oxytocin secretion.
Collapse
Affiliation(s)
- T Hattori
- Department of Physiology and Pharmacology, Bowman Gray School of Medicine, Wake Forest University, Winston-Salem, NC 27103
| | | | | | | |
Collapse
|
10
|
Abstract
Vasopressin is a neurohormone and neuromodulator with many effects on behavior. Rats lacking vasopressin have been found to develop kindled seizures more slowly with amygdala stimulation. In the present study the spontaneous hypertensive (SH) rat and rats from the parent strain, the Wistar-Kyoto (WKY) rat received amygdala and pyriform kindling. The SH rat has been reported to have increased plasma vasopressin and increased brain vasopressin release. Plasma vasopressin, osmolality and hematocrit were also measured in blood samples obtained through chronic, indwelling catheters implanted in SH, WKY normal and Sprague-Dawley rats. SH rats were found to kindle with fewer afterdischarges than WKY normal rats with both amygdala and pyriform cortex stimulation. The total afterdischarge duration required to reach each kindling stage was significantly shorter in the SH rat. Plasma osmolality and vasopressin were significantly higher in the SH rats compared to WKY normal rats and Sprague-Dawley rats. These findings provide additional evidence that vasopressin may influence the establishment of enduring behaviors such as kindled seizures.
Collapse
Affiliation(s)
- R S Greenwood
- Department of Neurology, School of Medicine, University of North Carolina, Chapel Hill 27599-7025
| | | | | | | |
Collapse
|
11
|
van Tol HH, van den Buuse M, de Jong W, Burbach JP. Vasopressin and oxytocin gene expression in the supraoptic and paraventricular nucleus of the spontaneously hypertensive rat (SHR) during development of hypertension. Brain Res 1988; 464:303-11. [PMID: 3233490 DOI: 10.1016/0169-328x(88)90039-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
To study the regulation of hypothalamic vasopressin (VP) and oxytocin (OT) gene expression in relation to the development of hypertension, levels of VP mRNA and OT mRNA were determined in spontaneously hypertensive rats (SHR). Differences in VP and OT mRNA content of the supraoptic nucleus (SON) and paraventricular nucleus (PVN) of 4- and 10-week-old SHR and Wistar-Kyoto controls (WKY) were quantitated by dot-blot and Northern blot analysis. VP and OT pituitary content and VP plasma levels were measured by radioimmunoassays. VP mRNA levels were approximately 2-fold and 3-fold higher in the SON and PVN of 4-week-old SHR, respectively, as compared to controls. The OT mRNA levels were approximately 35% lower in both nuclei of the SHR. There was no difference in VP and OT pituitary content between 4-week-old SHR and WKY, but VP plasma levels were higher in SHR. In the 10-week-old SHR VP mRNA levels were still approximately 30-40% higher and the OT mRNA levels were approximately 40% lower in both nuclei when compared to age-matched WKY. Pituitary VP and OT contents were respectively 1.5-fold higher and 20% lower in the 10-week-old SHR than in 10-week-old WKY. VP plasma levels were still elevated in the SHR. The data indicate that in the hypothalamo-neurohypophyseal system of the SHR the VP system is in a higher state of activity, while the OT system is lower in activity.
Collapse
Affiliation(s)
- H H van Tol
- Rudolf Magnus Institute, Medical Faculty, University of Utrecht, The Netherlands
| | | | | | | |
Collapse
|
12
|
Morilak DA, Fornal CA, Jacobs BL. Effects of physiological manipulations on locus coeruleus neuronal activity in freely moving cats. II. Cardiovascular challenge. Brain Res 1987; 422:24-31. [PMID: 3676783 DOI: 10.1016/0006-8993(87)90536-1] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Several cardiovascular manipulations were examined for their effects on single-unit activity of locus coeruleus noradrenergic (LC-NE) neurons in unanesthetized, unrestrained cats: hydralazine (1 mg/kg, i.v.) was administered to present a tonic hypotensive stimulus, and to activate preferentially the neural component of the sympathoadrenal system; hemorrhage was used to decrease blood volume and to activate both the neural and hormonal components of the sympathoadrenal system; intravenous infusion of isotonic saline was used to increase blood volume. LC-NE neurons were activated by hydralazine, in parallel with the sympathetic response (indicated by elevated heart rate and plasma NE). LC-NE unit activity was decreased following a volume load. However, contrary to previous findings in anesthetized animals, hemorrhage had no effect on LC-NE unit activity, but did activate both components of the sympathetic response. It is concluded that: (1) cardiovascular stimuli can influence the activity of LC-NE neurons, though they show less sensitivity to such stimuli than do primary regulatory mechanisms; (2) the response of LC-NE neurons to physiological stimuli can occur independent of changes in behavioral state; (3) these neurons do not appear to play a specific role in cardiovascular regulation, but may respond to physiological challenges in general; (4) finally, in agreement with previous studies, our data show that LC-NE neurons are generally co-activated with the sympathetic nervous system, but also that the two can be dissociated (e.g. hemorrhage).
Collapse
Affiliation(s)
- D A Morilak
- Department of Psychology, Princeton University, NJ 08544
| | | | | |
Collapse
|
13
|
Morris M, Eskay RL, Sundberg DK. A tissue culture model for the study of peptide synthesis and secretion from microdissected hypothalamic explants. Methods Enzymol 1986; 124:359-71. [PMID: 3713526 DOI: 10.1016/0076-6879(86)24028-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Using established tissue culture methodology, a protocol has been developed for the culture of specific hypothalamic regions. A microdissection technique is used to remove the paraventricular and supraoptic nuclear regions from fresh tissue. These explants are maintained in culture and appear to be viable on the basis of several criteria: the continuing presence of peptides in both tissue and media, the ability to incorporate a labeled amino acid precursor into proteins and peptides, the histological appearance using phase contrast microscopy, and the immunocytochemical identification of peptide neurons. This tissue culture model may prove useful in the study of neuroendocrine mechanisms in specific brain regions.
Collapse
|