1
|
Ramirez-Virella J, Leinninger GM. The Role of Central Neurotensin in Regulating Feeding and Body Weight. Endocrinology 2021; 162:6144574. [PMID: 33599716 PMCID: PMC7951050 DOI: 10.1210/endocr/bqab038] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Indexed: 12/16/2022]
Abstract
The small peptide neurotensin (Nts) is implicated in myriad processes including analgesia, thermoregulation, reward, arousal, blood pressure, and modulation of feeding and body weight. Alterations in Nts have recently been described in individuals with obesity or eating disorders, suggesting that disrupted Nts signaling may contribute to body weight disturbance. Curiously, Nts mediates seemingly opposing regulation of body weight via different tissues. Peripherally acting Nts promotes fat absorption and weight gain, whereas central Nts signaling suppresses feeding and weight gain. Thus, because Nts is pleiotropic, a location-based approach must be used to understand its contributions to disordered body weight and whether the Nts system might be leveraged to improve metabolic health. Here we review the role of Nts signaling in the brain to understand the sites, receptors, and mechanisms by which Nts can promote behaviors that modify body weight. New techniques permitting site-specific modulation of Nts and Nts receptor-expressing cells suggest that, even in the brain, not all Nts circuitry exerts the same function. Intriguingly, there may be dedicated brain regions and circuits via which Nts specifically suppresses feeding behavior and weight gain vs other Nts-attributed physiology. Defining the central mechanisms by which Nts signaling modifies body weight may suggest strategies to correct disrupted energy balance, as needed to address overweight, obesity, and eating disorders.
Collapse
Affiliation(s)
- Jariel Ramirez-Virella
- Neuroscience Program, Michigan State University, East Lansing, Michigan, USA
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| | - Gina M Leinninger
- Neuroscience Program, Michigan State University, East Lansing, Michigan, USA
- Department of Physiology, Michigan State University, East Lansing, Michigan, USA
- Correspondence: Gina M. Leinninger, PhD, Department of Physiology, Michigan State University, 5400 ISTB, 766 Service Rd, East Lansing, MI 48824, USA.
| |
Collapse
|
2
|
Brown JA, Woodworth HL, Leinninger GM. To ingest or rest? Specialized roles of lateral hypothalamic area neurons in coordinating energy balance. Front Syst Neurosci 2015; 9:9. [PMID: 25741247 PMCID: PMC4332303 DOI: 10.3389/fnsys.2015.00009] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 01/15/2015] [Indexed: 12/26/2022] Open
Abstract
Survival depends on an organism’s ability to sense nutrient status and accordingly regulate intake and energy expenditure behaviors. Uncoupling of energy sensing and behavior, however, underlies energy balance disorders such as anorexia or obesity. The hypothalamus regulates energy balance, and in particular the lateral hypothalamic area (LHA) is poised to coordinate peripheral cues of energy status and behaviors that impact weight, such as drinking, locomotor behavior, arousal/sleep and autonomic output. There are several populations of LHA neurons that are defined by their neuropeptide content and contribute to energy balance. LHA neurons that express the neuropeptides melanin-concentrating hormone (MCH) or orexins/hypocretins (OX) are best characterized and these neurons play important roles in regulating ingestion, arousal, locomotor behavior and autonomic function via distinct neuronal circuits. Recently, another population of LHA neurons containing the neuropeptide Neurotensin (Nts) has been implicated in coordinating anorectic stimuli and behavior to regulate hydration and energy balance. Understanding the specific roles of MCH, OX and Nts neurons in harmonizing energy sensing and behavior thus has the potential to inform pharmacological strategies to modify behaviors and treat energy balance disorders.
Collapse
Affiliation(s)
- Juliette A Brown
- Department of Pharmacology and Toxicology, Michigan State University East Lansing, MI, USA ; Center for Integrative Toxicology East Lansing, MI, USA
| | | | - Gina M Leinninger
- Center for Integrative Toxicology East Lansing, MI, USA ; Department of Physiology, Michigan State University East Lansing, MI, USA
| |
Collapse
|
3
|
|
4
|
Abstract
The serotonergic system, because of very diffuse projections throughout the central nervous system, has been implicated in numerous functions including nociception, analgesia, sleep-wakefulness and autonomic regulation. Despite an abundant literature indicating the presence of neurotensin-containing (neurotensinergic) neurons, fibres and terminals in most areas containing serotonergic neurons, little is known about the possible relationship between serotonergic and neurotensinergic systems. The purpose of this review is (i) to summarize current knowledge on the anatomical relation between neurotensinergic and serotonergic system, (ii) to summarize current knowledge on the action of neurotensin on serotonergic neurons and (iii) to discuss the possible physiological relevance of this action. Neurotensin-containing cell bodies can be found in the most rostral raphe nuclei. There are neurotensin-containing fibres and terminals in all raphe nuclei. Raphe nuclei have also been shown to contain neurotensin-receptor binding sites. In the dorsal raphe nucleus, neurotensin induces a concentration-dependent increase in the firing rate of a subpopulation of serotonergic neurons. The neurotensin-induced excitation, which is selectively blocked by the non-peptide neurotensin receptor antagonist SR 48692, is observed mainly in the ventral part of the nucleus. Most serotonergic neurons show marked desensitization to neurotensin, even at low concentrations. In intracellular experiments, neurotensin induces an inward current, associated in some cases with a decrease in apparent input conductance, which is occluded by supramaximal concentrations of the alpha 1-adrenoceptor agonist phenylephrine. In rare cases, neurotensin induces an excitation of GABAergic or glutamatergic neurons. Since the neurotensinergic system has also been implicated in nociception, analgesia, sleep-wakefulness, and autonomic regulation, the review discusses the possibility that part of this regulation could involve the activation of the serotonergic system.
Collapse
Affiliation(s)
- T Jolas
- Department of Psychiatry, Yale University School of Medicine, Connecticut Mental Health Center, New Haven 06508, USA
| | | |
Collapse
|
5
|
Zsürger N, Mazella J, Vincent JP. Solubilization and purification of a high affinity neurotensin receptor from newborn human brain. Brain Res 1994; 639:245-52. [PMID: 8205478 DOI: 10.1016/0006-8993(94)91737-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
High affinity neurotensin receptors were solubilized in an active form from newborn human brain using the non-denaturing detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic acid (CHAPS). The solubilized receptor was purified in a single step by affinity chromatography. The binding properties of the purified receptor towards [125I-Tyr3]neurotensin are very similar to those of the membrane bound and of the crude CHAPS-solubilized receptor in terms of affinity and specificity. The purified receptor is a single protein chain of molecular weight 100 kDa as shown by gel filtration and by affinity labelling with [125I-Tyr3]neurotensin in the presence of the cross-linking agent disuccinimidyl suberate.
Collapse
Affiliation(s)
- N Zsürger
- Institut de Pharmacologie Moléculaire et Cellulaire du CNRS, Valbonne, France
| | | | | |
Collapse
|
6
|
Mitra SP, Carraway RE. Importance of thiol group(s) in the binding of 125I-labeled neurotensin to membranes from porcine brain. Peptides 1993; 14:185-9. [PMID: 8387186 DOI: 10.1016/0196-9781(93)90028-f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In a radioreceptor assay employing 125I-labeled neurotensin (125I-NT) and membranes from porcine brain, the reducing agent, dithiothreitol (DTT), was found to enhance binding (ED50, approximately 10 microM), whereas alkylating agents such as N-ethyl-maleimide (NEM) suppressed binding (ED50, approximately 0.7 mM). The enhanced binding appeared to be due to an effect on disulfide group(s) within the NT-receptor or associated protein(s), since the stability of 125I-NT in the presence of membranes was not altered by 2 mM DTT. Scatchard analysis indicated that treatment with 2 mM DTT increased the total number of binding sites approximately 1.6-fold without much effect on the apparent KdS for the high- and low-affinity states. In a similar manner, the effect of 1 mM NEM was shown to result primarily from a decrease (approximately 60%) in the number of binding sites with little change in the KdS. The additional receptors gained by exposure to DTT appeared not to be sensitive to NEM unless pretreated with DTT, suggesting that reduction of disulfide bond(s) converted latent receptors into active receptors. Interestingly, nine Cys residues have been found to be present in the recently cloned rat NT receptor. In other studies, preincubation of membranes with NT prior to treatment with NEM diminished the inhibitory effect of NEM on agonist binding, suggesting that the critical sulfhydryl group(s) were located at the NT binding site or were protected by an allosteric effect.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- S P Mitra
- Department of Physiology, University of Massachusetts Medical Center, Worcester 01655
| | | |
Collapse
|
7
|
Pasquini F, Bochet P, Garbay-Jaureguiberry C, Roques BP, Rossier J, Beaudet A. Electron microscopic localization of photoaffinity-labelled delta opioid receptors in the neostriatum of the rat. J Comp Neurol 1992; 326:229-44. [PMID: 1336020 DOI: 10.1002/cne.903260206] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The distribution of delta opioid receptors, selectively labelled in vitro with the photoaffinity probe monoiodo azido-DTLET ([D-Thr2,pN3Phe4, Leu5]enkephaly-Thr6), was analyzed by light and electron microscopic radioautography in sections from rat neostriatum. Preliminary experiments indicated that up to 65% of specific 125I-azido-DTLET binding to rat striatal sections was still detectable following prefixation of the brain with 0.5% glutaraldehyde. These experiments also showed that up to 20-30% of the specifically bound radioactivity was covalently linked following ultraviolet irradiation and was thereby retained in tissue during subsequent postfixation and dehydration steps. Accordingly, the topographic distribution of the covalently attached azido-DTLET molecules was similar to that seen in fresh frozen sections and characteristic of that previously described for delta sites. Light and electron microscopic examination of the label in prefixed, striatal sections irradiated with ultraviolet light revealed that a significant proportion of specifically bound 125I-azido-DTLET molecules was intraneuronal. Specifically, 16% of the labelled binding sites were found in dendrites, 12% in perikarya and 4% in axon terminals. These results suggest that an important proportion of delta opioid binding sites labelled in the neostriatum correspond to receptors that are undergoing synthesis, transport and/or recycling. They also imply that a major fraction of delta sites are associated with intrastriatal neurons, as opposed to afferent axons. Approximately 44% of the labelled binding sites were associated with neuronal plasma membranes. Although most of these were found at the level of axodendritic (20%) and dendrodendritic (7%) appositions, comparison of the labelling incidence of these two compartments with their frequency of occurrence in tissue suggested that delta sites are fairly widely dispersed along neuronal plasma membranes. Only a small proportion (smaller than that of mu or kappa sites labelled in the same region) was associated with synaptic specializations. These results support the concept that delta receptors correspond to molecular entities that are distinct from mu and kappa sites and suggest that delta ligands act primarily nonjunctionally on the plasma membrane of striatal neurons.
Collapse
Affiliation(s)
- F Pasquini
- Montreal Neurological Institute, McGill University, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
8
|
Mazella J, Chabry J, Zsurger N, Vincent JP. Purification of the Neurotensin Receptor from Mouse Brain by Affinity Chromatography. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)83582-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
9
|
|
10
|
Checler F, Barelli H, Kwan CY, Kitabgi P, Vincent JP. Neurotensin-metabolizing peptidases in rat fundus plasma membranes. J Neurochem 1987; 49:507-12. [PMID: 3298547 DOI: 10.1111/j.1471-4159.1987.tb02893.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The mechanisms by which neurotensin (NT) was inactivated by rat fundus plasma membranes were characterized. Primary inactivating cleavages occurred at the Arg8-Arg9, Pro10-Tyr11, and Ile12-Leu13 peptidyl bonds. Hydrolysis at the Arg8-Arg9 bond was fully abolished by the use of N-[1(R,S)-carboxy-2-phenylethyl]-alanyl-alanyl-phenylalanine-p- aminobenzoate, a result indicating the involvement at this site of a recently purified soluble metallopeptidase. Hydrolysis of the Pro10-Tyr11 bond was totally resistant to N-benzyloxycarbonyl-prolyl-prolinal and thiorphan, an observation suggesting that the peptidase responsible for this cleavage was different from proline endopeptidase and endopeptidase 24.11 and might correspond to a NT-degrading neutral metallopeptidase recently isolated from rat brain synaptic membranes. The enzyme acting at the Ile12-Leu13 bond has not yet been identified. Secondary cleavages occurring on NT degradation products were mainly generated by bestatin-sensitive aminopeptidases and post-proline dipeptidyl aminopeptidase. The content in NT-metabolizing peptidases present in rat fundus plasma membranes is compared with that previously established for purified rat brain synaptic membranes.
Collapse
|
11
|
Mazella J, Amar S, Bozou JC, Kitabgi P, Vincent JP. Functional properties and molecular structure of central and peripheral neurotensin receptors. JOURNAL OF RECEPTOR RESEARCH 1987; 7:157-65. [PMID: 3040976 DOI: 10.3109/10799898709054984] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Membranes prepared from mammalian brain or intestine contain two types of specific binding sites for neurotensin that differ by their affinity and by their sensitivity to sodium ions, GTP, and the antihistamine drug levocabastine. Only the high affinity sites are present in cell cultures and in soluble extracts of CHAPS-treated membranes. These sites represent functional neurotensin receptors coupled to GTP-binding proteins that regulate intracellular levels of cAMP, cGMP and inositol phosphates in neuroblastoma N1E115 cells. The molecular weight of neurotensin receptors in cells and membrane preparations of various origin is about 110,000.
Collapse
|
12
|
Abstract
The neurotensin receptors from rat brain synaptosomal membranes differed in subunit structure from those in rat gastric fundus smooth muscle plasma membranes when studied following photoaffinity labelling or after exposure to cross-linking reagents. However, these two receptors were similar in their recognition properties. In this study we compared the target size of the two receptors by radiation inactivation and observed that the receptors in both tissues had similar target sizes (mean values 103,000 and 108,000 daltons). This suggests that the differences in size observed in biochemical studies may reflect changes occurring during the isolation procedures, or, on the other hand, there might be inherent difference in the subunit structure of these receptors.
Collapse
|