1
|
Muñoz-Cueto JA, Zmora N, Paullada-Salmerón JA, Marvel M, Mañanos E, Zohar Y. The gonadotropin-releasing hormones: Lessons from fish. Gen Comp Endocrinol 2020; 291:113422. [PMID: 32032603 DOI: 10.1016/j.ygcen.2020.113422] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/02/2020] [Accepted: 02/03/2020] [Indexed: 12/26/2022]
Abstract
Fish have been of paramount importance to our understanding of vertebrate comparative neuroendocrinology and the mechanisms underlying the physiology and evolution of gonadotropin-releasing hormones (GnRH) and their genes. This review integrates past and recent knowledge on the Gnrh system in the fish model. Multiple Gnrh isoforms (two or three forms) are present in all teleosts, as well as multiple Gnrh receptors (up to five types), which differ in neuroanatomical localization, pattern of projections, ontogeny and functions. The role of the different Gnrh forms in reproduction seems to also differ in teleost models possessing two versus three Gnrh forms, Gnrh3 being the main hypophysiotropic hormone in the former and Gnrh1 in the latter. Functions of the non-hypothalamic Gnrh isoforms are still unclear, although under suboptimal physiological conditions (e.g. fasting), Gnrh2 may increase in the pituitary to ensure the integrity of reproduction under these conditions. Recent developments in transgenesis and mutagenesis in fish models have permitted the generation of fish lines expressing fluorophores in Gnrh neurons and to elucidate the dynamics of the elaborate innervations of the different neuronal populations, thus enabling a more accurate delineation of their reproductive roles and regulations. Moreover, in combination with neuronal electrophysiology, these lines have clarified the Gnrh mode of actions in modulating Lh and Fsh activities. While loss of function and genome editing studies had the premise to elucidate the exact roles of the multiple Gnrhs in reproduction and other processes, they have instead evoked an ongoing debate about these roles and opened new avenues of research that will no doubt lead to new discoveries regarding the not-yet-fully-understood Gnrh system.
Collapse
Affiliation(s)
- José A Muñoz-Cueto
- Department of Biology, Faculty of Marine and Environmental Sciences and INMAR, University of Cádiz, CEIMAR, The European University of the Seas (SEA-EU), Puerto Real (Cádiz), Spain.
| | - Nilli Zmora
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD, USA
| | - José A Paullada-Salmerón
- Department of Biology, Faculty of Marine and Environmental Sciences and INMAR, University of Cádiz, CEIMAR, The European University of the Seas (SEA-EU), Puerto Real (Cádiz), Spain
| | - Miranda Marvel
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD, USA
| | - Evaristo Mañanos
- Institute of Aquaculture of Torre de la Sal, CSIC, Castellón, Spain
| | - Yonathan Zohar
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD, USA.
| |
Collapse
|
2
|
Butler JM, Maruska KP. Expression of tachykinin3 and related reproductive markers in the brain of the African cichlid fish Astatotilapia burtoni. J Comp Neurol 2019; 527:1210-1227. [PMID: 30644550 DOI: 10.1002/cne.24622] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 12/05/2018] [Accepted: 12/17/2018] [Indexed: 11/06/2022]
Abstract
Neurokinin B, encoded by the tachykinin3 gene, plays a crucial role in regulating reproduction in mammals via KNDy neurons and interaction with GnRH. Previous work in teleost fishes has focused on hypothalamic tac3 expression for its role in reproduction, but detailed studies on extra-hypothalamic tac3 expression are limited. Here, we identified two tac3 genes in the social African cichlid fish Astatotilapia burtoni, only one of which produces a functional protein containing the signature tachykinin motif. In situ hybridization for tac3a mRNA identified cell populations throughout the brain. Numerous tac3a cells lie in several thalamic and hypothalamic nuclei, including periventricular nucleus of posterior tuberculum, lateral tuberal nucleus (NLT), and nucleus of the lateral recess (NRL). Scattered tac3-expressing cells are also present in telencephalic parts, such as ventral (Vv) and supracomissural (Vs) part of ventral telencephalon. In contrast to other teleosts, tac3 expression was absent from the pituitary. Using double-fluorescent staining, we localized tac3a-expressing cells in relation to GnRH and kisspeptin cells. Although no GnRH-tac3a colabeled cells were observed, dense GnRH fibers surround and potentially synapse with tac3a cells in the preoptic area. Only minimal (<5%) colabeling of tac3a was observed in kiss2 cells. Despite tac3a expression in many nodes of the mesolimbic reward system, it was absent from tyrosine hydroxylase (TH)-expressing cells, but tac3a cells were located in areas with dense TH fibers. The presence of tac3a-expressing cells throughout the brain, including in socially relevant brain regions, suggest more diverse functions beyond regulation of reproductive physiology that may be conserved across vertebrates.
Collapse
Affiliation(s)
- Julie M Butler
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana
| | - Karen P Maruska
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana
| |
Collapse
|
3
|
Peñaranda DS, Mazzeo I, Hildahl J, Gallego V, Nourizadeh-Lillabadi R, Pérez L, Asturiano JF, Weltzien FA. Molecular characterization of three GnRH receptor paralogs in the European eel, Anguilla anguilla: tissue-distribution and changes in transcript abundance during artificially induced sexual development. Mol Cell Endocrinol 2013; 369:1-14. [PMID: 23416230 DOI: 10.1016/j.mce.2013.01.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 01/25/2013] [Accepted: 01/29/2013] [Indexed: 11/17/2022]
Abstract
Gonadotropin-releasing hormone receptor (GnRH-R) activation stimulates synthesis and release of gonadotropins in the vertebrate pituitary and also mediates other processes both in the brain and in peripheral tissues. To better understand the differential function of multiple GnRH-R paralogs, three GnRH-R genes (gnrhr1a, 1b, and 2) were isolated and characterized in the European eel. All three gnrhr genes were expressed in the brain and pituitary of pre-pubertal eels, and also in several peripheral tissues, notably gills and kidneys. During hormonally induced sexual maturation, pituitary expression of gnrhr1a (female) and gnrhr2 (male and female) was up-regulated in parallel with gonad development. In the brain, a clear regulation during maturation was seen only for gnrhr2 in the midbrain, with highest levels recorded during early vitellogenesis. These data suggest that GnRH-R2 is the likely hypophysiotropic GnRH-R in male eel, while both GnRH-R1a and GnRH-R2 seems to play this role in female eels.
Collapse
Affiliation(s)
- David S Peñaranda
- Grupo de Acuicultura y Biodiversidad, Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de València, Valencia, Spain
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Selvaraj S, Kitano H, Fujinaga Y, Amano M, Takahashi A, Shimizu A, Yoneda M, Yamaguchi A, Matsuyama M. Immunological characterization and distribution of three GnRH forms in the brain and pituitary gland of chub mackerel (Scomber japonicus). Zoolog Sci 2010; 26:828-39. [PMID: 19968470 DOI: 10.2108/zsj.26.828] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The presence of three gonadotropin-releasing hormone (GnRH) forms in the brain of the chub mackerel, Scomber japonicus, namely, salmon GnRH (sGnRH), chicken GnRH-II (cGnRH-II), and seabream GnRH (sbGnRH), was confirmed by combined high performance liquid chromatography (HPLC) and time-resolved fluoroimmunoassay (TR-FIA). Immunocytochemical localization of the three GnRH forms in the brain was Investigated by using specific antisera, to elucidate possible roles of each GnRH form in reproduction in this species, and double immunolabeling was used to localize GnRH-ir (immunoreactive) fibers Innervating the pituitary. sGnRH-ir neurons were localized in the ventral olfactory bulb and terminal nerve ganglion region. Further, sGnRH-ir fibers were found in different regions of the brain, with prominent fibers running in parallel in the preoptic area (POA) without entering the pituitary. cGnRH-II-ir cell bodies were observed only in the midbrain tegmentum region, with a wide distribution of fibers, which were dense in the midbrain tegmentum and spinal cord. SbGnRH-ir cell bodies were localized in the nucleus preopticus of the POA, with fibers in the olfactory bulb, POA, and hypothalamus. Among the three GnRH forms, only SbGnRH-ir fibers innervated the pituitary gland from the preoptic-hypothalamic region, targeting follicle stimulating hormone (FSH) and luteinizing hormone (LH)-producing cells in the proximal pars distalis, as demonstrated by double immunocytochemistry. The localization of the GnRH-ir system was similar in male and female fish. These results demonstrate that multiple GnRH forms exist in the brain of the chub mackerel and suggest that they serve different functions, with SbGnRH having a significant role in reproduction in stimulating FSH- and LH-producing cells, and sGnRH and cGnRH-II serving as neurotransmitters or neuromodulators.
Collapse
Affiliation(s)
- Sethu Selvaraj
- Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Peñaranda DS, Pérez L, Gallego V, Jover M, Tveiten H, Baloche S, Dufour S, Asturiano JF. Molecular and physiological study of the artificial maturation process in European eel males: from brain to testis. Gen Comp Endocrinol 2010; 166:160-71. [PMID: 19699741 DOI: 10.1016/j.ygcen.2009.08.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Revised: 07/21/2009] [Accepted: 08/15/2009] [Indexed: 11/18/2022]
Abstract
European eel males can be artificially matured (1.5IU hCG/g fish), but the regulatory mechanisms of their reproductive development are practically unknown. Spermatogenic stages (S1-S6), biometric characters [eye index (EI), gonadosomatic index (GSI), hepatosomatic index (HSI)] and sperm quality parameters (motility, viability and head spermatozoa morphometry) were analysed. Moreover, the present study evaluated the expression of GnRHs (mammal and chicken II Gonadotropin Release Hormone I) and gonadotrophins (FSHbeta and LHbeta) during hormonal treatment, as well as 11-ketotestosterone (11-KT) and 17,20beta-dihydroxy-4-pregnen-3-one (17,20beta-P) plasma levels. One week was enough to observe the S2 of gonad development, but it was necessary to reach the 7th week of treatment to obtain animals that presented the most advanced stage of development (S6). Differential regulation of the two GnRH expressions was found, supporting the main role of mGnRH in the control of gonadotrophin release. One hCG injection was enough to dramatically decrease the FSHbeta expression, being close to zero during the rest of the treatment. LHbeta expression and 17,20beta-P registered a significant increase in the same stage of development, S3/4, confirming the role of this gonadotrophin in the last steps of maturation and 17,20beta-P in the spermatozoa maturation. The 11-KT increased with GSI, and the highest 11-KT values coincided with the advanced steps of spermatogenesis prior to spermiation. Being consistent with the known role of the steroid in these processes. Furthermore, this study supports a role for 11-KT in stimulating eye growth, presenting high values when EI increased. Sperm production was obtained from the 4th week of treatment, but it was in the 8th week when a significant increase was observed in sperm quality [viability, high motility (>75%)].
Collapse
Affiliation(s)
- David S Peñaranda
- Grupo de Acuicultura y Biodiversidad, Instituto de Ciencia y Tecnología Animal, Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Ohkubo M, Aranishi F, Shimizu A. Molecular cloning and brain distribution of three types of gonadotropin-releasing hormone from mummichog Fundulus heteroclitus. JOURNAL OF FISH BIOLOGY 2010; 76:379-394. [PMID: 20738714 DOI: 10.1111/j.1095-8649.2009.02509.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Complementary DNAs encoding gonadotropin-releasing hormone (GnRH) precursors were cloned from the mummichog Fundulus heteroclitus brain, showing that this species has three GnRH forms, i.e. medaka Oryzias latipes GnRH (mdGnRH), chicken GnRH-II (cGnRH-II) and Atlantic salmon Salmo salar GnRH (sGnRH). The F. heteroclitus prepro GnRHs have common structural architectures of vertebrate GnRHs, consisting of the signal peptide, 10 amino acids of mature peptide, GKR sequence and GnRH-associated peptide (GAP). Phylogenetic analysis of fish prepro GnRHs showed that F. heteroclitus mdGnRH is a homologue of sbGnRHs and mdGnRHs of other acanthopterygian. Quantitative real-time PCR revealed that mdGnRH was abundantly expressed in the olfactory bulb and in olfactory lobe areas and is expressed in the pituitary. The cGnRH-II was mainly expressed in the midbrain and interbrain areas, and the sGnRH was expressed not only in the olfactory bulb but also in other regions of the brain. These results suggest that the mdGnRH is involved in the stimulation of gonadotrophs in the pituitary, whereas cGnRH-II and sGnRH are involved in neurotransmission and neuromodulation.
Collapse
Affiliation(s)
- M Ohkubo
- National Research Institute of Fisheries Science, Fisheries Research Agency, Yokohama, Japan
| | | | | |
Collapse
|
7
|
Sébert ME, Legros C, Weltzien FA, Malpaux B, Chemineau P, Dufour S. Melatonin activates brain dopaminergic systems in the eel with an inhibitory impact on reproductive function. J Neuroendocrinol 2008; 20:917-29. [PMID: 18445127 DOI: 10.1111/j.1365-2826.2008.01744.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In the eel, a deficit in gonadotrophin-releasing hormone (GnRH) and a strong dopaminergic (DA) inhibition are responsible for the blockade of gonad development if silver eels are prevented from their reproductive migration. Environmental factors that eels encounter during their oceanic reproductive migration are thought to play an important role in the stimulation of eel pubertal development. We investigated the potential role of melatonin, a known mediator of the effects of external factors on reproductive function in vertebrates. We demonstrated that a long-term melatonin treatment increased brain tyrosine hydroxylase (TH, the rate limiting enzyme of DA synthesis) mRNA expression in a region-dependent way. Melatonin stimulated the dopaminergic system of the preoptic area, which is involved in the inhibitory control of gonadotrophin [luteinising hormone (LH) and follicle-stimulating hormone (FSH)] synthesis and release. Moreover, we showed that the increased TH expression appeared to be consistent with melatonin binding site distribution as shown by 2[(125)I]-melatonin labelling studies. On the other hand, melatonin had no effects on the two eel native forms of GnRH (mGnRH and cGnRH-II) mRNA expression. Concerning the pituitary-gonad axis, we showed that melatonin treatment decreased both gonadotrophin beta-subunit (LHbeta, FSHbeta) mRNA expression and reduced sexual steroid (11-ketotestosterone, oestradiol) plasma levels. This indicates that melatonin treatment had a negative effect on eel reproductive function. To our knowledge, the results of the present study provide the first evidence that melatonin enhances TH expression in specific brain regions in a non-mammalian species. By this mechanism melatonin could represent one pathway by which environmental factors could modulate reproductive function in the eel.
Collapse
Affiliation(s)
- M-E Sébert
- USM 0401, UMR 5178 CNRS/MNHN/UPMC Biologie des Organismes Marins et Ecosystèmes, Département des Milieux et Peuplements Aquatiques, Muséum National d'Histoire Naturelle, Paris, France
| | | | | | | | | | | |
Collapse
|
8
|
Okubo K, Nagahama Y. Structural and functional evolution of gonadotropin-releasing hormone in vertebrates. Acta Physiol (Oxf) 2008; 193:3-15. [PMID: 18284378 DOI: 10.1111/j.1748-1716.2008.01832.x] [Citation(s) in RCA: 180] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The neuropeptide gonadotropin-releasing hormone (GnRH) has a central role in the neural control of vertebrate reproduction. This review describes an overview of what is currently known about GnRH in vertebrates in the context of its structural and functional evolution. A large body of evidence has demonstrated the existence of three paralogous genes for GnRH (GnRH1, GnRH2 and GnRH3) in the vertebrate lineage. They are most probably the products of whole-genome duplications that occurred early in vertebrate evolution. Although GnRH3 has been identified only in teleosts, comparative genomic analyses indicated that GnRH3 has not arisen from a teleost-specific genome duplication, but has been derived from an earlier genome duplication in an ancestral vertebrate, followed by its loss in the tetrapod lineage. A loss of other paralogous genes has also occurred independently in different vertebrate lineages, leading to species-specific differences in the organization of the GnRH system. In addition to the GnRH3 gene, the GnRH2 gene has been deleted or silenced in certain mammalian species, while some teleosts seem to have lost the GnRH1 or GnRH3 gene. The duplicated GnRH genes have undergone subfunctionalization during the evolution of vertebrates; GnRH1 has become the major stimulator of gonadotropins and probably other pituitary hormones as well, whereas GnRH2 and GnRH3 would have functioned as neuromodulators, affecting reproductive behaviour. Conversely, in cases where a paralogous gene for GnRH has been lost, one of the remaining paralogues appears to have adopted its role.
Collapse
Affiliation(s)
- K Okubo
- Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki, Aichi, Japan.
| | | |
Collapse
|
9
|
Guilgur LG, Ortí G, Strobl-Mazzulla PH, Fernandino JI, Miranda LA, Somoza GM. Characterization of the cDNAs encoding three GnRH forms in the pejerrey fish Odontesthes bonariensis (Atheriniformes) and the evolution of GnRH precursors. J Mol Evol 2007; 64:614-27. [PMID: 17557168 DOI: 10.1007/s00239-006-0125-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Accepted: 02/12/2007] [Indexed: 01/11/2023]
Abstract
Most vertebrates express two gonadotropin releasing hormone (GnRH) variants in brain tissue but there is an increasing number of fish species for which a third GnRH form has been detected. We characterized the precursors (cDNAs) of all three forms expressed in the brain of the pejerrey (silverside) fish, Odontesthes bonariensis (Atheriniformes): type I (GnRH-I; 440 bp), type II (GnRH-II; 529 bp), and type III (GnRH-III; 515 bp). The expression of these GnRHs precursors was also observed in peripheral tissues related to reproduction (gonads), visual and chemical senses (eye and olfactory epithelium), and osmoregulation (gill), suggesting that in teleost fish and possibly other vertebrates GnRH mediates directly or indirectly many other functions besides reproduction. We also present a comprehensive phylogenetic analysis including representatives of all chordate GnRH precursors characterized to date that supports the idea of two main paralogous GnRH lineages with different function. A "forebrain lineage" separates evolutionarily from the "midbrain lineage" as a result of an ancient duplication (ca. 600 million years ago). A third, fish-only clade of GnRH genes seems to have originated before the divergence of fish and tetrapods but retained only in fish. Phylogenetic analyses of GnRH precursors (DNA and protein sequences) under different optimality criteria converge on this result. Although alternative scenarios could not be statistically rejected in this study due to the relatively short size of the analyzed molecules, this hypothesis also receives support from chromosomal studies of synteny around the GnRH genes in vertebrates.
Collapse
Affiliation(s)
- Leonardo G Guilgur
- Laboratorio de Ictiofisiología y Acuicultura, Instituto de Investigaciones Biotecnológicas, Instituto Tecnológico de Chascomús CONICET-UNSAM, C.C. 164 B7130IWA, Chascomús, Provincia de Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
10
|
Guilgur LG, Moncaut NP, Canário AVM, Somoza GM. Evolution of GnRH ligands and receptors in gnathostomata. Comp Biochem Physiol A Mol Integr Physiol 2006; 144:272-83. [PMID: 16716622 DOI: 10.1016/j.cbpa.2006.02.016] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2005] [Revised: 01/19/2006] [Accepted: 02/14/2006] [Indexed: 10/24/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) is the final common signaling molecule used by the brain to regulate reproduction in all vertebrates. Until now, a total of 24 GnRH structural variants have been characterized from vertebrate, protochordate and invertebrate nervous tissue. Almost all vertebrates already investigated have at least two GnRH forms coexisting in the central nervous system. Furthermore, it is now well accepted that three GnRH forms are present both in early and late evolved teleostean fishes. The number and taxonomic distribution of the different GnRH variants also raise questions about the phylogenetic relationships between them. Most of the GnRH phylogenetic analyses are in agreement with the widely accepted idea that the GnRH family can be divided into three main groups. However, the examination of the gnathostome GnRH phylogenetic relationships clearly shows the existence of two main paralogous GnRH lineages: the ''midbrain GnRH" group and the "forebrain GnRH" group. The first one, represented by chicken GnRH-II forms, and the second one composed of two paralogous lineages, the salmon GnRH cluster (only represented in teleostean fish species) and the hypophysotropic GnRH cluster, also present in tetrapods. This analysis suggests that the two forebrain clades share a common precursor and reinforces the idea that the salmon GnRH branch has originated from a duplication of the hypophysotropic lineage. GnRH ligands exert their activity through G protein-coupled receptors of the rhodopsin-like family. As with the ligands, multiple GnRHRs are expressed in individual vertebrate species and phylogenetic analyses have revealed that all vertebrate GnRHRs cluster into three main receptor types. However, new data and a new phylogenetic analysis propose a two GnRHR type model, in which different rounds of gene duplications may have occurred in different groups within each lineage.
Collapse
Affiliation(s)
- Leonardo G Guilgur
- Laboratorio de Ictiofisiología y Acuicultura, IIB-INTECH, CONICET-Universidad Nacional de General San Martín, IIB-INTECH, Camino de Circunvalación Laguna Km. 6, CC 164, B7130IWA, Chascomús, Provincia de Buenos Aires, Argentina
| | | | | | | |
Collapse
|
11
|
Abstract
Gonadotropin-releasing hormone (GnRH) is a decapeptide, which has been isolated from the hypothalamus as a releasing hormone of gonadotropins from the pituitary. However, subsequent morphological studies have demonstrated the presence of multiple GnRH neuronal groups outside the hypothalamus and preoptic area. In most vertebrate lineages studied to date, GnRH neuronal groups are present along the terminal nerve and in the midbrain tegmentum, in addition to a population in the preoptico-hypothalamic areas. The presence of GnRH fibers in extrahypothalamic areas has also been demonstrated, indicating a significance for GnRH neurons in functions other than those that are purely hypophysiotropic. Among vertebrate lineages, GnRH neurons have been most extensively studied in teleost fish through morphological, electrophysiological, behavioral and molecular approaches. To date, studies on differential roles of GnRH neuronal groups have been mostly restricted to teleosts. In the present review, the anatomy and functions of each GnRH neuronal group are reconsidered, based mainly on knowledge from teleosts. Recent findings in teleosts indicate that the preoptico-hypothalamic GnRH neurons are hypophysiotropic and that GnRH neurons of the terminal nerve and midbrain tegmentum regulate neural activities in various regions, including extrahypothalamic areas. The latter populations presumably serve as neuromodulatory systems to control aspects of neural functions such as reproductive behavior. Similar functional differentiation may be generalized to other vertebrate lineages as well.
Collapse
Affiliation(s)
- Naoyuki Yamamoto
- Department of Anatomy, Laboratory for Comparative Neuromorphology, Nippon Medical School, Tokyo, Japan.
| |
Collapse
|
12
|
Lethimonier C, Madigou T, Muñoz-Cueto JA, Lareyre JJ, Kah O. Evolutionary aspects of GnRHs, GnRH neuronal systems and GnRH receptors in teleost fish. Gen Comp Endocrinol 2004; 135:1-16. [PMID: 14644639 DOI: 10.1016/j.ygcen.2003.10.007] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Gonadotrophin-releasing hormone (GnRH) was originally believed to be released by a unique set of hypophysiotrophic neurons to stimulate the release of gonadotrophins from the pituitary, therefore acting as a major initiator of the hormonal cascade controlling the reproductive axis. However, it now appears that each vertebrate species expresses two or three GnRH forms in multiple tissues and that GnRHs exert pleiotropic actions via several classes of receptors. This new vision of the GnRH systems arose progressively from numerous comparative studies in all vertebrate classes, but fish in general, and teleosts in particular, have often plaid a leading part in changing established concepts. To date fish still appear as attractive models to decipher the evolutionary mechanisms that led to the diversification of GnRH functions. Not only do teleosts exhibit the highest variety of GnRH variants, but recent data and whole genome analyses indicate that they may also possess multiple GnRH receptors. This paper intends to summarize the current situation with special emphasis on interspecies comparisons which provide insights into the possible evolutionary mechanisms leading to the diversification of GnRH functions.
Collapse
Affiliation(s)
- Christèle Lethimonier
- Endocrinologie Moléculaire de la Reproduction, UMR CNRS 6026, 35042, Rennes cedex, France.
| | | | | | | | | |
Collapse
|
13
|
Somoza GM, Miranda LA, Strobl-Mazzulla P, Guilgur LG. Gonadotropin-releasing hormone (GnRH): from fish to mammalian brains. Cell Mol Neurobiol 2002; 22:589-609. [PMID: 12838906 DOI: 10.1023/a:1021888420271] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This work deals with a family of neuropeptides, gonadotropin-releasing hormone (GnRH), that play a key role in the development and maintenance of reproductive function in vertebrates. 2. Until now, a total of 16 GnRH structural variants have been isolated and characterized from vertebrate and protochordate nervous tissue. All vertebrate species already investigated have at least two GnRH forms coexisting in the central nervous system. However, it is now well accepted that three forms of GnRH in early and late evolved bony fishes are present. 3. In these cases, cGnRH-II is expressed by midbrain neurons, a species-specific GnRH is present mainly in the preoptic area and the hypothalamus, and sGnRH is localized in the terminal nerve ganglion (TNG). In this context it is possible to think that three GnRH forms and three GnRH receptor (GnRH-R) subtypes are expressed in the central nervous system of a given species. 4. Then it is possible to propose three different GnRH lineages expressed by distinct brain areas in vertebrates: (1) the conserved cGnRH-II or mesencephalic lineage; or (2) the hypothalamic or "releasing" lineage whose primary structure has diverged by point mutations (mGnRH and its orthologous forms: hrGnRH, wfGnRH, cfGnRH, sbGnRH, and pjGnRH); and (3) the telencephalic sGnRH form. Also different GnRH nomenclatures are discussed.
Collapse
Affiliation(s)
- Gustavo M Somoza
- Laboratorio de Ictiofisiología, Instituto Tecnológico, Universidad Nacional de General San Martín, Chascomús, Buenos Aires, Argentina.
| | | | | | | |
Collapse
|
14
|
González-Martínez D, Zmora N, Mañanos E, Saligaut D, Zanuy S, Zohar Y, Elizur A, Kah O, Muñoz-Cueto JA. Immunohistochemical localization of three different prepro-GnRHs in the brain and pituitary of the European sea bass (Dicentrarchus labrax) using antibodies to the corresponding GnRH-associated peptides. J Comp Neurol 2002; 446:95-113. [PMID: 11932929 DOI: 10.1002/cne.10190] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The distribution of the cells expressing three prepro-gonadotrophin-releasing hormones (GnRH), corresponding to salmon GnRH (sGnRH), seabream GnRH (sbGnRH), and chicken GnRH-II (cGnRH-II) forms, was studied in the brain and pituitary of the sea bass (Dicentrarchus labrax) by using immunohistochemistry. To circumvent the cross-reactivity problems of antibodies raised to GnRH decapeptides, we used specific antibodies generated against the different sea bass GnRH-associated peptides (GAP): salmon GAP (sGAP), seabream GAP (sbGAP), and chicken-II GAP (cIIGAP). The salmon GAP immunostaining was mostly detected in terminal nerve neurons but also in ventral telencephalic and preoptic perikarya. Salmon GAP-immunoreactive (ir) fibers were observed mainly in the forebrain, although sGAP-ir projections were also evident in the optic tectum, mesencephalic tegmentum, and ventral rhombencephalon. The pituitary only receives a few sGAP-ir fibers. The seabream GAP-ir cells were mainly detected in the preoptic area. Nevertheless, sbGAP-ir neurons were also found in olfactory bulbs, ventral telencephalon, and ventrolateral hypothalamus. The sbGAP-ir fibers were only observed in the ventral forebrain, innervating strongly the pituitary gland. Finally, chicken-II GAP immunoreactivity was only detected in large synencephalic cells, which are the origin of a profuse innervation reaching the telencephalon, preoptic area, hypothalamus, thalamus, pretectum, posterior tuberculum, mesencephalic tectum and tegmentum, cerebellum, and rhombencephalon. However, no cIIGAP-ir fibers were detected in the hypophysis. These results corroborate the overlapping of sGAP- and sbGAP-expressing cells in the forebrain of the sea bass, and provide, for the first time, unambiguous information on the distribution of projections of the three different GnRH forms expressed in the brain of a single species.
Collapse
Affiliation(s)
- David González-Martínez
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, 11510 Puerto Real, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Dubois EA, Zandbergen MA, Peute J, Goos HJT. Evolutionary development of three gonadotropin-releasing hormone (GnRH) systems in vertebrates. Brain Res Bull 2002; 57:413-8. [PMID: 11923000 DOI: 10.1016/s0361-9230(01)00676-1] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) is the neuropeptide that links the brain to the reproductive system. Most vertebrate species express two forms of GnRH, which differ in amino acid sequence, localization, distribution, and embryological origin. The GnRH system in the ventral forebrain produces a species-specific GnRH form and projects toward the gonadotropic cell in the pituitary. The GnRH neurons of this system originate from the olfactory placode and migrate into the brain during early development. The other GnRH system is localized in a nucleus in the midbrain, where large cells express chicken-GnRH-II, of which the function is still unclear. In modern teleosts, a third GnRH system is present in the terminal nerve, which contains salmon GnRH. The three GnRH systems appear at different times during fish evolution. Besides the two accepted lineages in GnRH evolution (of conserved chicken GnRH-II in the midbrain and of mammalian GnRH or species-specific GnRH in the hypophysiotropic system), we propose a third lineage: of salmon GnRH in the terminal nerve.
Collapse
Affiliation(s)
- E A Dubois
- Research Group of Comparative Endocrinology, Graduate School for Developmental Biology, Faculty of Biology, The, Utrecht, Netherlands
| | | | | | | |
Collapse
|
16
|
Okubo K, Aida K. Gonadotropin-releasing hormones (GnRHs) in a primitive teleost, the arowana: phylogenetic evidence that three paralogous lineages of GnRH occurred prior to the emergence of teleosts. Gen Comp Endocrinol 2001; 124:125-33. [PMID: 11703078 DOI: 10.1006/gcen.2001.7698] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Multiple molecular forms of gonadotropin-releasing hormone (GnRH) are present in a single vertebrate species. To extend the knowledge on GnRH evolution and the number of GnRH forms in one organism, GnRH cDNAs have been isolated and characterized from one of the most primitive teleosts, the arowana Scleropages jardini. This species had two molecular forms of GnRH: salmon-type GnRH (sGnRH) and chicken-II-type GnRH (cGnRH-II). Sequence comparison between the prepro-GnRHs of the arowana and those of other teleosts indicated that sGnRH represented a paralogue separate from any other forms of GnRH. Consistently, subsequent phylogenetic analysis showed that known forms of GnRH in teleosts fell into three paralogous lineages: sGnRH alone on one lineage, cGnRH-II on another, and many other forms on the other. These results suggest that an ancestral GnRH gene duplicated twice prior to the emergence of teleosts and, therefore, that teleosts, and probably also tetrapods, would possess three paralogous forms of GnRH in individual brains.
Collapse
Affiliation(s)
- K Okubo
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, Tokyo, Bunkyo, 113-8657, Japan
| | | |
Collapse
|
17
|
Terasawa E, Busser BW, Luchansky LL, Sherwood NM, Jennes L, Millar RP, Glucksman MJ, Roberts JL. Presence of luteinizing hormone-releasing hormone fragments in the rhesus monkey forebrain. J Comp Neurol 2001; 439:491-504. [PMID: 11596068 DOI: 10.1002/cne.1364] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Previously, we have shown that two types of luteinizing hormone-releasing hormone (LHRH) -like neurons, "early" and "late" cells, were discernible in the forebrain of rhesus monkey fetuses by using antiserum GF-6, which cross-reacts with several forms of LHRH. The "late" cells that arose from the olfactory placode of monkey fetuses at embryonic days (E) 32-E36, are bona fide LHRH neurons. The "early" cells were found in the forebrain at E32-E34 and settled in the extrahypothalamic area. The molecular form of LHRH in "early" cells differs from "late" cells, because "early" cells were not immunopositive with any specific antisera against known forms of LHRH. In this study, we investigated the molecular form of LHRH in the "early" cells in the nasal regions and brains of 13 monkey fetuses at E35 to E78. In situ hybridization studies suggested that both "early" and "late" LHRH cells expressed mammalian LHRH mRNA. Furthermore, "early" cells predominantly contain LHRH1-5-like peptide and its cleavage enzyme, metalloendopeptidase E.C.3.4.24.15 (EP24.15), which cleaves LHRH at the Tyr5-Gly6 position. This conclusion was based on immunocytochemical labeling with various antisera, including those against LHRH1-5, LHRH4-10, or EP24.15, and on preabsorption tests. Therefore, in primates, a group of neurons containing mammalian LHRH mRNA arises at an early embryonic stage before the migration of bona fide LHRH neurons, and is ultimately distributed in the extrahypothalamic region. These extrahypothalamic neurons contain LHRH fragments, rather than fully mature mammalian LHRH. The origin and function of these neurons remain to be determined.
Collapse
Affiliation(s)
- E Terasawa
- Wisconsin Regional Primate Research Center, University of Wisconsin, Madison, Wisconsin 53715-1299, USA.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Dubois EA, Zandbergen MA, Peute J, Bogerd J, Goos HJ. Development of three distinct GnRH neuron populations expressing two different GnRH forms in the brain of the African catfish (Clarias gariepinus). J Comp Neurol 2001; 437:308-20. [PMID: 11494258 DOI: 10.1002/cne.1285] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The early development of both the catfish gonadotropin-releasing hormone (cfGnRH)- and the chicken GnRH-II (cGnRH-II) system was investigated in African catfish by immunocytochemistry by using antibodies against the GnRH-associated peptide (GAP) of the respective preprohormones. Weakly cfGnRH-immunoreactive (ir) neurons and fibers were present at 2 weeks after hatching (ph) but only in the ventral telencephalon and pituitary. Two weeks later, cfGnRH fibers and neurons were also observed in more rostral and in more caudal brain areas, mainly in the preoptic area and hypothalamus. Based on differences in temporal, spatial, and morphologic appearance, two distinct cfGnRH populations were identified in the ventral forebrain: a population innervating the pituitary (ventral forebrain system) and a so-called terminal nerve (TN) population. DiI tracing studies revealed that the TN population has no neuronal connections with the pituitary. The cGnRH-II system is present from 2 weeks ph onward in the midbrain tegmentum and only their size and staining intensity increased during development. Based on the comparison of GnRH systems amongst vertebrates, we hypothesize that during fish evolution, three different GnRH systems evolved, each expressing their own molecular form: the cGnRH-II system in the midbrain, a hypophysiotropic GnRH system in the hypothalamus with a species-specific GnRH form, and a salmon GnRH-expressing TN population. This hypothesis is supported by phylogenetic analysis of known GnRH precursor amino acid sequences. We hypothesize, because the African catfish is a less advanced teleost species, that it contains the cfGnRH form both in the ventral forebrain system and in the TN population.
Collapse
Affiliation(s)
- E A Dubois
- Research Group of Comparative Endocrinology, Graduate School for Developmental Biology, Faculty of Biology, 3584 CH Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
19
|
Montaner AD, Park MK, Fischer WH, Craig AG, Chang JP, Somoza GM, Rivier JE, Sherwood NM. Primary structure of a novel gonadotropin-releasing hormone in the brain of a teleost, Pejerrey. Endocrinology 2001; 142:1453-60. [PMID: 11250925 DOI: 10.1210/endo.142.4.8077] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The neuropeptide GnRH is the major regulator of reproduction in vertebrates acting as a first signal from the hypothalamus to pituitary gonadotropes. Three GnRH molecular variants were detected in the brain of a fish, pejerrey (Odontesthes bonariensis), using chromatographic and immunological methods. The present study shows that one form is identical to chicken GnRH-II (sequence analysis and mass spectrometry) and the second one is immunologically and chromatographically similar to salmon GnRH. The third form was proven to be a novel form of GnRH by isolating the peptide from the brain and determining its primary structure by chemical sequencing and mass spectrometry. The sequence of the novel pejerrey GnRH is pGlu-His-Trp-Ser-Phe-Gly-Leu-Ser-Pro-Gly-NH(2), which is different from the known forms of the vertebrate and protochordate GnRH family. The new form of GnRH is biologically active in releasing gonadotropin and GH from pituitary cells in an in vitro assay.
Collapse
Affiliation(s)
- A D Montaner
- Instituto de Investigaciones Biomédicas, Fundación Pablo Cassará, Saladillo 2452 (C1440FFX), Buenos Aires, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
20
|
González-Martínez D, Madigou T, Zmora N, Anglade I, Zanuy S, Zohar Y, Elizur A, Muñoz-Cueto JA, Kah O. Differential expression of three different prepro-GnRH (gonadotrophin-releasing hormone) messengers in the brain of the european sea bass (Dicentrarchus labrax). J Comp Neurol 2001; 429:144-55. [PMID: 11086295 DOI: 10.1002/1096-9861(20000101)429:1<144::aid-cne11>3.0.co;2-b] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The expression sites of three prepro-gonadotrophin-releasing hormones (GnRHs), corresponding to seabream GnRH (sbGnRH: Ser(8)-mGnRH, mammalian GnRH), salmon GnRH (sGnRH: Trp(7)Leu(8)-mGnRH), and chicken GnRH-II (cGnRH-II: His(5)Trp(7)Tyr(8)-mGnRH) forms were studied in the brain of a perciform fish, the European sea bass (Dicentrarchus labrax) by means of in situ hybridization. The riboprobes used in this study correspond to the three GnRH-associated peptide (GAP)-coding regions of the prepro-GnRH cDNAs cloned from the same species (salmon GAP: sGAP; seabream GAP: sbGAP; chicken GAP-II: cIIGAP), which show little oligonucleotide sequence identity (sGAP versus sbGAP: 42%; cIIGAP versus sbGAP: 36%; sGAP versus cIIGAP: 41%). Adjacent paraffin sections (6 mm) throughout the entire brain were treated in parallel with each of the three anti-sense probes and the corresponding sense probes, demonstrating the high specificity of the hybridization signal. The results showed that both sGAP and sbGAP mRNAs had a broader expression in the olfactory bulbs, ventral telencephalon, and preoptic region, whereas cIIGAP mRNA expression was confined to large cells of the nucleus of the medial longitudinal fascicle. In the olfactory bulbs, both the signal intensity and the number of positive cells were higher with the sGAP probe, whereas sbGAP mRNA-expressing cells were more numerous and intensely stained in the preoptic region. Additional isolated sbGAP-positive cells were detected in the ventrolateral hypothalamus. These results demonstrate a clear overlapping of sGAP- and sbGAP-expressing cells in the forebrain of the European sea bass, in contrast to previous reports in other perciforms showing a clear segregation of these two cell populations.
Collapse
Affiliation(s)
- D González-Martínez
- Departamento de Biología Animal, Vegetal y Ecología, Facultad de Ciencias del Mar, Universidad de Cádiz, 11510 Puerto Real, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Okubo K, Suetake H, Usami T, Aida K. Molecular cloning and tissue-specific expression of a gonadotropin-releasing hormone receptor in the Japanese eel. Gen Comp Endocrinol 2000; 119:181-92. [PMID: 10936038 DOI: 10.1006/gcen.2000.7511] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) is a key regulatory neuropeptide involved in the control of reproduction in vertebrates. In the Japanese eel, one of the most primitive teleost species, two molecular forms of GnRH, mammalian-type GnRH and chicken-II-type GnRH (cGnRH-II), have been identified. This study has isolated a full-length cDNA for a GnRH receptor from the pituitary of the eel. The 3233-bp cDNA encodes a 380-amino acid protein which contains seven hydrophobic transmembrane domains and N- and C-terminal regions. The exon/intron organization of the open reading frame of the eel GnRH receptor gene was also determined. The open reading frame consists of three exons and two introns. The exon-intron splice site is similar to that of the GnRH receptor genes of mammals reported so far. Expression of the eel GnRH receptor was detected in various parts of the brain, pituitary, eye, olfactory epithelium, and testis. This result suggests that GnRH has local functions in these tissues in addition to its actions on gonadotropin synthesis and release in the pituitary. This tissue-specific expression pattern is similar to that of the eel cGnRH-II. Furthermore, the present eel receptor shows very high amino acid identity with the catfish and goldfish GnRH receptors, which are highly selective for the cGnRH-II. These results suggest that the cGnRH-II acts through binding to the present receptor in the eel.
Collapse
Affiliation(s)
- K Okubo
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-8657, Japan
| | | | | | | |
Collapse
|
22
|
Bosma PT, Rebers FE, Dijk WV, Willems PH, Goos HJ, Schulz RW. Inhibitory and stimulatory interactions between endogenous gonadotropin-releasing hormones in the African catfish (Clarias gariepinus). Biol Reprod 2000; 62:731-8. [PMID: 10684817 DOI: 10.1095/biolreprod62.3.731] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
In the brain of all vertebrate classes, chicken (c) GnRH-II ([His(5), Trp(7),Tyr(8)]GnRH, cGnRH-II) is expressed in the mesencephalon. In addition, at least one other form of GnRH is expressed in the preoptical area/hypothalamus. In the human pituitary stalk and the mouse median eminence, cGnRH-II is present together with mammalian GnRH. Similarly, in the pituitary of several teleost fish (e.g., goldfish and eel, but not salmon or trout), a teleost GnRH is found together with cGnRH-II. These GnRHs are not colocalized in the same cells. Hence, these GnRH peptides may differentially regulate gonadotropin secretion and, in addition, may exert their effects simultaneously. The current study therefore investigated the effects of combinations of the two forms of GnRH present in the African catfish (Clarias gariepinus) pituitary-cGnRH-II and catfish GnRH ([His(5),Asn(8)]GnRH, cfGnRH)-on the cytosolic free calcium concentration ([Ca(2+)](i)) in single, Fura-2-loaded catfish gonadotrophs, as well as their effects on both in vitro and in vivo LH secretion. Both inhibitory and stimulatory effects of combinations of cfGnRH and cGnRH-II on [Ca(2+)](i) were observed, which were mirrored by their effects on both in vitro and in vivo LH secretion. The following pattern became apparent. The effect of intermediate or maximal effective cfGnRH doses was inhibited by the simultaneous presence of subthreshold or borderline effective cGnRH-II doses. Conversely, subthreshold or borderline effective concentrations of cfGnRH enhanced the effects of intermediate and maximal concentrations of cGnRH-II. In addition, combinations of cfGnRH and cGnRH-II concentrations that were equally active when tested separately showed an additive effect. The observed interactions between the two GnRHs may be of particular physiological relevance in the control of seasonal LH levels in the African catfish, as well as in other teleost species. Moreover, the occurrence of mutual inhibitory and stimulatory interactions between endogenous GnRHs may be a widespread aspect of GnRH action in vertebrates.
Collapse
Affiliation(s)
- P T Bosma
- University of Utrecht, Faculty of Biology, Department of Experimental Zoology, Research Group Reproductive Endocrinology, 3508 TB Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
23
|
Chiba H, Nakamura M, Iwata M, Sakuma Y, Yamauchi K, Parhar IS. Development and differentiation of gonadotropin hormone-releasing hormone neuronal systems and testes in the Japanese eel (Anguilla japonica). Gen Comp Endocrinol 1999; 114:449-59. [PMID: 10336833 DOI: 10.1006/gcen.1999.7275] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study we investigated the relationship between the development of the olfactory, preoptic, and midbrain gonadotropin-releasing hormone (GnRH) neuronal systems and testicular differentiation in eels (Anguilla japonica) from embryonic stages through adulthood (5.4-50 cm body length). GnRH-synthesizing neuronal populations were first observed in the youngest fish ( approximately 5.0 cm) at the rostrobasal and caudalmost olfactory bulbs immunoreactive to a "promiscuous" (nonspecific) GnRH antiserum (635.5), and in the preoptic area and midbrain tegmentum immunoreactive to chicken GnRH II antiserum. The eel brains lacked salmon and seabream GnRH immunoreactivity. The evidence from our study suggests that the olfactory, preoptic, and midbrain GnRH populations have origins independent from those of proliferative periventricular zones within the brain. However, the olfactory GnRH neurons could have migrated out of the olfactory placodes during ages earlier than those observed in this study. Although all three GnRH neuronal populations contribute to pituitary innervation to some degree, the preoptic GnRH innervation was pronounced in the pituitary when primordial germ cells (animals approximately 5.0 cm) differentiated into male germ cells (animals 14-16 cm) and, therefore, an association can be assumed between preoptic GnRH expression and testicular differentiation in the Japanese eel.
Collapse
Affiliation(s)
- H Chiba
- School of Fisheries Sciences, Kitasato University, Iwate, Sanriku, 022-0101, Japan
| | | | | | | | | | | |
Collapse
|
24
|
Okubo K, Suetake H, Aida K. Expression of Two Gonadotropin-Releasing Hormone (GnRH) Precursor Genes in Various Tissues of the Japanese Eel and Evolution of GnRH. Zoolog Sci 1999. [DOI: 10.2108/zsj.16.471] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
25
|
O'neill DF, Powell JF, Standen EM, Youson JH, Warby CM, Sherwood NM. Gonadotropin-releasing hormone (GnRH) in ancient teleosts, the bonytongue fishes: putative origin of salmon GnRH. Gen Comp Endocrinol 1998; 112:415-25. [PMID: 9843647 DOI: 10.1006/gcen.1998.7163] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The molecular forms of gonadotropin-releasing hormone (GnRH) were examined in the bonytongue fishes (Osteoglossomorpha), one of the most ancient living teleost groups. These fish represent a phylogenetic link between the early ray-finned fishes and the modern teleosts. Five representative species from four of six bonytongue families were examined for GnRH using high-performance liquid chromatography and radioimmunoassay techniques with antisera raised against salmon (s), chicken-II (c-II), and mammalian (m) forms of GnRH. Salmon GnRH and cGnRH-II were identified in four of the species (arawana, elephantnose, false featherfin, Asiatic featherfin) whereas in the butterfly fish, mGnRH and cGnRH-II were identified. Our data suggest that teleosts such as eels and butterfly fish, which have mGnRH like that of even earlier ray-finned fishes, may have evolved before fish with sGnRH. We also suggest that sGnRH first appeared in the Osteoglossomorpha. The phylogenetic relationship of the eels (Anguillidae), butterfly fish (Pantodontidae), and bonytongue fish among other teleosts needs to be reexamined using additional characteristics.
Collapse
Affiliation(s)
- D F O'neill
- Department of Biology, University of Victoria, Victoria, British Columbia, V8W 2Y2
| | | | | | | | | | | |
Collapse
|
26
|
Stefano AV, Canosa LF, D'Eramo JL, Fridman O, Affanni JM, Somoza GM. GnRH molecular variants in the brain and pituitary gland of pejerrey, Odontesthes bonariensis (Atheriniformes). Immunological and chromatographic evidence for the presence of a novel molecular variant. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART C, PHARMACOLOGY, TOXICOLOGY & ENDOCRINOLOGY 1997; 118:335-45. [PMID: 9467885 DOI: 10.1016/s0742-8413(97)00135-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Gonadotropin-releasing hormone (GnRH) molecular variants in the brain and pituitary gland of pejerrey, Odontesthes bonariensis (Atheriniformes), were characterized by gradient reverse phase high performance liquid chromatography (RP-HPLC). Eluted fractions were tested in radioimmunoassays with different antisera. The results show that the brain extract contains three forms of GnRH: one is immunologically and chromatographically similar to cIIGnRH (chicken II), and another is similar to sGnRH (salmon). A third GnRH appears to be chromatographic and immunologically different from the nine other known forms of the vertebrate hormone. This is the only variant present in the pituitary gland.
Collapse
Affiliation(s)
- A V Stefano
- Instituto de Neurociencia (INEUCI-CONICET), Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
27
|
Powell JF, Standen EM, Carolsfeld J, Borella MI, Gazola R, Fischer WH, Park M, Craig AG, Warby CM, Rivier JE, Val-Sella MV, Sherwood NM. Primary structure of three forms of gonadotropin-releasing hormone (GnRH) from the pacu brain. REGULATORY PEPTIDES 1997; 68:189-95. [PMID: 9100286 DOI: 10.1016/s0167-0115(96)02119-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Perchlike fish are a vast group of advanced teleosts. The species examined to date have three forms of gonadotropin-releasing hormone (GnRH) within a single species, but the origin of the third GnRH peptide is unknown. In this study, the primary structure of three GnRH peptides is determined from the brain of the pacu, Piaractus mesopotamicus, an example of a teleost that is less advanced than the perchlike fish. The GnRH was purified from pacu brain extracts using high performance liquid chromatography (HPLC) and radioimmunoassay (RIA). The three forms identified by chemical sequencing and mass spectrometry are sea bream GnRH (pGlu-His-Trip-Ser-Tyr-Gly-Leu-Ser -Pro-Gly-NH2, 1113.4 Da); chicken GnRH-II (pGlu-His-Trp-Ser-His-Gly-Trp-Tyr-Pro-Gly-NH2, 1236.6 Da); and salmon GnRH (pGlu-His-Trp-Ser-Tyr-Gly-Trp-Leu-Pro-Gly-NH2, 1212.3 Da). In addition the number of forms of GnRH in the brains of male and female fish was determined separately. The same three forms of GnRH were present in the brains of both sexes as determined by antisera cross-reactivity and elution position from the HPLC column. The results indicate that the pacu brain has the identical forms of GnRH identified in perchlike fish and hence, the origin of three forms occurred earlier in evolution than previously thought.
Collapse
Affiliation(s)
- J F Powell
- Department of Biology, University of Victoria, B.C., Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Collin F, Chartrel N, Fasolo A, Conlon JM, Vandesande F, Vaudry H. Distribution of two molecular forms of gonadotropin-releasing hormone (GnRH) in the central nervous system of the frog Rana ridibunda. Brain Res 1995; 703:111-28. [PMID: 8719623 DOI: 10.1016/0006-8993(95)01074-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Two molecular forms of gonadotropin-releasing hormone (GnRH) have been recently characterized in the brain of the frog Rana ridibunda i.e. mammalian GnRH (mGnRH) and chicken GnRH-II (cGnRH-II). Using highly specific antisera against each form of GnRH, we have investigated the distribution of these two neuropeptides in the frog brain by the indirect immunofluorescence and the peroxidase-antiperoxidase techniques. mGnRH-immunoreactive cell bodies were restricted to a well defined region corresponding to the septal-anterior preoptic area. mGnRH-containing fibers projected through the ventral diencephalon and ended in the median eminence. In contrast, cGnRH-II-immunoreactive structures were widely distributed in the frog brain. In the telencephalon cGnRH-II-positive elements formed a ventromedial column extending from the olfactory bulb to the septal area, a pathway which corresponds to the terminal nerve. A dense accumulation of cGnRH-II-immunoreactive cell bodies was also found in the septal-anterior preoptic area; these neurons sent processes towards the median eminence via the hypothalamus. Double immunostaining revealed that, in this area, mGnRH- and cGnRH-II-like immunoreactivity co-existed in the same neurons. In the mid-diencephalon, numerous cGnRH-II-immunoreactive perikarya were found, surrounding the third ventricle, in the posterior preoptic and infundibular areas. Many of these neurons sent processes towards the ventricular cavity. More caudally, a dense population of cGnRH-II-immunoreactive perikarya was also observed in the nucleus of the paraventricular organ and the posterior tubercle. Dorsally, the thalamus, the tegmentum, the tectum and the granular layer of the cerebellum were richly innervated by cGnRH-II-positive fibers. In the medulla oblongata, numerous cGnRH-II-immunoreactive perikarya were seen in several cranial nerve nuclei. Ventrally, a dense plexus of immunoreactive fibers projected rostrocaudally into the spinal cord. The occurrence of mGnRH- and cGnRH-II-like immunoreactivity in the septal-anterior preoptic area and the hypothalamo-pituitary pathway supports the view that both peptides act as hypophysiotropic neurohormones. The widespread distribution of cGnRH-II-immunoreactive elements in the central nervous system of the frog strongly suggests that this peptide may also exert neuromodulator and/or neurotransmitter activities.
Collapse
Affiliation(s)
- F Collin
- European Institute for Peptide Research, Laboratory of Cellular and Molecular Neuroendocrinology, INSERM U 413, UA CNRS, University of Rouen, Mont-Saint-Aignan, France
| | | | | | | | | | | |
Collapse
|
29
|
King JA, Millar RP, Vallarino M, Pierantoni R. Localization and characterization of gonadotropin-releasing hormones in the brain, gonads, and plasma of a dipnoi (lungfish, Protopterus annectens). REGULATORY PEPTIDES 1995; 57:163-74. [PMID: 7659791 DOI: 10.1016/0167-0115(95)00025-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Two molecular forms of GnRH (chicken GnRH II and a second variant) are present in the brains of species from all the major vertebrate groups. Their differential distribution in the brain and temporal expression during development suggests that have different functional roles. We investigated the nature of GnRH molecular forms in the brain, plasma, testis, and ovary of adult and juvenile lungfish (Protopterus annectens), using high performance liquid chromatography and radioimmunoassay with specific GnRH antisera. In the brain of adult and juvenile lungfish, two peptides with identical chromatographic and immunologic properties to mammalian GnRH and chicken GnRH II were detected. Chicken GnRH II predominated in both the adult and juvenile brain, and the percentage of chicken GnRH II relative to mammalian GnRH was greater in the juvenile brain. In the plasma, only mammalian GnRH was present. Immunoreactive GnRH was not detected in the testis and ovary. Chicken GnRH II and mammalian GnRH were found in the cells of the preoptic nucleus and in the ganglion of the nervus terminalis. Fibers were seen in the ventral hypothalamus, and chicken GnRH II immunoreactivity was detected within the neural lobe of the pituitary. The finding of chicken GnRH II in a sarcopterygian fish adds further support to our hypothesis that this ubiquitous structural variant is highly conserved and likely to have an important functional role. Mammalian GnRH, previously described in several early-evolved actinopterygian fish, also has a fairly widespread distribution and early evolutionary origin. The immunocytochemical distribution of mammalian GnRH and chicken GnRH II fibers in the lungfish brain suggests that both forms are hypophysiotropic. In addition, the presence of mammalian GnRH in the plasma of the lungfish suggests that this molecular form of GnRH has a hypophysiotropic function reaching target organs (pituitary and gonads) via the general circulation.
Collapse
Affiliation(s)
- J A King
- Department of Chemical Pathology, University of Cape Town Medical School, South Africa
| | | | | | | |
Collapse
|
30
|
Powell JF, Fischer WH, Park M, Craig AG, Rivier JE, White SA, Francis RC, Fernald RD, Licht P, Warby C. Primary structure of solitary form of gonadotropin-releasing hormone (GnRH) in cichlid pituitary; three forms of GnRH in brain of cichlid and pumpkinseed fish. REGULATORY PEPTIDES 1995; 57:43-53. [PMID: 7644702 DOI: 10.1016/0167-0115(95)00014-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
GnRH is a decapeptide family with at least nine distinct structures. Vertebrates, except for most placental mammals, have more than one of these GnRH forms within the brain. We report chromatographical and immunological evidence that three forms of GnRH are in the brains of both cichlid (Haplochromis burtoni) and pumpkinseed (Lepomis gibbosus) fishes. We argue that the three forms correspond to those previously described as sea bream GnRH (sbGnRH), chicken GnRH-II and salmon GnRH. In contrast, only one GnRH form was present in the pituitary of the cichlid and is identified as sbGnRH by amino acid sequence. This is the first report in which the primary structure of GnRH is determined from pituitary tissue. The N-terminus was identified by monitoring the digestion of the peptide by pyroglutamate aminopeptidase with matrix assisted laser desorption/ionization (MALDI) mass spectrometry (MS). The amidation of the C-terminus was established using an esterification procedure for monitoring with MALDI-MS. This report supports the idea that three forms of GnRH within one species is widespread in the order Perciformes. The present study establishes sbGnRH as the third GnRH form in H. burtoni and predicts that sbGnRH is synthesized in preoptic neurons, then transported to the pituitary in the preoptic-hypophyseal axons for the release of one or both gonadotropins.
Collapse
Affiliation(s)
- J F Powell
- Department of Biology, University of Victoria, B.C., Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Andersson E, Bogerd J, Borg B, Sharp PJ, Sherwood NM, Goos HJT. Characterization and localization of gonadotropin-releasing hormone in the brain and pituitary of the three-spined stickleback, Gasterosteus aculeatus. Cell Tissue Res 1995. [DOI: 10.1007/bf00318162] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Lescheid DW, Powell JF, Fischer WH, Park M, Craig A, Bukovskaya O, Barannikova IA, Sherwood NM. Mammalian gonadotropin-releasing hormone (GnRH) identified by primary structure in Russian sturgeon, Acipenser gueldenstaedti. REGULATORY PEPTIDES 1995; 55:299-309. [PMID: 7761629 DOI: 10.1016/0167-0115(94)00118-h] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The mammalian form of gonadotropin-releasing hormone (GnRH) was purified from the brains of Russian sturgeon, Acipenser gueldenstaedti, using reversed-phase high pressure liquid chromatography (HPLC). The total concentration of mGnRH within these fish was 5.4 ng/brain. Small amounts of immunoreactive chicken GnRH-II like molecules were also detected but at insufficient quantities for purification. The primary structure of mGnRH was determined using automated Edman degradation. Because sequence data could not be obtained until after digestion by bovine pyroglutamyl amino-peptidase, it was determined that the amino-terminal residue was modified. Furthermore, mass spectrometric data and co-elution with synthetic mGnRH on HPLC confirmed that the carboxy-terminal residue was amidated. The amino acid sequence of sturgeon GnRH is pGlu-His-Trp-Ser-Tyr-Gly-Leu-Arg-Pro-Gly-NH2.
Collapse
Affiliation(s)
- D W Lescheid
- Department of Biology, University of Victoria, B.C., Canada
| | | | | | | | | | | | | | | |
Collapse
|
33
|
King JA, Millar RP. Evolutionary aspects of gonadotropin-releasing hormone and its receptor. Cell Mol Neurobiol 1995; 15:5-23. [PMID: 7648610 DOI: 10.1007/bf02069556] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
1. Gonadotropin-releasing hormone (GnRH) was originally isolated as a hypothalamic peptide hormone that regulates the reproductive system by stimulating the release of gonadotropins from the anterior pituitary. However, during evolution the peptide was subject to gene duplication and structural changes, and multiple molecular forms have evolved. 2. Eight variants of GnRH are known, and at least two different forms are expressed in species from all vertebrate classes: chicken GnRH II and a second, unique, GnRH isoform. 3. The peptide has been recruited during evolution for diverse regulatory functions: as a neurotransmitter in the central and sympathetic nervous systems, as a paracrine regulator in the gonads and placenta, and as an autocrine regulator in tumor cells. 4. Evidence suggests that in most species the early-evolved and highly conserved chicken GnRH II has a neurotransmitter function, while the second form, which varies across classes, has a physiologic role in regulating gonadotropin release. 5. We review here evolutionary aspects of the family of GnRH peptides and their receptors.
Collapse
Affiliation(s)
- J A King
- Department of Chemical Pathology, University of Cape Town Medical School, South Africa
| | | |
Collapse
|
34
|
King JA, Steneveld AA, Curlewis JD, Rissman EF, Millar RP. Identification of chicken GnRH II in brains of metatherian and early-evolved eutherian species of mammals. REGULATORY PEPTIDES 1994; 54:467-77. [PMID: 7716279 DOI: 10.1016/0167-0115(94)90544-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Two molecular forms of GnRH (chicken GnRH II and a second variant) are present in the brains of species from all the major vertebrate groups. In mammals, two forms are present in metatherian species and early-evolved eutherian species, but chicken GnRH II has not been identified in more advanced eutherian species. We investigated the nature of GnRH molecular forms in several early-evolved mammalian species, using high performance liquid chromatography and radioimmunoassay with specific GnRH antisera. These chromatographic and immunological data indicate that in the brains of a metatherian species (possum, Trichosurus vulpecula) and in two early-evolved eutherian species (order Insectivora: musk shrew, Suncus murinus and mole, Chrysochloris asiatica), both mammalian and chicken II GnRHs are present, while in another relatively early-evolved eutherian species (order Chiroptera: bat, Miniopterus schreibersii) only mammalian GnRH is present. In the adult possum and mole brains the proportion of chicken GnRH II was lower than that of mammalian GnRH, while in the musk shrew brain chicken GnRH II predominated. A peptide likely to be mammalian proGnRH was detected in the brains of the three eutherian species (musk shrew, mole, and bat). These findings suggest that metatherian and primitive eutherian species of mammals continue to express chicken GnRH II as in the vast majority of nonmammalian vertebrates, while the peptide is apparently not expressed in modern placental mammalian species. The functional significance of chicken GnRH II is not yet clear, but there are indications that it has a neurotransmitter or neuromodulator role in addition to that of regulating pituitary hormone release in certain vertebrate species.
Collapse
Affiliation(s)
- J A King
- Department of Chemical Pathology, University of Cape Town Medical School, South Africa
| | | | | | | | | |
Collapse
|
35
|
Montero M, Vidal B, King JA, Tramu G, Vandesande F, Dufour S, Kah O. Immunocytochemical localization of mammalian GnRH (gonadotropin-releasing hormone) and chicken GnRH-II in the brain of the European silver eel (Anguilla anguilla L.). J Chem Neuroanat 1994; 7:227-41. [PMID: 7873095 DOI: 10.1016/0891-0618(94)90015-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Using specific antibodies for the two molecular forms of gonadotropin-releasing hormone (GnRH) present in the European eel, Anguilla anguilla, (mammalian GnRH, mGnRH, and chicken GnRH II, cGnRH-II), we employed immunocytochemistry to determine the distribution of these two peptides in the brain and in the pituitary. The results indicate that mGnRH and cGnRH-II are localized in different neurons: mGnRH-immunoreactive (ir) perikaria were observed in the olfactory bulbs, the junction between olfactory bulbs and telencephalon (nucleus olfactoretinalis), the telencephalon, the preoptic region and the mediobasal hypothalamus. These cell bodies are located along a continuum of ir-fibers that could be traced from the olfactory nerve to the pituitary. Mammalian GnRH-ir fibers were detected in many parts of the brain (olfactory bulbs, ventral telencephalon, hypothalamus, optic tectum, mesencephalon) and in the pituitary. Chicken GnRH-II-ir cell bodies were detected in the nucleus of the medial longitudinal fasciculus of the midbrain tegmentum, but only scattered fibers could be detected in different parts of the brain. The pituitary exhibited very few cGnRH-II-ir fibers, contrasting with an extensive mGnRH innervation. These results are in agreement with our previous data obtained in the same species using specific radioimmunoassays for mGnRH and cGnRH-II. They demonstrate a differential distribution of the two forms of GnRH in the brain of the eel, as in the brain of some other vertebrate species, and suggest differential physiological roles for the two GnRH forms in the eel. They also provide information concerning the evolution of the GnRH systems in vertebrates.
Collapse
Affiliation(s)
- M Montero
- Laboratoire de Physiologie Générale et Comparée du Muséum National d'Histoire Naturelle, URA CNRS 90, Paris, France
| | | | | | | | | | | | | |
Collapse
|
36
|
King JA, Steneveld AA, Millar RP. Differential regional distribution of gonadotropin-releasing hormones in amphibian (clawed toad, Xenopus laevis) brain. REGULATORY PEPTIDES 1994; 50:277-89. [PMID: 8016411 DOI: 10.1016/0167-0115(94)90008-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In most vertebrate species two forms of gonadotropin-releasing hormone (GnRH) are present in the brain, and their differential distribution suggests they have different functional roles. The regional distribution and relative concentrations of GnRH molecular forms in the brain of adult clawed toad (Xenopus laevis) were determined using high performance liquid chromatography and radioimmunoassay with a library of region-specific GnRH antisera. Four immunoreactive forms of GnRH were detected: mammalian, hydroxyproline mammalian, chicken II, and an unidentified form of GnRH. Mammalian GnRH was distributed throughout the brain, and hydroxyproline mammalian was present in the forebrain, midbrain (excluding hypothalamus), and hypothalamus. Chicken GnRH II also occurred throughout the brain, but was present in greater amounts in the hindbrain and midbrain (excluding hypothalamus). An unidentified form of GnRH with properties of salmon GnRH was detected in the forebrain. Considering the relative proportions of mammalian GnRH and chicken GnRH II in the major brain areas, the concentration of mammalian GnRH was high in the forebrain, midbrain (excluding hypothalamus), and in particular in the hypothalamus, and very little chicken GnRH II was present in these areas. In the hindbrain, chicken GnRH II predominated and the concentration of chicken GnRH II was highest in the medulla. These findings suggest: (1) mammalian GnRH is the prime regulator of gonadotropin release from the pituitary, and (2) chicken GnRH II has an extrapituitary role.
Collapse
Affiliation(s)
- J A King
- Department of Chemical Pathology, University of Cape Town Medical School and Groote Schuur Hospital, South Africa
| | | | | |
Collapse
|
37
|
Okuzawa K, Amano M, Aida K, Hasegawa Y, Tanaka H, Kagawa H. Chromatographic and immunological identification of gonadotropin-releasing hormone in five marine teleosts. FISH PHYSIOLOGY AND BIOCHEMISTRY 1993; 12:337-345. [PMID: 24202875 DOI: 10.1007/bf00004418] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/23/1993] [Indexed: 06/02/2023]
Abstract
Brain extracts from bluefin tuna, Thunnus thynnus, red seabream, Pagrus major, black seabream, Acanthopagrus schlegeli, red spotted grouper, Epinephelus akaara and Japanese flounder, Paralichthys olivaceus, were analyzed by high performance liquid chromatography (HPLC) and specific radioimmunoassays. Immunoreactive material co-eluting from HPLC with salmon gonadotropin-releasing hormone (GnRH) and chicken GnRH-II, respectively, was found in all five species. In addition, a GnRH immunoreactive fraction showing the same HPLC retention time as lamprey GnRH-I was detected in the brain extracts of all species examined when using an unspecific radioimmunoassay which detects several GnRH forms, including lamprey GnRH-I. In the Japanese flounder brain extract, a fourth GnRH immunoreactive fraction was detected with the unspecific radioimmunoassay which did not co-elute with any of the six synthetic GnRH standards used in the present study.
Collapse
Affiliation(s)
- K Okuzawa
- National Research Institute of Aquaculture, Nansei, Watarai, Mie, 516-01, Japan
| | | | | | | | | | | |
Collapse
|
38
|
Leprêtre E, Anglade I, Williot P, Vandesande F, Tramu G, Kah O. Comparative distribution of mammalian GnRH (gonadotrophin-releasing hormone) and chicken GnRH-II in the brain of the immature Siberian sturgeon (Acipenser baeri). J Comp Neurol 1993; 337:568-83. [PMID: 8288771 DOI: 10.1002/cne.903370404] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The brain of the sturgeon has recently been shown to contain at least two forms of GnRH (gonadotropin-releasing hormone), mammalian GnRH (mGnRH) and chicken GnRH-II (cGnRH-II). In this study, we compared the distribution of immunoreactive (ir) mGnRH and cGnRH-II in the brain of immature Siberian sturgeons (Acipenser baeri). The overall distribution of mGnRH was very similar to the distribution of sGnRH in teleosts such as salmonids or cyprinids. mGnRH-ir perikarya were observed in the olfactory nerves and bulbs the telencephalon, the preoptic region, and the mediobasal hypothalamus. All these cell bodies are located along a continuum of ir-fibers that could be traced from the olfactory nerve to the hypothalamopituitary interface. No ir-fibers were observed in the anterior lobe of the pituitary, but a few were seen to enter the neurointermediate lobe. mGnRH-ir fibers were detected in many parts of the brain, particularly in the forebrain. mGnRH-ir cerebrospinal fluid-contacting cells were observed in the telencephalon, the preoptic region, and the mediobasal hypothalamus. In contrast, cGnRH-II was present mainly in the posterior brain, although a few ir axons were seen in the above-mentioned territories. In particular, cGnRH-II-ir cells bodies, negative for mGnRH, were consistently observed in the nucleus of the medial longitudinal fasciculus of the midbrain tegmentum. The cGnRH-II innervation in the optic tectum, cerebellum, vagal lobe, and medulla oblongata was more abundant than the mGnRH innervation in the same areas. This study provides evidence that the organization of the GnRH systems in a primitive bony fish is highly similar to that reported in teleosts and further documents the differential distribution of two forms of GnRH in the brain of vertebrates.
Collapse
Affiliation(s)
- E Leprêtre
- Laboratoire de Neurocytochimie Fonctionnelle, URA 339 CNRS, Talence, France
| | | | | | | | | | | |
Collapse
|
39
|
Dufour S, Montero M, Le Belle N, Bassompierre M, King JA, Millar RP, Peter RE, Fontaine YA. Differential distribution and response to experimental sexual maturation of two forms of brain gonadotropin-releasing hormone (GnRH) in the European eel, Anguilla anguilla. FISH PHYSIOLOGY AND BIOCHEMISTRY 1993; 11:99-106. [PMID: 24202465 DOI: 10.1007/bf00004555] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Using specific radioimmunoassays for the two GnRH molecular forms present in the European eel, Anguilla anguilla, (mGnRH and cGnRH II), we compared their distributions in the pituitary and different parts of the brain of female silver eels, as well as the modifications of their levels in experimentally matured female eels (treated with carp pituitary extract). In control eels, mGnRH levels were higher than cGnRH II levels in the pituitary, olfactory lobes and telencephalon, di- and mesencephalon, while the opposite was found in the posterior part of the brain (met- and myelencephalon). Experimental sexual maturation of the gonads significantly increased mGnRH levels in the pituitary and anterior parts of the brain; such a positive effect was not observed on the low cGnRH II levels, which were, in contrast, reduced. These data indicate that the positive feedback of gonadal hormones on GnRH, that we previously demonstrated, would specifically affect the mGnRH form. The differential distribution and control of mGnRH and cGnRH II suggest that these two forms have different physiological roles in the eel. The large increase in mGnRH during sexual maturation suggests the prime implication of this form in the neuroendocrine control of reproduction.
Collapse
Affiliation(s)
- S Dufour
- Laboratoire de Physiologie Générale et Comparée, Muséum National d'Histoire Naturelle, URA 90 CNRS, 7 rue Cuvier, 75005, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Andersen O, Klungland H. The salmon GnRH encoding gene in teleost fish. INTERNATIONAL REVIEW OF CYTOLOGY 1993; 147:165-91. [PMID: 8225833 DOI: 10.1016/s0074-7696(08)60768-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- O Andersen
- Department of Dairy and Food Industries, Agricultural University of Norway, Aas
| | | |
Collapse
|
41
|
Abstract
GnRH was originally isolated as a hypothalamic peptide hormone that regulates the reproductive system by stimulating the release of gonadotropins from the anterior pituitary. However, multiple molecular forms of the peptide have evolved, which have been coopted for a variety of regulatory functions: as a neurotransmitter in the central and sympathetic nervous systems, as a paracrine regulator in the gonads and placenta, and as an autocrine regulator in tumor cells. We review here the evolution of these variant forms of GnRH and their functions.
Collapse
Affiliation(s)
- J A King
- MRC Regulatory Peptides Research Unit, Department of Chemical Pathology, University of Cape Town Medical School and Groote Schuur Hospital, Observatory 7925, Cape Town, South Africa
| | | |
Collapse
|
42
|
Bogerd J, Li KW, Janssen-Dommerholt C, Goos H. Two gonadotropin-releasing hormones from African catfish (Clarias gariepinus). Biochem Biophys Res Commun 1992; 187:127-34. [PMID: 1520292 DOI: 10.1016/s0006-291x(05)81468-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Two forms of gonadotropin-releasing hormone (GnRH) have been purified from brain extracts of the African catfish, Clarias gariepinus, using reverse-phase high performance liquid chromatography (HPLC) and radioimmunoassay (RIA). The amino acid sequences of both forms of African catfish GnRH were determined using Edman degradation after digestion with pyroglutamyl aminopeptidase. In addition, both GnRHs were studied by mass spectrometry. The primary structure of African catfish GnRH I is identical to Thai catfish GnRH I, pGlu-His-Trp-Ser-His-Gly-Leu-Asn-Pro-Gly-NH2, and the primary structure of African catfish GnRH II is identical to the widely distributed and highly conserved chicken GnRH II, pGlu-His-Trp-Ser-His-Gly-Trp-Tyr-Pro-Gly-NH2.
Collapse
Affiliation(s)
- J Bogerd
- Department of Experimental Zoology, University of Utrecht, The Netherlands
| | | | | | | |
Collapse
|
43
|
Ngamvongchon S, Lovejoy D, Fischer W, Craig A, Nahorniak C, Peter R, Rivier J, Sherwood N. Primary structures of two forms of gonadotropin-releasing hormone, one distinct and one conserved, from catfish brain. Mol Cell Neurosci 1992; 3:17-22. [DOI: 10.1016/1044-7431(92)90003-k] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/1991] [Indexed: 11/16/2022] Open
|
44
|
King JA, Hinds LA, Mehl AE, Saunders NR, Millar RP. Chicken GnRH II occurs together with mammalian GnRH in a South American species of marsupial (Monodelphis domestica). Peptides 1990; 11:521-5. [PMID: 2199949 DOI: 10.1016/0196-9781(90)90053-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Two molecular forms of gonadotropin-releasing hormone (GnRH) were demonstrated in hypothalamic extracts of M. domestica using high performance liquid chromatography and radioimmunoassay with specific GnRH antisera. One form eluted in the same position as synthetic mammalian GnRH and was quantified equally by two mammalian GnRH antisera, while the second form coeluted with synthetic chicken GnRH II and was quantified equally with two chicken GnRH II antisera. The finding of chicken GnRH II in a South American species of marsupial, which has previously been reported in some Australian species of marsupial and in species of Aves, Reptilia, Amphibia, Osteichthyes and Chondrichthyes, supports our hypothesis that this widespread structural variant may represent an early evolved and conserved form of GnRH.
Collapse
Affiliation(s)
- J A King
- Department of Chemical Pathology, University of Cape Town Medical School, South Africa
| | | | | | | | | |
Collapse
|