1
|
Hökfelt T, Barde S, Xu ZQD, Kuteeva E, Rüegg J, Le Maitre E, Risling M, Kehr J, Ihnatko R, Theodorsson E, Palkovits M, Deakin W, Bagdy G, Juhasz G, Prud’homme HJ, Mechawar N, Diaz-Heijtz R, Ögren SO. Neuropeptide and Small Transmitter Coexistence: Fundamental Studies and Relevance to Mental Illness. Front Neural Circuits 2018; 12:106. [PMID: 30627087 PMCID: PMC6309708 DOI: 10.3389/fncir.2018.00106] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 11/05/2018] [Indexed: 12/31/2022] Open
Abstract
Neuropeptides are auxiliary messenger molecules that always co-exist in nerve cells with one or more small molecule (classic) neurotransmitters. Neuropeptides act both as transmitters and trophic factors, and play a role particularly when the nervous system is challenged, as by injury, pain or stress. Here neuropeptides and coexistence in mammals are reviewed, but with special focus on the 29/30 amino acid galanin and its three receptors GalR1, -R2 and -R3. In particular, galanin's role as a co-transmitter in both rodent and human noradrenergic locus coeruleus (LC) neurons is addressed. Extensive experimental animal data strongly suggest a role for the galanin system in depression-like behavior. The translational potential of these results was tested by studying the galanin system in postmortem human brains, first in normal brains, and then in a comparison of five regions of brains obtained from depressed people who committed suicide, and from matched controls. The distribution of galanin and the four galanin system transcripts in the normal human brain was determined, and selective and parallel changes in levels of transcripts and DNA methylation for galanin and its three receptors were assessed in depressed patients who committed suicide: upregulation of transcripts, e.g., for galanin and GalR3 in LC, paralleled by a decrease in DNA methylation, suggesting involvement of epigenetic mechanisms. It is hypothesized that, when exposed to severe stress, the noradrenergic LC neurons fire in bursts and release galanin from their soma/dendrites. Galanin then acts on somato-dendritic, inhibitory galanin autoreceptors, opening potassium channels and inhibiting firing. The purpose of these autoreceptors is to act as a 'brake' to prevent overexcitation, a brake that is also part of resilience to stress that protects against depression. Depression then arises when the inhibition is too strong and long lasting - a maladaption, allostatic load, leading to depletion of NA levels in the forebrain. It is suggested that disinhibition by a galanin antagonist may have antidepressant activity by restoring forebrain NA levels. A role of galanin in depression is also supported by a recent candidate gene study, showing that variants in genes for galanin and its three receptors confer increased risk of depression and anxiety in people who experienced childhood adversity or recent negative life events. In summary, galanin, a neuropeptide coexisting in LC neurons, may participate in the mechanism underlying resilience against a serious and common disorder, MDD. Existing and further results may lead to an increased understanding of how this illness develops, which in turn could provide a basis for its treatment.
Collapse
Affiliation(s)
- Tomas Hökfelt
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Swapnali Barde
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Zhi-Qing David Xu
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurobiology, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Laboratory of Brain Disorders (Ministry of Science and Technology), Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Eugenia Kuteeva
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Joelle Rüegg
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- The Center for Molecular Medicine, Stockholm, Sweden
- Swedish Toxicology Sciences Research Center, Swetox, Södertälje, Sweden
| | - Erwan Le Maitre
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Mårten Risling
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Jan Kehr
- Pronexus Analytical AB, Solna, Sweden
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Robert Ihnatko
- Department of Clinical Chemistry, Linköping University, Linköping, Sweden
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Elvar Theodorsson
- Department of Clinical Chemistry, Linköping University, Linköping, Sweden
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Miklos Palkovits
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - William Deakin
- Neuroscience and Psychiatry Unit, University of Manchester, Manchester, United Kingdom
| | - Gyorgy Bagdy
- Department of Pharmacodynamics, Semmelweis University, Budapest, Hungary
- MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
- NAP 2-SE New Antidepressant Target Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Gabriella Juhasz
- Neuroscience and Psychiatry Unit, University of Manchester, Manchester, United Kingdom
- Department of Pharmacodynamics, Semmelweis University, Budapest, Hungary
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | | | - Naguib Mechawar
- Douglas Hospital Research Centre, Verdun, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | | | - Sven Ove Ögren
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
2
|
Alexander SPH, Benson HE, Faccenda E, Pawson AJ, Sharman JL, Spedding M, Peters JA, Harmar AJ. The Concise Guide to PHARMACOLOGY 2013/14: G protein-coupled receptors. Br J Pharmacol 2013; 170:1459-581. [PMID: 24517644 PMCID: PMC3892287 DOI: 10.1111/bph.12445] [Citation(s) in RCA: 505] [Impact Index Per Article: 45.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Concise Guide to PHARMACOLOGY 2013/14 provides concise overviews of the key properties of over 2000 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full. G protein-coupled receptors are one of the seven major pharmacological targets into which the Guide is divided, with the others being G protein-coupled receptors, ligand-gated ion channels, ion channels, catalytic receptors, nuclear hormone receptors, transporters and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. A new landscape format has easy to use tables comparing related targets. It is a condensed version of material contemporary to late 2013, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in previous Guides to Receptors and Channels. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and the Guide to Receptors and Channels, providing a permanent, citable, point-in-time record that will survive database updates.
Collapse
Affiliation(s)
- Stephen PH Alexander
- School of Life Sciences, University of Nottingham Medical SchoolNottingham, NG7 2UH, UK
| | - Helen E Benson
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Elena Faccenda
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Adam J Pawson
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Joanna L Sharman
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | | | - John A Peters
- Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of DundeeDundee, DD1 9SY, UK
| | - Anthony J Harmar
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| |
Collapse
|
3
|
|
4
|
|
5
|
Alexander SPH, Mathie A, Peters JA. Galanin. Br J Pharmacol 2006. [DOI: 10.1038/sj.bjp.0706615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
6
|
Hartonian I, Mufson EJ, De Lacalle S. Long-term plastic changes in galanin innervation in the rat basal forebrain. Neuroscience 2003; 115:787-95. [PMID: 12435417 DOI: 10.1016/s0306-4522(02)00453-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Galanin immunoreactive fibers hyperinnervate remaining cholinergic basal forebrain neurons in Alzheimer's disease, perhaps exacerbating the cholinergic deficit. The purpose of our study is to determine whether a similar phenomenon occurs following intraparenchymal injection of 192 IgG-saporin, a specific cholinergic neurotoxin, within the nucleus of the horizontal limb of the diagonal band of Broca. Immunotoxic lesion produced on average a 31% reduction in cholinergic cell counts ipsilateral to the lesion, compared to the contralateral side. Increased galanin immunoreactivity, suggestive of increased fiber density, was observed within and adjacent to the lesion in 28 out of 36 rats, and this effect persisted across time up to 6 months (the longest time examined). We observed a parallel increase in the number of galanin positive neurons ipsilateral to the lesion, compared to the contralateral side. No correlative change could be detected in the number of galaninergic neurons in the amygdala or the bed nucleus of the stria terminalis. There was no statistically significant correlation between the extent of cholinergic cell loss and the increase in galanin immunoreactivity surrounding the lesion. Yet, since both of these changes persist over time, we suggest that galanin plasticity is triggered by neuronal damage. Our model can be useful to test the role that galanin plays in the regulation of acetylcholine and the efficacy of galanin inhibitors as potential therapeutic interventions in Alzheimer's disease.
Collapse
Affiliation(s)
- I Hartonian
- Department of Biological Sciences, California State University, 5151 State University Drive, Los Angeles, CA 90032, USA
| | | | | |
Collapse
|
7
|
Abstract
The neuropeptide galanin has a widespread but no means ubiquitous expression pattern in the nervous and endocrine systems. Profound changes in the levels and distribution of the peptide occur in a range of path-physiological situations including nerve injury or damage and alterations in the circulating levels of a number of hormones. There is now a substantial body of work to indicate that galanin plays an important biological role as a regulator of neurotransmitter and hormone release in the adult. The recent generation of mice carrying a loss-of-function mutation within the galanin gene has allowed us new insights into the physiological actions of galanin. In this manuscript we detail three sets of data relating to the major phenotypic effects thus far delineated, putting them in the context of existing published data. These studies demonstrate that galanin acts as a developmental and trophic factor to subsets of neurons in the nervous and neuroendocrine systems.
Collapse
Affiliation(s)
- D Wynick
- University Research Centre for Neuroendocrinology, Bristol University, Marlborough Street, Bristol, BS2 8HW
| | | |
Collapse
|
8
|
Chapter IV Localization of galanin receptor subtypes in the rat CNS. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s0924-8196(02)80006-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
9
|
Pérez SE, Wynick D, Steiner RA, Mufson EJ. Distribution of galaninergic immunoreactivity in the brain of the mouse. J Comp Neurol 2001; 434:158-85. [PMID: 11331523 DOI: 10.1002/cne.1171] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The distribution of galaninergic immunoreactive (-ir) profiles was studied in the brain of colchicine-pretreated and non-pretreated mice. Galanin (GAL)-ir neurons and fibers were observed throughout all encephalic vesicles. Telencephalic GAL-ir neurons were found in the olfactory bulb, cerebral cortex, lateral and medial septum, diagonal band of Broca, nucleus basalis of Meynert, bed nucleus of stria terminalis, amygdala, and hippocampus. The thalamus displayed GAL-ir neurons within the anterodorsal, paraventricular, central lateral, paracentral, and central medial nuclei. GAL-ir neurons were found in several regions of the hypothalamus. In the midbrain, GAL-ir neurons appeared in the pretectal olivary nucleus, oculomotor nucleus, the medial and lateral lemniscus, periaqueductal gray, and the interpeduncular nucleus. The pons contained GAL-ir neurons within the dorsal subcoeruleus, locus coeruleus, and dorsal raphe. In the medulla oblongata, GAL-ir neurons appear in the anterodorsal and dorsal cochlear nuclei, salivatory nucleus, A5 noradrenergic cells, gigantocellular nucleus, inferior olive, solitary tract nucleus, dorsal vagal motor and hypoglossal nuclei. Only GAL-ir fibers were seen in the lateral habenula nucleus, substantia nigra, parabrachial complex, cerebellum, spinal trigeminal tract, as well as the motor root of the trigeminal and facial nerves. GAL-ir was also observed in several circumventricular organs. The widespread distribution of galanin in the mouse brain suggests that this neuropeptide plays a role in the regulation of cognitive and homeostatic functions.
Collapse
Affiliation(s)
- S E Pérez
- Department of Neurological Sciences, Rush-Presbyterian-St. Luke's Medical Center, Chicago, Illinois 60612, USA
| | | | | | | |
Collapse
|
10
|
Ohtaki T, Kumano S, Ishibashi Y, Ogi K, Matsui H, Harada M, Kitada C, Kurokawa T, Onda H, Fujino M. Isolation and cDNA cloning of a novel galanin-like peptide (GALP) from porcine hypothalamus. J Biol Chem 1999; 274:37041-5. [PMID: 10601261 DOI: 10.1074/jbc.274.52.37041] [Citation(s) in RCA: 191] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Galanin is a widely distributed neuropeptide with a variety of physiological functions. Three galanin receptor subtypes, GALR1, GALR2, and GALR3, have been reported. We isolated a novel galanin-like peptide (GALP) from porcine hypothalamus by observing its activity for increasing [(35)S]GTPgammaS binding to a membrane preparation of GALR2-transfected cells. The peptide had 60 amino acid residues and a non-amidated C terminus. The amino acid sequence of GALP-(9-21) was completely identical to that of galanin-(1-13). A cloned porcine GALP cDNA indicated that GALP was processed from a 120-amino acid GALP precursor protein. The structures of rat and human GALP-(1-60) were deduced from cloned cDNA, which indicated that the amino acid sequences 1-24 and 41-53 were highly conserved between humans, rats, and pigs. Receptor binding studies revealed that porcine GALP-(1-60) had a high affinity for the GALR2 receptor (IC(50) = 0.24 nM) and a lower affinity for the GALR1 receptor (IC(50) = 4.3 nM). In contrast, galanin showed high affinity for the GALR1 (IC(50) = 0.097 nM) and GALR2 receptors (IC(50) = 0.48 nM). GALP is therefore an endogenous ligand that preferentially binds the GALR2 receptor, whereas galanin is relatively non-selective.
Collapse
Affiliation(s)
- T Ohtaki
- Discovery Research Laboratories I, Pharmaceutical Discovery Research Division, Takeda Chemical Industries, Ltd., Wadai 10, Tsukuba, Ibaraki 300-4293, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
The development of a strain of galanin knockout mice has provided confirmation of a neuroendocrine role for galanin, as well as supporting results of previous physiological investigations indicating a role for galanin in analgesia and neuropathic pain, and potentially in neuronal growth and regeneration processes. Whether elevation of galanin expression in neurodegenerative disorders such as Alzheimer's disease represents a survival response or exacerbates functional deficit in afflicted individuals remains to be determined. More detailed analysis of the phenotype of the galanin knockout mouse should provide insights into the physiological role of galanin in memory and learning processes, as well as in hypothalamic function and other aspects of neuroendocrine regulation. Biochemical and molecular cloning efforts have demonstrated that the multiplicity of actions of galanin is matched by complexity in the distribution and regulation of galanin and its receptors. A focus on characterisation of galanin receptors has resulted in the molecular cloning of three receptor subtypes to date. The distribution and functional properties of these receptors have not yet been fully elucidated, currently precluding assignment of discrete functions of galanin to any one receptor subtype. It is not currently possible to reconcile available pharmacological data using analogs of galanin and chimeric peptides in functional assay systems with the pharmacological properties of cloned receptor subtypes. This highlights the value of further knockout approaches targeting galanin receptor subtypes, but also raises the possibility of the existence of additional receptor subtypes that have yet to be cloned, or that receptor activity may be modulated by regulatory molecules that remain to be identified. The development of receptor subtype-specific compounds remains a high priority to advance work in this area. The ability to selectively modulate the many different actions of galanin, through a clearer understanding of receptor structure-function relationships and neuronal distribution, promises to provide important insights into the molecular and cellular basis of galanin action in normal physiology, and may provide lead compounds with therapeutic application in the prevention and treatment of a range of disorders.
Collapse
Affiliation(s)
- T P Iismaa
- Neurobiology Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | | |
Collapse
|
12
|
Extracellular Acidification: A Novel Detection System for Ligand/Receptor Interactions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1999. [DOI: 10.1007/978-1-4615-4735-8_43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Affiliation(s)
- U Langel
- Department of Neurochemistry and Neurotoxicology, Stockholm University, Sweden.
| | | |
Collapse
|
14
|
Bonetto V, Bergman AC, Jŏrnvall H, Sillard R. C-terminal sequence analysis of peptides and proteins using carboxypeptidases and mass spectrometry after derivatization of Lys and Cys residues. Anal Chem 1997; 69:1315-9. [PMID: 10787359 DOI: 10.1021/ac960896j] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
C-Terminal sequence analysis of peptides and proteins using carboxypeptidase digestion in combination with matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is convenient for protein and peptide characterization. After a short digestion, a sequence up to 20 residues can be identified, but the total number depends on the individual sequence. Due to the accuracy limits of the MALDI time-of-flight arrangement, the assignment of several residues with close mass values, including Lys/Glx, may remain ambiguous. We have used derivatization of lysine residues by guanidination to overcome the problem of Lys identification. The reaction is rapid and specific and results in full derivatization. In the case of Cys-containing peptides, problems arise from the fact that carboxypeptidases Y and P do not cleave peptides that contain nonderivatized cystine, cysteic acid, or (carboxymethyl)cysteine. Successful identification of Cys residues within the sequence is instead achieved by conversion of Cys to 4-thialaminine by (trimethylamino)-ethylation. The two derivatizations of Lys and Cys side chains provide opportunities for proton attachment and therefore facilitate the analysis by MALDI-MS. This C-terminal sequence analysis method is also useful for large proteins after fragmentation with specific enzymes.
Collapse
Affiliation(s)
- V Bonetto
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77, Stockholm, Sweden
| | | | | | | |
Collapse
|
15
|
Virsolvy-Vergine A, Salazar G, Sillard R, Denoroy L, Mutt V, Bataille D. Endosulfine, endogenous ligand for the sulphonylurea receptor: isolation from porcine brain and partial structural determination of the alpha form. Diabetologia 1996; 39:135-41. [PMID: 8635664 DOI: 10.1007/bf00403955] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Anti-diabetic sulphonylureas act via high affinity binding sites coupled to K-ATP channels. Endosulfine, an endogenous ligand for these binding sites, was shown to exist in two molecular forms, alpha and beta, in both the pancreas and the central nervous system. We describe here the isolation, and partial structural characterization of alpha endosulfine derived from porcine brains by means of a series of chromatography runs and gel electrophoresis. Porcine alpha endosulfine is a protein with a molecular mass of 13,196 daltons as determined by mass spectrometry and which is N-terminally blocked. Tryptic digestion followed by separation of the fragments by HPLC and automated Edman degradation yielded a total of 72 amino acids in four partial sequences. Comparison of these sequences with that present in the National Biomedical Research Foundation protein data bank indicated a 82% identity with a 112-amino acid protein with a molecular mass of 12,353 daltons called "cyclic AMP-regulated phosphoprotein-19', isolated from the bovine brain as a substrate for protein kinase A.
Collapse
Affiliation(s)
- A Virsolvy-Vergine
- Institut National de la Santé et de la Recherche Médicale U376, CHU Arnaud de Villeneuve, Montpellier, France
| | | | | | | | | | | |
Collapse
|
16
|
Philippe C, Clerc N, Mazet B, Niel JP. Immunochemical study of galanin in the cat digestive tract and autonomic ganglia. Peptides 1996; 17:1331-5. [PMID: 8971928 DOI: 10.1016/s0196-9781(96)00239-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The presence of galanin was examined in the cat gut and related autonomic nervous structures using radioimmunoassay (RIA) and high performance liquid chromatography (HPLC). In the gut wall, the concentration of galanin-like immunoreactivity (GAL-Lt) was assayed separately in the muscular layers with the nervous plexuses and in the mucosa and ranged from 0.35 to 0.55 pmol/g wet tissue. In the autonomic nervous structures, GAL-L1 concentrations ranged from 0.22 (thoracic spinal ganglia) to 0.81 (inferior mesenteric ganglion) pmol/g wet tissue. The presence of galanin was checked by HPLC in the antrum, intestine, and colon. HPLC of extractable material revealed a major peak coeluting with the synthetic porcine peptide and minor earlier peaks representing likely different molecular forms of galanin. Our study strengthens the notion that galanin acts in nervous control of the cat gut functions.
Collapse
Affiliation(s)
- C Philippe
- Laboratoire d'Ecologie et de Physiologie du Système Digestif, INRA, Jouy-en-Josas, France
| | | | | | | |
Collapse
|
17
|
Bonetto V, Jörnvall H, Mutt V, Sillard R. Two alternative processing pathways for a preprohormone: a bioactive form of secretin. Proc Natl Acad Sci U S A 1995; 92:11985-9. [PMID: 8618828 PMCID: PMC40280 DOI: 10.1073/pnas.92.26.11985] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
An N-terminally 9-residue elongated form of secretin, secretin-(-9 to 27) amide, was isolated from porcine intestinal tissue and characterized. Current knowledge about peptide processing sites does not allow unambiguous prediction of the signal peptide cleavage site in preprosecretin but suggests cleavage in the region of residues -10 to -14 counted upstream from the N terminus of the hormone. However, the structure of the isolated peptide suggests that the cleavage between the signal peptide and the N-terminal propeptide occurs at the C-terminal side of residue -10. Moreover, the isolated peptide demonstrates that secretin can be fully processed C-terminally prior to the final N-terminal cleavage. The results from this report, and those from earlier studies, where C-terminally elongated variants were isolated, show that the processing of the secretin precursor may proceed by one of two alternative pathways, in which either of the two ends is processed first. The bioactivity of the N-terminally extended peptide on exocrine pancreatic secretion was lower than that of secretin, indicating the importance of the finally processed free N terminus of the hormone for interaction with secretin receptors.
Collapse
Affiliation(s)
- V Bonetto
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | | | | | | |
Collapse
|
18
|
Abstract
1. Galanin is a 29 (in humans 30) amino acids long neuropeptide with mostly inhibitory, hyperpolarizing actions. 2. Differential structural requirements of truncated forms of galanin and differential agonist/antagonist behaviour of chimeric peptides, high affinity galanin receptor ligands suggest the presence of pharmacologically distinct galanin receptor subtypes. 3. The galanin receptor from human Bowes melanoma cell line--a member of G-protein coupled receptor superfamily--has been cloned. 4. Galanin acts via Gi/G(o) proteins inhibiting cAMP production, inositol phosphate turnover, opening K+ channels or closing Ca2+ channels.
Collapse
Affiliation(s)
- K Kask
- Department of Neurochemistry and Neurotoxicology, Stockholm University, Sweden
| | | | | |
Collapse
|
19
|
Affiliation(s)
- J N Crawley
- Section on Behavioral Neuropharmacology, Experimental Therapeutics Branch, National Institute of Mental Health, Building 10, Room 4N212, Bethesda 20892-1380, MD 20892, USA
| |
Collapse
|
20
|
Abstract
Galanin is a 29/30 amino acids long neuropeptide which does not belong to any known peptide family. The N-terminal first 16 amino acids of the molecule are both necessary and sufficient for receptor recognition and receptor activation. The main pharmacophores of galanin in its central and pancreatic actions are Gly1, Trp2, Asn5 and Tyr9, respectively. The neuropeptide galanin has multiple effects in both the central and peripheral nervous systems. Centrally, galanin potently stimulates fat intake and impairs cognitive performance. Anoxic glutamate release in the hippocampus is inhibited by galanin and the noradrenergic tonus in the brain is influenced by a hyperpolarizing action of galanin in the locus coeruleus. In the spinal cord galanin inhibits spinal excitability and potentiates the analgesic effect of morphine. In the neuroendocrine system galanin acts in a stimulatory manner on the release of growth hormone and prolactin, and peripherally galanin inhibits glucose induced insulin release. Galanin also causes contraction of the jejunum. The galanin receptor is a Gi-protein-coupled, membrane-bound glycoprotein with an estimated molecular mass of 53 kDa. Several putative tissue specific galanin receptor subtypes have been proposed on a pharmacological basis. The distribution of galanin receptors and of galanin like immunoreactivity are overlapping in the CNS, both being high in areas such as the locus coeruleus, raphe nucleus and hypothalamus. Galanin receptor activation leads to a reduced intracellular Ca(2+)-concentration, either by direct action on voltage sensitive Ca(2+)-channels or indirectly via opening of K(+)-channels or via inhibition of adenylyl cyclase activity. The lowered intracellular Ca2+ level subsequently leads to a reduced PLC activity. Galanin also inhibits cGMP synthesis induced by depolarization. A number of synthetic high affinity galanin receptor antagonists of the peptide type were developed recently, which have enabled the elucidation of functional roles of endogenous galanin in several systems. Furthermore, putative subtypes of galanin receptors can be distinguished by the use of these new galanin receptor ligands.
Collapse
Affiliation(s)
- K Bedecs
- Department of Neurochemistry and Neurotoxicology, Arrhenius Laboratories of Natural Sciences, Stockholm University, Sweden
| | | | | |
Collapse
|
21
|
Gregersen S, Langel U, Bartfai T, Ahrén B. N-terminally elongated fragments of galanin(1-16) inhibit insulin secretion from isolated mouse islets. REGULATORY PEPTIDES 1994; 53:31-7. [PMID: 7528437 DOI: 10.1016/0167-0115(94)90156-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The neuropeptide galanin inhibits insulin secretion and has been suggested to be an adrenergic co-transmitter in the endocrine pancreas. Recently, N-terminally elongated forms of galanin have been identified in both porcine brain and adrenals. Whether these elongated peptides show galanin-like biological effects is not known. We therefore synthesized two N-terminally elongated fragments of galanin(1-16), which contains the active site of galanin. The synthesized peptides were galanin(-9-16) and galanin(-7-16), which correspond to amino acids 24-61 and 26-61 in the galanin precursor molecule. Both these peptides were found to potently inhibit glucose-(11.1 mM)-stimulated insulin secretion from isolated mouse islets of Langerhans in all concentrations studied (1-1000 nM) (P < 0.0001). The potency of the peptides was not different from that of synthetic rat galanin. Thus, at 100 nM, insulin secretion was inhibited by galanin(-7-16) by 83 +/- 7% and by galanin(-9-16) by 71 +/- 17% and by rat galanin by 93 +/- 4% (not statistically different). Furthermore, the galanin receptor antagonist, M35 (10 nM), prevented the inhibitory action of the two N-terminally galanin fragments. This study thus shows that N-terminally elongated galanin-fragments as entire galanin inhibits insulin and thus indicates that the effect of galanin on insulin secretion is not dependent on a free amino-terminus.
Collapse
Affiliation(s)
- S Gregersen
- Department of Endocrinology and Metabolism C, Aarhus University Hospital, Denmark
| | | | | | | |
Collapse
|
22
|
Bedecs K, Langel U, Xu XJ, Wiesenfeld-Hallin Z, Bartfai T. Biological activities of two endogenously occurring N-terminally extended forms of galanin in the rat spinal cord. Eur J Pharmacol 1994; 259:151-6. [PMID: 7525314 DOI: 10.1016/0014-2999(94)90504-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The occurrence of two N-terminally extended forms of galanin in the porcine adrenal medulla was reported earlier by Bersani et al. (1991). We have synthesized and examined the ability of these two extended forms of galanin, galanin-(-7-29) and galanin-(-9-29), to bind to galanin receptors in the rat dorsal spinal cord. The effect of intrathecal (i.t.) injection of these peptides on spinal flexor reflex excitability in decerebrate, spinalized, unanesthetized rats was also studied. Both galanin-(-7-29) and galanin-(-9-29) fully displaced specific 125I-monoido-[Tyr26]porcine galanin (125I-galanin) binding to membranes prepared from rat dorsal spinal cord, with IC50 values 0.13 and 0.14 microM, respectively. The metabolic half-lives in spinal cord membranes for galanin-(1-29), galanin-(-7-29) and galanin-(-9-29) were 117 +/- 17, 271 +/- 23 and 185 +/- 19 min, respectively. I.t. injection of galanin-(-7-29) and galanin-(-9-29) mimicked the biphasic facilitatory and inhibitory effect of i.t. galanin-(1-29) on flexor reflex excitability and antagonized C-fiber conditioning stimulus-induced spinal cord hyperexcitability, but with reduced potencies compared to galanin-(1-29). We suggest that the N-terminally extended forms of galanin act as endogenous ligands with low agonist activity.
Collapse
Affiliation(s)
- K Bedecs
- Department of Neurochemistry and Neurotoxicology, Stockholm University, Sweden
| | | | | | | | | |
Collapse
|
23
|
Abstract
Galanin-like immunoreactivity (6 pmol/g tissue) was detected by radioimmunoassay in an extract of the stomach of the alligator, Alligator mississipiensis, but the peptide was present only in low concentration (< 0.5 pmol/g) in extracts of the brain and small intestine. Alligator galanin comprises 29 amino acid residues and contains an alpha-amidated C-terminal residue. Residues 1-22 of alligator galanin are identical to the corresponding sequence in pig/sheep/rat galanins, demonstrating that strong evolutionary pressure has acted to conserve the receptor-binding domain of the peptide. Unexpectedly, in view of the close phylogenetic relationship between crocodilians and birds, alligator galanin is structurally more similar to sheep galanin (three amino acid substitutions) than to chicken galanin (four amino acid substitutions).
Collapse
Affiliation(s)
- Y Wang
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE 68178
| | | |
Collapse
|
24
|
Sillard R, Schulz-Knappe P, Vogel P, Raida M, Bensch KW, Forssmann WG, Mutt V. A novel 77-residue peptide from porcine brain contains a leucine-zipper motif and is recognized by an antiserum to delta-sleep-inducing peptide. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 216:429-36. [PMID: 8375381 DOI: 10.1111/j.1432-1033.1993.tb18160.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In 1977 a nonapeptide, called delta-sleep-inducing peptide (DSIP) was characterized in rabbit cerebral venous blood plasma during thalamic stimulation to induce sleep. Evidence for the existence of DSIP in the central nervous system and in numerous peripheral organs of various mammalian species has been obtained using immunochemical techniques. Later findings have revealed the existence of large forms of DSIP-like immunoreactivity. We decided to investigate the molecular identity of such large forms of DSIP-like immunoreactivity by direct isolation. We have purified and characterized using amino acid analysis, sequencing, mass spectrometry and radioimmunoassay a 77-residue peptide, denoted DIP (DSIP-immunoreactive peptide), from an acid extract of porcine brain. DIP is recognized by an antiserum raised against synthetic rabbit DSIP. The amino acid sequence of DIP, however, is not related to that of DSIP, but it contains a putative leucine-zipper motif, a proline/glutamic-acid-rich domain, three potential phosphorylation sites and exhibits an acetylated N-terminus. The N-terminal but not the C-terminal part of the newly isolated peptide shares clear homology with the sequence of a protein induced by transforming growth factor beta 1 and other growth factors in mouse osteoblastic cells. DIP is also structurally similar to a baculoviral protein p10. The function of DIP remains unclear but its involvement in transcriptional regulation is probable.
Collapse
Affiliation(s)
- R Sillard
- Department of Biochemistry II, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
25
|
Sillard R, Jörnvall H, Carlquist M, Mutt V. Chemical assay for cyst(e)ine-rich peptides detects a novel intestinal peptide ZF-1, homologous to a single zinc-finger motif. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 211:377-80. [PMID: 8425549 DOI: 10.1111/j.1432-1033.1993.tb19908.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Cysteine is a relatively infrequent constituent of proteins, which in its thiol or half-cystine form contributes in a special manner to their three-dimensional structure. We show that in small cystine-containing peptides, the Cys content is always higher than the average in proteins in general. This observation makes it possible to search for new peptides by monitoring only their Cys content. We have developed a chemical assay for the detection of cyst(e)ine-rich peptides in tissue extracts. Using this assay we have isolated from porcine intestine a novel cysteine-rich peptide, which we denote ZF-1. ZF-1 is homologous to a single zinc-finger motif and has an acetylated N-terminus. This is the first demonstration of the existence of a processed single zinc-finger-like structure. The structural homology of ZF-1 to the zinc-finger motif, present in several metal-binding and DNA-binding proteins, suggests an important role of this peptide in metal transport and/or modulation of gene expression.
Collapse
Affiliation(s)
- R Sillard
- Department of Biochemistry II, Karolinska Institutet, Stockholm, Sweden
| | | | | | | |
Collapse
|