1
|
Codony-Servat J, Verlicchi A, Rosell R. Cancer stem cells in small cell lung cancer. Transl Lung Cancer Res 2016; 5:16-25. [PMID: 26958490 PMCID: PMC4758966 DOI: 10.3978/j.issn.2218-6751.2016.01.01] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 10/28/2015] [Indexed: 12/11/2022]
Abstract
Small cell lung cancer (SCLC) is one of the most aggressive lung tumors, with poor survival rates. Although patients may initially respond to treatment, this is followed by rapid development of drug resistance and disease progression. SCLC patients often present with metastasis at time of diagnosis, ruling out surgery as a treatment option. Currently, treatment options for this disease remain limited and platinum-based chemotherapy is the treatment of choice. A better understanding of the biology of SCLC could allow us to identify new therapeutic targets. Cancer stem cell (CSC) theory is currently crucial in cancer research and could provide a viable explanation for the heterogeneity, drug resistance, recurrence and metastasis of several types of tumors. Some characteristics of SCLC, such as aggressiveness, suggest that this kind of tumor could be enriched in CSCs, and drug resistance in SCLC could be attributable to the existence of a CSC subpopulation in SCLC. Herein we summarize current understanding of CSC in SCLC, including the evidence for CSC markers and signaling pathways involved in stemness. We also discuss potential ongoing strategies and areas of active research in SCLC, such as immunotherapy, that focus on inhibition of signaling pathways and targeting molecules driving stemness. Understanding of signaling pathways and the discovery of new therapeutic markers specific to CSCs will lead to new advances in therapy and improvements in prognosis of SCLC patients. Therefore, evaluation of these CSC-specific molecules and pathways may become a routine part of SCLC diagnosis and therapy.
Collapse
|
2
|
Sarvi S, Mackinnon AC, Avlonitis N, Bradley M, Rintoul RC, Rassl DM, Wang W, Forbes SJ, Gregory CD, Sethi T. CD133+ cancer stem-like cells in small cell lung cancer are highly tumorigenic and chemoresistant but sensitive to a novel neuropeptide antagonist. Cancer Res 2014; 74:1554-65. [PMID: 24436149 DOI: 10.1158/0008-5472.can-13-1541] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Small cell lung cancer (SCLC) is a highly aggressive malignancy with poor survival rates, with initial responses nearly invariably followed by rapid recurrence of therapy-resistant disease. Drug resistance in SCLC may be attributable to the persistence of a subpopulation of cancer stem-like cells (CSC) that exhibit multiple drug resistance. In this study, we characterized the expression of CD133, one important marker of CSC in other cancers, in SCLC cancer cells. CD133 expression correlated with chemoresistance and increased tumorigenicity in vitro and in vivo accompanied by increased expression of Akt/PKB and Bcl-2. CD133 expression was increased in mouse and human SCLC after chemotherapy, an observation confirmed in clinical specimens isolated longitudinally from a patient receiving chemotherapy. We discovered in CD133(+) SCLC cells, an increased expression of the mitogenic neuropeptide receptors for gastrin-releasing peptide and arginine vasopressin. Notably, these cells exhibited increased sensitivity to the growth inhibitory and proapoptotic effects of a novel broad spectrum neuropeptide antagonist (related to SP-G), which has completed a phase I clinical trial for SCLC. Our results offer evidence that this agent can preferentially target chemoresistant CD133(+) cells with CSC character in SCLC, emphasizing its potential utility for improving therapy in this setting.
Collapse
Affiliation(s)
- Sana Sarvi
- Authors' Affiliations: MRC Centre for Inflammation Research, The Queen's Medical Research Institute; MRC Centre for Regenerative Medicine; School of Chemistry, Joseph Black Building, University of Edinburgh, Edinburgh; Department of Thoracic Oncology, Papworth Hospital NHS Foundation Trust, Cambridge; and Department of Respiratory Medicine and Allergy, Kings College Denmark Hill Campus, London, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Singh AS, Caplan A, Corcoran KE, Fernandez JS, Preziosi M, Rameshwar P. Oncogenic and metastatic properties of preprotachykinin-I and neurokinin-1 genes. Vascul Pharmacol 2006; 45:235-42. [PMID: 16901764 DOI: 10.1016/j.vph.2005.08.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2005] [Accepted: 08/01/2005] [Indexed: 01/24/2023]
Abstract
Breast cancer (BC) remains the cancer with highest mortality among women in the United States. Entry of BC cells (BCCs) in bone marrow (BM) leads to poor prognosis. This review discusses studies showing interactions between BCCs and BM stroma, consequently providing BCCs with advantages of survival within BM. Myc transcription factor is investigated as a link between the transforming properties of peptides derived from the preprotachykinin-I gene (PPT-I) and Neurokinin-1 (NK1) receptor. A co-culture method previously described to model early integration of BCC in BM is used to study timeline changes of PPT-I and TGF-beta using northern analyses and a bioassay, respectively. The results show changes of both genes in BCCs and BM stroma. Relevance of these changes to homeostasis in BM is discussed. Myc has been shown to link the expressions of TGF-beta1 and PPT-I in BCCs. We now show a role for Myc in the expression of NK1. PPT-I and the chemokine SDF-1alpha induce the expression of each other through an autocrine mechanism. Since a role for Myc in SDF-1alpha-PPT-I axis has not been studied, we speculate on this finding, based on the cell-homing property of SDF-1alpha. Since Myc could be oncogenic, it might be involved in the transforming properties of PPT-I and NK1 while SDF-1alpha could be involved in cell-homing of BCCs through the regulation of PPT-I. The findings are discussed in the context of other related reports.
Collapse
MESH Headings
- Blotting, Northern
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Cell Line, Tumor
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Chemokine CXCL12
- Chemokines, CXC/genetics
- Chemokines, CXC/metabolism
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Models, Biological
- Neoplasm Metastasis
- Protein Precursors/genetics
- Protein Precursors/metabolism
- Proto-Oncogene Proteins c-myc/genetics
- Proto-Oncogene Proteins c-myc/metabolism
- Receptors, Neurokinin-1/genetics
- Receptors, Neurokinin-1/metabolism
- Review Literature as Topic
- Tachykinins/genetics
- Tachykinins/metabolism
- Transfection
- Transforming Growth Factor beta1/genetics
- Transforming Growth Factor beta1/metabolism
Collapse
Affiliation(s)
- Arun S Singh
- Department of Medicine-Hematology/Oncology, New Jersey Medical School-University of Medicine and Dentistry of New Jersey, NJ 07103, United States
| | | | | | | | | | | |
Collapse
|
4
|
Abstract
Membrane-catalyzed degradation of the cardioexcitatory peptide, Asn-D-Trp-Phe-NH(2) (N(d)WF-NH(2)), which was previously isolated from Aplysia, was investigated in relation to its inactivation mechanism. The principal degradation was deamidation of the C-terminal amide, producing biologically inert Asn-D-Trp-Phe-OH (N(d)WF-OH). Among membrane fractions prepared from different organs, the fraction from the ganglia showed the highest specific activity of the deamidation reaction. The deamidase activity was inhibited by Ebelactone B and the serine protease inhibitor, phenylmethanesulfonyl fluoride (PMSF), while the degradation of the synthetic stereoisomer, Asn-Trp-Phe-NH(2) (N(l)WF-NH(2)), was sensitive to the divalent cation-chelating agent, o-phenanthroline, and aminopeptidase inhibitors, amastatin and bestatin. The presence of D-Trp residue in the second position of N(d)WF-NH(2) endows this peptide not only with stereospecific bioactivity but also peptidase stability. The deamidation reaction seems to be the major inactivation mechanism for this peptide.
Collapse
Affiliation(s)
- F Morishita
- Department of Biological Science, Faculty of Science, Hiroshima University, Higashi Hiroshima 739-8526, Japan
| | | | | | | |
Collapse
|
5
|
Moreira JN, Gaspar R, Allen TM. Targeting Stealth liposomes in a murine model of human small cell lung cancer. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1515:167-76. [PMID: 11718672 DOI: 10.1016/s0005-2736(01)00411-4] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Tumor accumulation and therapeutic activity of Stealth liposomes loaded with doxorubicin (DXR) were examined in Balb/c nude mice xenografts inoculated subcutaneously with the human small cell lung cancer (SCLC) cell line, H69. Mice were treated with non-targeted liposomes (SL) or liposomes targeted with antagonist G coupled to the liposome surface (SLG). SLG showed 30-44-fold higher binding to H69 cells harvested from H69 xenografts than SL. At 48 and 72 h post injection, tumor accumulation of [(125)I]tyraminylinulin-containing liposomes was shown to be dependent on liposome size but independent of the presence of the targeting ligand. Maximum tumor uptake of either SLG or SL ranged from 2 to 4% of injected dose/g of tissue. In therapeutic studies, mice received three weekly injections of 3 or 6 mg free DXR/kg or 3 or 10 mg liposomal DXR/kg at initial tumor volumes of either 7 or 33 mm(3). The therapeutic efficacy of DXR-containing SL or SLG was significantly improved over free DXR, but SLG did not improve anti-tumor efficacy relative to SL. Stealth liposomes containing DXR have potential as a therapy against human SCLC tumors.
Collapse
Affiliation(s)
- J N Moreira
- Department of Pharmacology, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
6
|
Moreira JN, Hansen CB, Gaspar R, Allen TM. A growth factor antagonist as a targeting agent for sterically stabilized liposomes in human small cell lung cancer. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1514:303-17. [PMID: 11557029 DOI: 10.1016/s0005-2736(01)00386-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The ability of a growth factor antagonist, [D-Arg(6),D-Trp(7,9)-N(me)Phe(8)]-substance P(6-11), named antagonist G, to selectively target polyethylene glycol-grafted liposomes (known as sterically stabilized liposomes) to a human classical small cell lung cancer (SCLC) cell line, H69, was examined. Our results showed that radiolabeled antagonist G-targeted sterically stabilized liposomes (SLG) bound to H69 cells with higher avidity than free antagonist G and were internalized (reaching a maximum of 13000 SLG/cell), mainly through a receptor-mediated process, likely involving clathrin-coated pits. This interaction was confirmed by confocal microscopy to be peptide- and cell-specific. Moreover, it was shown that SLG significantly improved the nuclear delivery of encapsulated doxorubicin to the target cells, increasing the cytotoxic activity of the drug over non-targeted liposomes. In mice, [(125)I]tyraminylinulin-containing SLG were long circulating, with a half-life of 13 h. Use of peptides like antagonist G to promote binding and internalization of sterically stabilized liposomes, with their accompanying drug loads, i.e., anticancer drugs, genes or antisense oligonucleotides, into target cells has the potential to improve therapy of SCLC.
Collapse
Affiliation(s)
- J N Moreira
- Department of Pharmacology, University of Alberta, Edmonton, Canada
| | | | | | | |
Collapse
|
7
|
Krondahl E, von Euler-Chelpin H, Orzechowski A, Ekström G, Lennernäs H. In vitro metabolism of opioid tetrapeptide agonists in various tissues and subcellular fractions from rats. Peptides 2001; 22:613-21. [PMID: 11311732 DOI: 10.1016/s0196-9781(01)00328-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The metabolism of three mu-selective opioid tetrapeptide agonists, Tyr-D-Arg-Phe-Nva-NH(2) (TArPN), Tyr-D-Arg-Phe-Phe-NH(2) (TArPP), and Tyr-D-Ala-Phe-Phe-NH(2) (TAPP), was investigated in different rat tissues. High metabolic activity (<20% peptide remaining after 30 min) was found against the three peptides in the kidney homogenate and against TArPN in spleen homogenate. Low metabolic activity (>80% peptide remaining after 30 min) was found for all peptides in brain homogenate and plasma, and for TArPN and TArPP in blood. The other tissue homogenates, prepared from the small and large intestine, liver and lung, all exhibited intermediate metabolic activity (20-80% peptide remaining after 30 min) against the peptides. In all tissues investigated, the tetrapeptides were metabolized at the C-terminal amide by deamidation.A further in depth metabolic investigation was performed in subcellular fractions isolated from three tissues (small intestine, liver and kidney). In the liver, the deamidation was predominantly localized to the mitochondrial/lysosomal fraction, while hydrolysis at the N-terminal Tyr residue was the major metabolic pathway in the microsomal/brush-border membrane fraction from the kidney and small intestine.
Collapse
Affiliation(s)
- E Krondahl
- Department of Pharmacy, Division of Pharmaceutics, Box 580, BMC, SE-751 23, Uppsala, Sweden
| | | | | | | | | |
Collapse
|
8
|
Singh D, Joshi DD, Hameed M, Qian J, Gascón P, Maloof PB, Mosenthal A, Rameshwar P. Increased expression of preprotachykinin-I and neurokinin receptors in human breast cancer cells: implications for bone marrow metastasis. Proc Natl Acad Sci U S A 2000; 97:388-93. [PMID: 10618428 PMCID: PMC26673 DOI: 10.1073/pnas.97.1.388] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/1999] [Indexed: 11/18/2022] Open
Abstract
Neuropeptides are implicated in many tumors, breast cancer (BC) included. Preprotachykinin-I (PPT-I) encodes multiple neuropeptides with pleiotropic functions such as neurotransmission, immune/hematopoietic modulation, angiogenesis, and mitogenesis. PPT-I is constitutively expressed in some tumors. In this study, we investigated a role for PPT-I and its receptors, neurokinin-1 (NK-1) and NK-2, in BC by using quantitative reverse transcription-PCR, ELISA, and in situ hybridization. Compared with normal mammary epithelial cells (n = 2) and benign breast biopsies (n = 21), BC cell lines (n = 7) and malignant breast biopsies (n = 25) showed increased expression of PPT-I and NK-1. NK-2 levels were high in normal and malignant cells. Specific NK-1 and NK-2 antagonists inhibited BC cell proliferation, suggesting autocrine and/or intercrine stimulation of BC cells by PPT-I peptides. NK-2 showed no effect on the proliferation of normal cells but mediated the proliferation of BC cells. Cytosolic extracts from malignant BC cells enhanced PPT-I translation whereas extracts from normal mammary epithelial cells caused no change. These enhancing effects may be protein-specific because a similar increase was observed for IL-6 translation and no effect was observed for IL-1alpha and stem cell factor. The data suggest that PPT-I peptides and their receptors may be important in BC development. Considering that PPT-I peptides are hematopoietic modulators, these results could be extended to understand early integration of BC cells in the bone marrow, a preferred site of metastasis. Molecular signaling transduced by PPT-I peptides and the mechanism that enhances translation of PPT-I mRNA could lead to innovative strategies for BC treatments and metastasis.
Collapse
Affiliation(s)
- D Singh
- Department of Medicine-Hematology, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, NJ 07103, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Cummings J, MacLellan AJ, Mark M, Jodrell DI. Development of a gradient elution high-performance liquid chromatography assay with ultraviolet detection for the determination in plasma of the anticancer peptide [Arg6, D-Trp7,9, mePhe8]-substance P (6-11) (antagonist G), its major metabolites and a C-terminal pyrene-labelled conjugate. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL SCIENCES AND APPLICATIONS 1999; 732:277-85. [PMID: 10517349 DOI: 10.1016/s0378-4347(99)00294-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
[Arg6, D-Trp7,9 mePhe8]-substance P (6-11), code-named antagonist G, is a novel peptide currently undergoing early clinical trials as an anticancer drug. A sensitive, high efficiency high-performance liquid chromatography (HPLC) method is described for the determination in human plasma of antagonist G and its three major metabolites, deamidated-G (M1), G-minus Met11 (M2) and G[Met11(O)] (M3). Gradient elution was employed using 40 mM ammonium acetate in 0.15% trifluoroacetic acid as buffer A and acetonitrile as solvent B, with a linear gradient increasing from 30 to 100% B over 15 min, together with a microbore analytical column (microBondapak C18, 30 cm X 2 mm I.D.). Detection was by UV at 280 nm and the column was maintained at 40 degrees C. Retention times varied by <1% throughout the day and were as follows: G, 13.0 min; M1, 12.2 min; M2, 11.2 min; M3, 10.8 min, and 18.1 min for a pyrene conjugate of G (G-P). The limit of detection on column (LOD) was 2.5 ng for antagonist G, M1-3 and G-P and the limit of quantitation (LOQ) was 20 ng/ml for G and 100 ng/ml for M1-3. Sample clean-up by solid-phase extraction using C2-bonded 40 microm silica particles (Bond Elut, 1 ml reservoirs) resulted in elimination of interference from plasma constituents. Within-day and between-day precision and accuracy over a broad range of concentrations (100 ng/ml-100 microg/ml) normally varied by < 10%, although at the highest concentrations of M1 and M2 studied (50 microg/ml), increased variability and reduced recovery were observed. The new assay will aid in the clinical development of antagonist G.
Collapse
Affiliation(s)
- J Cummings
- Imperial Cancer Research Fund, Medical Oncology Unit, Western General Hospital, Edinburgh, UK
| | | | | | | |
Collapse
|
10
|
Abstract
This article focuses on four human carboxypeptidases (CPs): two metallo-CPs and two serine CPs. The metallo-CPs are members of the so-called B-type regulatory CP family, as they cleave only the C-terminal basic amino acids Arg or Lys. The plasma membrane-bound CPM and the mainly, but not exclusively, intracellular CPD are surveyed from this group of enzymes. These enzymes can regulate peptide hormone activity at the cell surface and possibly intracellularly after receptor-mediated endocytosis and may also participate in peptide hormone processing. The serine CPs, as their name indicates, contain a serine residue in the active center essential for catalytic activity that reacts with organophosphorus inhibitors. Prolylcarboxypeptidase (PRCP) (angiotensinase C) and deamidase (cathepsin A, lysosomal protective protein) are discussed here. These two enzymes are highly concentrated in lysosomes; however, they may also be active extracellularly after their release from lysosomes in soluble form or in a plasma membrane-bound complex. Whereas deamidase cleaves a variety of peptides with C-terminal or penultimate hydrophobic residues (e.g. substance P, angiotensin I, bradykinin, endothelin, fMet-Leu-Phe). PRCP cleaves only peptides with a penultimate Pro residue (e.g. des-Arg9-bradykinin, angiotensin II). These enzymes may also be involved in terminating signal transduction by inactivating peptide ligands after receptor endocytosis.
Collapse
Affiliation(s)
- R A Skidgel
- Department of Pharmacology, University of Illinois College of Medicine, Chicago 60612, USA.
| | | |
Collapse
|
11
|
Jones DA, Cummings J, Langdon SP, Smyth JF. Preclinical studies on the broad-spectrum neuropeptide growth factor antagonist G. GENERAL PHARMACOLOGY 1997; 28:183-9. [PMID: 9013192 DOI: 10.1016/s0306-3623(96)00189-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
1. Antagonist G is a broad-spectrum neuropeptide growth factor antagonist that inhibits the growth of small cell lung cancer (SCLC) cells both in vitro and in vivo. 2. Antagonist G is metabolized in peripheral tissues by a chymotrypsin-like serine carboxypeptidase causing C-terminal deamidation and removal of the methionine residue. 3. The metabolites of Antagonist G retain neuropeptide antagonist properties and are thought to contribute to the parent peptide's antitumor activity. 4. Pharmacokinetic studies following systemic (IP) administration to nude mice revealed that the tissue distribution of Antagonist G is likely to be determined by vascular permeability. 5. Preclinical toxicology studies have been completed, and we have now started a phase I clinical trial.
Collapse
Affiliation(s)
- D A Jones
- Imperial Cancer Research Fund, Medical Oncology Unit, Western General Hospital, Edinburgh, UK
| | | | | | | |
Collapse
|
12
|
Seckl MJ, Higgins T, Rozengurt E. [D-Arg1,D-Trp5,7,9,Leu11]Substance P coordinately and reversibly inhibits bombesin- and vasopressin-induced signal transduction pathways in Swiss 3T3 cells. J Biol Chem 1996; 271:29453-60. [PMID: 8910612 DOI: 10.1074/jbc.271.46.29453] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The novel substance P (SP) analogue, [D-Arg1,D-Trp5,7,9,Leu11]SP like [D-Arg1,D-Phe5,D-Trp7,9,Leu11]SP inhibited DNA synthesis induced by bombesin, vasopressin, and bradykinin, but did not interfere with the mitogenic response induced by other growth factors or pharmacological agents in Swiss 3T3 cells. [D-Arg1,D-Trp5, 7,9,Leu11]SP reversibly inhibited bombesin-induced DNA synthesis, causing a 6-fold greater rightward shift in the bombesin dose response than [D-Arg1,D-Phe5,D-Trp7,9,Leu11]SP at identical concentrations (10 microM). We found that the new, more potent, SP analogue coordinately and reversibly inhibited bombesin-induced Ca2+ mobilization and protein kinase C (PKC) and mitogen-activated protein (MAP) kinase activation. The dose-response curves for bombesin-induced Ca2+ mobilization and MAP kinase activation were similarly displaced (51- and 40-fold, respectively) by [D-Arg1, D-Trp5,7,9,Leu11]SP. In addition, [D-Arg1,D-Trp5,7,9,Leu11]SP reversibly inhibited bombesin-induced tyrosine phosphorylation of Mr 110,000-130,000 and 70,000-80,000 bands as well as p125 focal adhesion kinase. [D-Arg1,D-Trp5,7,9,Leu11]SP also reversibly and coordinately inhibited vasopressin-induced Ca2+ mobilization, PKC stimulation, MAP kinase activation, tyrosine phosphorylation, and DNA synthesis in Swiss 3T3 cells. Surprisingly, deletion of the terminal Leu of [D-Arg1,D-Phe5,D-Trp7,9,Leu11]SP to yield [D-Arg1, D-Phe5,D-Trp7,9]SP1-10 resulted in a selective loss of inhibitory activity of this analogue against bombesin- but not vasopressin-stimulated DNA synthesis, Ca2+ mobilization, and MAP kinase activation. Collectively, these results suggest that SP analogues act at the receptor level to coordinately and reversibly antagonize bombesin- or vasopressin-induced signal transduction in Swiss 3T3 cells.
Collapse
Affiliation(s)
- M J Seckl
- Imperial Cancer Research Fund, London WC2A 3PX, United Kingdom
| | | | | |
Collapse
|
13
|
Jones DA, Cummings J, Langdon SP, Maclellan AJ, Higgins T, Rozengurt E, Smyth JF. Metabolism of the broad-spectrum neuropeptide growth factor antagonist: [D-Arg1, D-Phe5, D-Trp7,9, Leu11]-substance P. Br J Cancer 1996; 73:715-20. [PMID: 8611370 PMCID: PMC2074379 DOI: 10.1038/bjc.1996.126] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Broad-spectrum neuropeptide growth factor antagonists, such as [D-Arg1, D-Phe5, D-Trp7,9, Leu11]substance P (antagonist D) and [Arg6, D-Trp7,9, NmePhe8]substance P(6-11) (antagonist G), are currently being investigated as possible anti-tumour agents. These compounds are hoped to be effective against neuropeptide-driven cancers such as small-cell lung cancer. Antagonist D possesses a broader antagonistic spectrum than antagonist G and hence may be of greater therapeutic use. The in vitro metabolism of antagonist D has been characterised and the structures of two major metabolites have been elucidated by amino acid analysis and mass spectrometry. Metabolism was confined to the C-terminus where serine carboxypeptidase action produced [deamidated]-antagonist D (metabolite 1) and [des-Leu11]-antagonist D (metabolite 2) as the major metabolites. Biological characterisation of the metabolites demonstrated that these relatively minor changes in structure resulted in a loss of antagonist activity. These results provide some of the first structure-activity information on the factors that determine which neuropeptides these compounds inhibit and on the relative potency of that inhibition.
Collapse
Affiliation(s)
- D A Jones
- Medical Oncology Unit, Western General Hospital, Edinburg, UK
| | | | | | | | | | | | | |
Collapse
|