1
|
Matsumoto M, Takemi S, Sakai T, Sakata I. Identification of motilin in Japanese fire bellied newt. Gen Comp Endocrinol 2022; 323-324:114031. [PMID: 35331740 DOI: 10.1016/j.ygcen.2022.114031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/17/2022] [Accepted: 03/19/2022] [Indexed: 11/30/2022]
Abstract
Motilin, a peptide hormone consisting of 22 amino acid residues, was identified in the duodenum of pigs in the 1970s. It is known to induce gastrointestinal contractions during the interdigestive state in mammals. Although the motilin gene has been identified in various animal species, it has not been studied in amphibians. Here, we identified the motilin gene in the Japanese fire bellied newt (Cynops pyrrhogaster), and conducted an analysis of tissue distribution, morphological observations, and physiological experiments. The deduced mature newt motilin comprises 22 amino acid residues, like in mammals and birds. The C-terminus of the newt motilin showed high homology with motilin from other species compared to the N-terminus region, which is considered the bioactive site. Motilin mRNA expression in newts was abundant in the upper small intestine, with notably high motilin mRNA expression found in the pancreas. Motilin-producing cells were found in the mucosal layer of the upper small intestine and existed as two cell types: open-and closed-type cells. Motilin-producing cells in the pancreas were also found to produce insulin but not glucagon. Newt motilin stimulated gastric contractions but not in other parts of the intestines in vitro, and motilin-induced gastric contraction was significantly inhibited by treatment with atropine, a muscarinic acetylcholine receptor antagonist. These results indicate that motilin is also present in amphibians, and that its gastrointestinal contractile effects are conserved in mammals, birds, and amphibians. Additionally, we demonstrated for the first time the existence of pancreatic motilin, suggesting that newt motilin has an additional unknown physiological role.
Collapse
Affiliation(s)
- Mio Matsumoto
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakuraku, Saitama 338-8570, Japan
| | - Shota Takemi
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakuraku, Saitama 338-8570, Japan
| | - Takafumi Sakai
- Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Ichiro Sakata
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakuraku, Saitama 338-8570, Japan; Area of Life-NanoBio, Division of Strategy Research, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama 338-8570, Japan.
| |
Collapse
|
2
|
Zhang S, Kaiya H, Teraoka H, Kitazawa T. Pheasant motilin, its distribution and gastrointestinal contractility-stimulating action in the pheasant. Gen Comp Endocrinol 2021; 314:113897. [PMID: 34506789 DOI: 10.1016/j.ygcen.2021.113897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/17/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022]
Abstract
Previously, pheasant motilin was identified as a 22-amino acid peptide with a sequence of FVPFFTQSDI QKMQEKERIK GQ. In the present study, the distribution of pheasant motilin mRNA was determined and compared with that of ghrelin, a motilin-related peptide. The effects of pheasant motilin on the cognate gastrointestinal (GI) muscle strips were also examined in an in vitro contraction study. The expression of pheasant motilin mRNA was highest in the small intestine (duodenum, jejunum and ileum), moderate in the colon and very low in the brain, lung, heart, pancreas, esophagus, proventriculus, gizzard and caecum, and this distribution was in contrast with that of ghrelin mRNA. Pheasant motilin caused contraction of the cognate GI tract in a region-dependent manner, similar to chicken motilin. The contraction in the small intestine was large and was not affected by atropine. In contrast, contraction in the proventriculus was small and was decreased by atropine. The crop and colon were insensitive to pheasant motilin. Neither GM109 nor MA2029, mammalian motilin receptor antagonists inhibited the contractions of pheasant motilin. Erythromycin was ineffective in the pheasant ileum, although it caused contraction of the rabbit duodenum. These results indicate that pheasant motilin caused contraction through an action on smooth muscles in the small intestine and an action on enteric cholinergic nerves in the proventriculus. This high responsiveness of the small intestine suggests that motilin is a regulator of small intestinal motility in avians, and the characteristic of the motilin receptor in the pheasant might be different from that in mammals, as is that in chickens.
Collapse
Affiliation(s)
- Shuangyi Zhang
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Hiroyuki Kaiya
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 565-8565, Japan
| | - Hiroki Teraoka
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Takio Kitazawa
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan.
| |
Collapse
|
3
|
Kitazawa T, Kaiya H. Motilin Comparative Study: Structure, Distribution, Receptors, and Gastrointestinal Motility. Front Endocrinol (Lausanne) 2021; 12:700884. [PMID: 34497583 PMCID: PMC8419268 DOI: 10.3389/fendo.2021.700884] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/16/2021] [Indexed: 12/26/2022] Open
Abstract
Motilin, produced in endocrine cells in the mucosa of the upper intestine, is an important regulator of gastrointestinal (GI) motility and mediates the phase III of interdigestive migrating motor complex (MMC) in the stomach of humans, dogs and house musk shrews through the specific motilin receptor (MLN-R). Motilin-induced MMC contributes to the maintenance of normal GI functions and transmits a hunger signal from the stomach to the brain. Motilin has been identified in various mammals, but the physiological roles of motilin in regulating GI motility in these mammals are well not understood due to inconsistencies between studies conducted on different species using a range of experimental conditions. Motilin orthologs have been identified in non-mammalian vertebrates, and the sequence of avian motilin is relatively close to that of mammals, but reptile, amphibian and fish motilins show distinctive different sequences. The MLN-R has also been identified in mammals and non-mammalian vertebrates, and can be divided into two main groups: mammal/bird/reptile/amphibian clade and fish clade. Almost 50 years have passed since discovery of motilin, here we reviewed the structure, distribution, receptor and the GI motility regulatory function of motilin in vertebrates from fish to mammals.
Collapse
Affiliation(s)
- Takio Kitazawa
- Comparative Animal Pharmacology, Department of Veterinary Science, Rakuno Gakuen University, Ebetsu, Japan
| | - Hiroyuki Kaiya
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| |
Collapse
|
4
|
Kitazawa T, Harada R, Sakata I, Sakai T, Kaiya H. A verification study of gastrointestinal motility-stimulating action of guinea-pig motilin using isolated gastrointestinal strips from rabbits and guinea-pigs. Gen Comp Endocrinol 2019; 274:106-112. [PMID: 30677392 DOI: 10.1016/j.ygcen.2019.01.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 01/07/2019] [Accepted: 01/17/2019] [Indexed: 12/13/2022]
Abstract
Motilin (MLN), a 22-amino-acid peptide hormone, is generally present in the mucosa of the upper gastrointestinal (GI) tract, mainly the duodenum of mammals, and it regulates GI motility, especially that related to interdigestive migrating contraction. However, MLN and its receptor are absent in mice and rats, and MLN does not cause any mechanical responses in the rat and mouse GI tracts. The guinea-pig is also a rodent, but expression of the MLN gene in the guinea-pig has been reported. In the present study, two guinea-pig MLNs, FIPIFTYSELRRTQEREQNKGL found in the Ensemble Genome Database (gpMLN-1) and FVPIFTYSELRRTQEREQNKRL reported by Xu et al. (2001) (gpMLN-2), were synthesized, and their biological activities were evaluated in the rabbit duodenum and guinea-pig GI tract in vitro. Both gpMLNs showed contractile activity in longitudinal muscle strips of the rabbit duodenum. The EC50 values of gpMLN-1 and gpMLN-2 were slightly higher than that of human MLN (hMLN), but the maximum contractions were as same as that of hMLN. Treatment with GM109 and hMLN-induced receptor desensitization decreased the contractile activity of both gpMLNs, indicating that the two gpMLN candidates are able to activate the MLN receptor (MLN-R) of the rabbit duodenum. In guinea-pig GI preparations, hMLN and gpMLNs did not show any mechanical responses in circular muscle strips from the gastric antrum or in longitudinal strips of the duodenum, ileum and colon although acetylcholine and 1,1-dimethyl-4-phenylpiperazinium (DMPP) caused definite mechanical responses. The DMPP-induced neural responses in the gastric circular muscle and ileal longitudinal muscles were not modified by gpMLN-1. Even in the gastric and ileal strips with intact mucosa, no mechanical responses were seen with either of the gpMLNs. Furthermore, RT-PCR using various primer sets failed to amplify the gpMLN-2 mRNA. In conclusion, gpMLNs including one that was already reported and the other that was newly found in a database were effective to the rabbit MLN-R, whereas they did not cause any contractions or modification of neural responses in the guinea-pig GI tract, indicating that the MLN system is vestigial and not functional in regulation of GI motility in the guinea-pig as well as in other rodents such as rats and mice.
Collapse
Affiliation(s)
- Takio Kitazawa
- Department of Veterinary Science, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan.
| | - Rio Harada
- Department of Veterinary Science, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Ichiro Sakata
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Takafumi Sakai
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Hiroyuki Kaiya
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 565-8565, Japan
| |
Collapse
|
5
|
Kitazawa T, Kaiya H. Regulation of Gastrointestinal Motility by Motilin and Ghrelin in Vertebrates. Front Endocrinol (Lausanne) 2019; 10:278. [PMID: 31156548 PMCID: PMC6533539 DOI: 10.3389/fendo.2019.00278] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 04/16/2019] [Indexed: 12/14/2022] Open
Abstract
The energy balance of vertebrates is regulated by the difference in energy input and energy expenditure. Generally, most vertebrates obtain their energy from nutrients of foods through the gastrointestinal (GI) tract. Therefore, food intake and following food digestion, including motility of the GI tract, secretion and absorption, are crucial physiological events for energy homeostasis. GI motility changes depending on feeding, and GI motility is divided into fasting (interdigestive) and postprandial (digestive) contraction patterns. GI motility is controlled by contractility of smooth muscles of the GI tract, extrinsic and intrinsic neurons (motor and sensory) and some hormones. In mammals, ghrelin (GHRL) and motilin (MLN) stimulate appetite and GI motility and contribute to the regulation of energy homeostasis. GHRL and MLN are produced in the mucosal layer of the stomach and upper small intestine, respectively. GHRL is a multifunctional peptide and is involved in glucose metabolism, endocrine/exocrine functions and cardiovascular and reproductive functions, in addition to feeding and GI motility in mammals. On the other hand, the action of MLN is restricted and species such as rodentia, including mice and rats, lack MLN peptide and its receptor. From a phylogenetic point of view, GHRL and its receptor GHS-R1a have been identified in various vertebrates, and their structural features and various physiological functions have been revealed. On the other hand, MLN or MLN-like peptide (MLN-LP) and its receptors have been found only in some fish, birds and mammals. Here, we review the actions of GHRL and MLN with a focus on contractility of the GI tract of species from fish to mammals.
Collapse
Affiliation(s)
- Takio Kitazawa
- Comparative Animal Pharmacology, Department of Veterinary Science, Rakuno Gakuen University, Ebetsu, Japan
- *Correspondence: Takio Kitazawa
| | - Hiroyuki Kaiya
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| |
Collapse
|
6
|
Apu AS, Mondal A, Kitazawa T, Takemi S, Sakai T, Sakata I. Molecular cloning of motilin and mechanism of motilin-induced gastrointestinal motility in Japanese quail. Gen Comp Endocrinol 2016; 233:53-62. [PMID: 27179882 DOI: 10.1016/j.ygcen.2016.05.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 05/10/2016] [Accepted: 05/11/2016] [Indexed: 12/16/2022]
Abstract
Motilin, a peptide hormone produced in the upper intestinal mucosa, plays an important role in the regulation of gastrointestinal (GI) motility. In the present study, we first determined the cDNA and amino acid sequences of motilin in the Japanese quail and studied the distribution of motilin-producing cells in the gastrointestinal tract. We also examined the motilin-induced contractile properties of quail GI tracts using an in vitro organ bath, and then elucidated the mechanisms of motilin-induced contraction in the proventriculus and duodenum of the quail. Mature quail motilin was composed of 22 amino acid residues, which showed high homology with chicken (95.4%), human (72.7%), and dog (72.7%) motilin. Immunohistochemical analysis showed that motilin-immunopositive cells were present in the mucosal layer of the duodenum (23.4±4.6cells/mm(2)), jejunum (15.2±0.8cells/mm(2)), and ileum (2.5±0.7cells/mm(2)), but were not observed in the crop, proventriculus, and colon. In the organ bath study, chicken motilin induced dose-dependent contraction in the proventriculus and small intestine. On the other hand, chicken ghrelin had no effect on contraction in the GI tract. Motilin-induced contraction in the duodenum was not inhibited by atropine, hexamethonium, ritanserin, ondansetron, or tetrodotoxin. However, motilin-induced contractions in the proventriculus were significantly inhibited by atropine and tetrodotoxin. These results suggest that motilin is the major stimulant of GI contraction in quail, as it is in mammals and the site of action of motilin is different between small intestine and proventriculus.
Collapse
Affiliation(s)
- Auvijit Saha Apu
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Anupom Mondal
- Area of Life-NanoBio, Division of Strategy Research, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Takio Kitazawa
- Comparative Animal Pharmacology Department of Veterinary Science, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Shota Takemi
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Takafumi Sakai
- Area of Life-NanoBio, Division of Strategy Research, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Ichiro Sakata
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama 338-8570, Japan.
| |
Collapse
|
7
|
Dudani A, Aizawa S, Zhi G, Tanaka T, Jogahara T, Sakata I, Sakai T. The proximal gastric corpus is the most responsive site of motilin-induced contractions in the stomach of the Asian house shrew. J Comp Physiol B 2016; 186:665-75. [PMID: 27062028 DOI: 10.1007/s00360-016-0985-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 03/24/2016] [Accepted: 03/29/2016] [Indexed: 11/27/2022]
Abstract
The migrating motor complex (MMC) is responsible for emptying the stomach during the interdigestive period, in preparation for the next meal. It is known that gastric phase III of MMC starts from the proximal stomach and propagates the contraction downwards. We hypothesized that a certain region of the stomach must be more responsive to motilin than others, and that motilin-induced strong gastric contractions propagate from that site. Stomachs of the Suncus or Asian house shrew, a small insectivorous mammal, were dissected and the fundus, proximal corpus, distal corpus, and antrum were examined to study the effect of motilin using an organ bath experiment. Motilin-induced contractions differed in different parts of the stomach. Only the proximal corpus induced gastric contraction even at motilin 10(-10) M, and strong contraction was induced by motilin 10(-9) M in all parts of the stomach. The GPR38 mRNA expression was also higher in the proximal corpus than in the other sections, and the lowest expression was observed in the antrum. GPR38 mRNA expression varied with low expression in the mucosal layer and high expression in the muscle layer. Additionally, motilin-induced contractions in each dissected part of the stomach were inhibited by tetrodotoxin and atropine pretreatment. These results suggest that motilin reactivity is not consistent throughout the stomach, and an area of the proximal corpus including the cardia is the most sensitive to motilin.
Collapse
Affiliation(s)
- Amrita Dudani
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Sayaka Aizawa
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama, 700-8530, Japan
| | - Gong Zhi
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Toru Tanaka
- Department of Pharmaceutical and Health Sciences, Faculty of Pharmaceutical Sciences, Josai University, 1-1 Keiyaki dai, Sakado, Saitama, 350-0295, Japan
| | - Takamichi Jogahara
- Laboratory of Animal Management and Resources, Department of Zoology, Faculty of Science, Okayama University of Science, 1-1 Ridaicho, Kita-ku, Okayama, 700-0005, Japan
| | - Ichiro Sakata
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Takafumi Sakai
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, 338-8570, Japan.
| |
Collapse
|
8
|
Depoortere I. Can small non-peptide motilin agonists force a breakthrough as gastroprokinetic drugs? Br J Pharmacol 2013; 167:760-2. [PMID: 22616752 DOI: 10.1111/j.1476-5381.2012.02046.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
GSK962040 is a small selective motilin receptor agonist currently under investigation in clinical trials for the treatment of conditions associated with delayed gastric emptying. As reported in this issue of the British Journal of Pharmacology, Broad et al., studied for the first time the region-dependent contractile effects of motilin and GSK962040 in human smooth muscle strips. Both compounds facilitated cholinergically mediated contractions of human gastric antral muscle strips at low concentrations and induced smooth muscle contractions at high concentrations. The effect was less pronounced in the fundus and almost absent in the colon. The long-lasting facilitation of cholinergic responses in the antrum by GSK962040 compared with the fading responses to motilin may be of importance from a clinical point of view. The approach used by Broad et al. with human tissue is a validated model to identify motilin receptor agonists with therapeutic value.
Collapse
Affiliation(s)
- Inge Depoortere
- Translational Research Center for Gastrointestinal Disorders, Catholic University of Leuven, Herestraat 49, Leuven, Belgium.
| |
Collapse
|
9
|
Mondal A, Kawamoto Y, Yanaka T, Tsutsui C, Sakata I, Oda SI, Tanaka T, Sakai T. Myenteric neural network activated by motilin in the stomach of Suncus murinus (house musk shrew). Neurogastroenterol Motil 2011; 23:1123-31. [PMID: 22029733 DOI: 10.1111/j.1365-2982.2011.01801.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND It has been shown in human and canine studies that motilin, a gastroprokinetic hormone, induces gastric phase III contractions via the enteric nervous; however, the center of motilin action in the stomach has not been clearly revealed. In the present study, we investigated the neural pathway of motilin-induced gastric contraction by using Suncus murinus, a new animal model for motilin study. METHODS An isolated suncus stomach was used in vitro to determine the mechanism of motilin action through the myenteric plexus. Synthetic suncus motilin (10(-11) -10(-7) molL(-1) ) was added to an organ bath, and the spontaneous contraction response was expressed as a percent of ACh (10(-5) molL(-1) ) responses. Motilin-induced contractions were also studied by a pharmacological method using several receptor antagonists and enzyme inhibitor. KEY RESULTS Suncus motilin induced a concentration-dependent gastric contraction at concentrations from 10(-9) to 10(-7) molL(-1) . The responses to suncus motilin in the stomach were completely abolished by atropine and tetrodotoxin treatment and significantly suppressed by administration of hexamethonium, verapamil, phentolamine, yohimbine, ondansetron, and naloxone, whereas ritanserin, prazosin, timolol, and FK888 did not affect the action of motilin. Additionally, N-nitro l-arginine methylester slightly potentiated the contractions induced by motilin. CONCLUSIONS & INFERENCES The results indicate that motilin directly stimulates and modulates suncus gastric contraction through cholinergic, adrenergic, serotonergic, opioidergic, and NO neurons in the myenteric plexus.
Collapse
Affiliation(s)
- A Mondal
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, Sakura-ku, Saitama, Japan
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Liu H, Qiu D, Zhou X, Niu W, Qin X, Cai Y, Wang J, Chen Y. Erythromycin inhibited glycinergic inputs to gastric vagal motoneurons in brainstem slices of newborn rats. Neurogastroenterol Motil 2010; 22:1232-9. [PMID: 20731779 DOI: 10.1111/j.1365-2982.2010.01586.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND Motilin has been known to stimulate the motility of digestive organs peripherally via activation of motilin receptors located at gastrointestinal (GI) cholinergic nerve endings and/or smooth muscle cells. Recent studies have indicated that motilin may also promote GI motility via actions in the central nervous system; however the sites of action and the mechanisms are not clear yet. The present study aimed to test the hypothesis that motilin receptor agonist erythromycin alters the synaptic inputs of preganglionic gastric vagal motoneurons (GVMs) located in the dorsal motor nucleus of the vagus (DMV). METHODS Gastric vagal motoneurons were retrogradely labeled by fluorescent tracer from the stomach wall of newborn rats. Fluorescently labeled GVMs in DMV were recorded using whole-cell patch-clamp in brainstem slices and the effects of motilin receptor agonist erythromycin on the synaptic inputs were examined. KEY RESULTS Erythromycin (100 nmol L(-1), 1 μmol L(-1), 10 μmol L(-1)) significantly inhibited the frequency of glycinergic spontaneous inhibitory postsynaptic currents (sIPSCs) of GVMs and significantly inhibited the amplitude at the concentration of 10 μmol L(-1). These responses were prevented by GM-109, a selective motilin receptor antagonist. In the pre-existence of tetradotoxin (TTX, 1 μmol L(-1)), erythromycin (10 μmol L(-1)) caused significant decreases of the glycinergic miniature inhibitory postsynaptic currents (mIPSCs), in both the frequency and the amplitude. However, erythromycin (10 μmol L(-1)) didn't cause significant changes of the GABAergic sIPSCs. CONCLUSIONS & INFERENCES Erythromycin selectively inhibits the glycinergic inputs of GVMs.
Collapse
Affiliation(s)
- H Liu
- The State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University Shanghai Medical College, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
11
|
De Smet B, Mitselos A, Depoortere I. Motilin and ghrelin as prokinetic drug targets. Pharmacol Ther 2009; 123:207-23. [DOI: 10.1016/j.pharmthera.2009.04.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Accepted: 04/09/2009] [Indexed: 12/13/2022]
|
12
|
Collins CB, McGrath J, Baird AW, Campion DP. Effect of Mast Cell Degranulation on Chicken Ileal Ion Transport In Vitro. Poult Sci 2007; 86:843-9. [PMID: 17435017 DOI: 10.1093/ps/86.5.843] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Histamine is a primary mediator of the inflammatory response in mammals. Degranulation of intestinal mast cells results in the release of mast cell mediators such as histamine. Histamine stimulates epithelial ion transport in a range of mammalian tissues via specific histamine receptors. The aim of this study was to assess a potential role of tissue mast cells and of exogenous histamine in the regulation of ion transport in avian mucosa. Broiler chicken ileal histamine release and secretory responses to mast cell degranulation were determined in vitro with the use of ELISA and Ussing chamber techniques. Pharmacological degranulation of mucosal mast cells using compound 48/80 (15 microg/mL) resulted in histamine release and an immediate-onset transient increase in transmural short-circuit current. The response to compound 48/80 was subject to tachyphylaxis and was significantly reduced in the presence of the histamine H(1) antagonist mepyramine, but was unaffected by the cyclooxygenase inhibitor piroxicam. Prior incubation with the mast cell stabilizer ketotifen prevented compound 48/80-induced increase in transmural short-circuit current. In conclusion, degranulation of avian intestinal mast cells would appear to result in histamine release that stimulates epithelial ion transport via histamine H(1) receptor activation. Although prostaglandin E(2) is a potent secretagogue in the avian small intestine epithelium, prostanoid production appears to have little role to play in mast cell-mediated epithelial ion transport.
Collapse
Affiliation(s)
- C B Collins
- UCD School of Agriculture, Food Science and Veterinary Medicine and Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | |
Collapse
|
13
|
Haramura M, Okamachi A, Tsuzuki K, Yogo K, Ikuta M, Kozono T, Takanashi H, Murayama E. Design and synthesis of N-terminal cyclic motilin partial peptides: a novel pure motilin antagonist. Chem Pharm Bull (Tokyo) 2001; 49:40-3. [PMID: 11201222 DOI: 10.1248/cpb.49.40] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Motilin antagonist was designed and synthesized on the basis of the structure-activity relationship analysis of porcine motilin that we reported recently. The drug design was performed on a specific concept to reduce a flexibility of peptide conformation of porcine motilin partial peptide by its cyclization. The cyclic peptide was synthesized using Boc (tert-butyloxycarbonyl) solid phase methodology, followed by cyclization using the azide procedure, and tested for the binding activity to motilin receptor and smooth muscle contractile activity. The cyclic peptides 3, 4, and 5 showed antagonistic property on contraction assay (pA2 [the negative logarithm of molar concentration of antagonist causing a 2-hold shift to the right of the concentration-response curve for motilin]: 4.5, 4.34, and 4.04, respectively, in rabbit duodenum) and no contractile activity even at high concentration.
Collapse
Affiliation(s)
- M Haramura
- Fuji-Gotemba Research Laboratories, Chugai Pharmaceutical Co. Ltd., Shizuoka, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Van Assche G, Depoortere I, Thijs T, Janssens JJ, Peeters TL. Concentration-dependent stimulation of cholinergic motor nerves or smooth muscle by [Nle13]motilin in the isolated rabbit gastric antrum. Eur J Pharmacol 1997; 337:267-74. [PMID: 9430424 DOI: 10.1016/s0014-2999(97)01317-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In man, rabbit and cat, the effects of motilin and motilides are neurally mediated in vivo, whereas in vitro binding and contractility studies suggest the presence of a smooth muscular receptor. The aim of this study was to investigate in vitro interactions of motilin with the enteric excitatory neurotransmission in the gastric antrum of the rabbit. Circular muscle strips from the pre-pyloric antrum were subjected to electrical field stimulation (1 ms, 1-32 Hz, 10 s train) and muscle twitch responses were recorded isometrically. Induced twitch responses were frequency dependent (1-32 Hz) and entirely neurogenic (tetrodotoxin sensitive). [Nle13]motilin dose-dependently (10[-9]-10[-8] M) enhanced the amplitude of, atropine sensitive, evoked contractions. At 4 Hz the response, expressed as a % of the response to 32 Hz, increased from 15.5 +/- 4.1% (control) to 28.1 +/- 5.8% (motilin 10[-9] M), and to 45.8 +/- 3.6% (motilin 10[-8.5] M) (P < 0.05). This effect was not inhibited by hexamethonium (10[-3.3] M) but was abolished by the motilin receptor antagonist GM-109 (10[-5] M). In unstimulated strips, motilin induced phasic-tonic contractions with a threshold concentration of 10[-8] M and an pEC50 of 7.48, which were also inhibited by GM-109 (10[-5] M) but not by tetrodotoxin (10[-5.5] M). The maximal tension, frequency and dose-dependency of carbachol-induced contractions were not influenced by motilin (pEC50, carbachol: 6.48 +/- 0.06 (control), 6.49 +/- 0.07 (motilin)). In conclusion, motilin enhances contractions induced by electrical field stimulation in the rabbit antrum by a post-ganglionic interaction with the cholinergic neurotransmission in vitro at low doses and interacts directly with antral smooth muscle at high doses. This model is an accurate reflection of the in vivo effects of motilin and provides a tool to study neurogenic and myogenic actions of motilin and motilides in vitro.
Collapse
Affiliation(s)
- G Van Assche
- Department of Pathophysiology, University of Leuven, Belgium
| | | | | | | | | |
Collapse
|
15
|
Kitazawa T, Taneike T, Ohga A. Functional characterization of neural and smooth muscle motilin receptors in the chicken proventriculus and ileum. REGULATORY PEPTIDES 1997; 71:87-95. [PMID: 9416990 DOI: 10.1016/s0167-0115(97)01024-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
To characterize the motilin receptors present in the chicken, the effects of chicken motilin (Phe-Val-Pro-Phe-Phe-Thr-Gln-Ser-Asp-Ile-Gln-Lys-Met-Gln-Glu-Lys-Glu-Arg -Asn-Lys-Gly-Gln), Leu13 porcine motilin, canine motilin and three erythromycin derivatives (EMA, EM523, GM611) on the contractility of the chicken gastrointestinal (GI) smooth muscles were investigated in vitro and compared with those in the rabbit duodenum. In the proventriculus longitudinal and circular muscle layers, chicken motilin (3 nM-1 microM) caused an atropine- and a tetrodotoxin-sensitive contraction (EC50 = 39-49 nM), and potentiated the EFS-induced contraction without affecting the responsiveness of acetylcholine. EM523 and GM611 (3-100 microM) contracted the proventriculus longitudinal muscle, and the maximum amplitudes of contraction were about 60% of that induced by chicken motilin. Chicken motilin (0.1 nM-100 nM) also caused contraction of the ileum (EC50 = 7 nM) through direct action on the smooth muscle cells. On the other hand, erythromycin derivatives showed only a weak contractile efficacy (about 20% of the maximum response of chicken motilin) even at high concentrations (10-100 microM). The rank order of potency in the ileum was chicken motilin > canine motilin > or = Leu13 porcine motilin > > GM611 > or = EM523 > or = EMA. GM109 slightly inhibited the ideal contractions induced by Leu13 porcine motilin at 100 microM (pA2 = 3.86). In the rabbit duodenum, chicken motilin was a full agonist with the same intrinsic activity as Leu13 porcine motilin, canine motilin and the erythromycin derivatives. However, the rank order of potency (Leu13 porcine motilin > or = canine motilin > chicken motilin > GM611 > or = EM523 > EMA) was different from that in the chicken ileum. In conclusion, chicken motilin causes an excitatory response in the chicken GI tract through activation of neural (proventriculus) and smooth muscle motilin receptors (ileum). The motilin receptor present in the ileum is different from that demonstrated in the rabbit intestine, because of a different rank order of motilin peptides in producing the contraction, low contracting activity of erythromycin derivatives and low antagonistic efficacy of GM109. Different pharmacological characteristics of the mechanical response induced by motilin peptides and erythromycin derivatives between the proventriculus and the ileum are discussed.
Collapse
Affiliation(s)
- T Kitazawa
- Department of Pharmacology, Faculty of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan
| | | | | |
Collapse
|