1
|
Guo Z, Czerpaniak K, Zhang J, Cao YQ. Increase in trigeminal ganglion neurons that respond to both calcitonin gene-related peptide and pituitary adenylate cyclase-activating polypeptide in mouse models of chronic migraine and posttraumatic headache. Pain 2021; 162:1483-1499. [PMID: 33252452 PMCID: PMC8049961 DOI: 10.1097/j.pain.0000000000002147] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/26/2020] [Indexed: 01/05/2023]
Abstract
A large body of animal and human studies indicates that blocking peripheral calcitonin gene-related peptide (CGRP) and pituitary adenylate cyclase-activating polypeptide (PACAP) signaling pathways may prevent migraine episodes and reduce headache frequency. To investigate whether recurring migraine episodes alter the strength of CGRP and PACAP signaling in trigeminal ganglion (TG) neurons, we compared the number of TG neurons that respond to CGRP and to PACAP (CGRP-R and PACAP-R, respectively) under normal and chronic migraine-like conditions. In a mouse model of chronic migraine, repeated nitroglycerin (NTG) administration significantly increased the number of CGRP-R and PACAP-R neurons in TG but not dorsal root ganglia. In TG neurons that express endogenous αCGRP, repeated NTG led to a 7-fold increase in the number of neurons that respond to both CGRP and PACAP (CGRP-R&PACAP-R). Most of these neurons were unmyelinated C-fiber nociceptors. This suggests that a larger fraction of CGRP signaling in TG nociceptors may be mediated through the autocrine mechanism, and the release of endogenous αCGRP can be enhanced by both CGRP and PACAP signaling pathways under chronic migraine condition. The number of CGRP-R&PACAP-R TG neurons was also increased in a mouse model of posttraumatic headache (PTH). Interestingly, low-dose interleukin-2 treatment, which completely reverses chronic migraine-related and PTH-related behaviors in mouse models, also blocked the increase in both CGRP-R and PACAP-R TG neurons. Together, these results suggest that inhibition of both CGRP and PACAP signaling in TG neurons may be more effective in treating chronic migraine and PTH than targeting individual signaling pathways.
Collapse
Affiliation(s)
- Zhaohua Guo
- Department of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110
| | - Katherine Czerpaniak
- Department of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110
| | - Jintao Zhang
- Department of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110
- Present address: Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China 510515
| | - Yu-Qing Cao
- Department of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
2
|
Mitochondrial function and malfunction in the pathophysiology of pancreatitis. Pflugers Arch 2012; 464:89-99. [PMID: 22653502 DOI: 10.1007/s00424-012-1117-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 05/11/2012] [Accepted: 05/15/2012] [Indexed: 12/13/2022]
Abstract
As a primary energy producer, mitochondria play a fundamental role in pancreatic exocrine physiology and pathology. The most frequent aetiology of acute pancreatitis is either gallstones or heavy alcohol consumption. Repeated episodes of acute pancreatitis can result in the development of chronic pancreatitis and increase the lifetime risk of pancreatic cancer 100-fold. Pancreatic cancer is one of the most common causes of cancer mortality with only about 3-4 % of patients surviving beyond 5 years. It has been shown that acute pancreatitis involves Ca²⁺ overload and overproduction of reactive oxygen species in pancreatic acinar cells. Both factors significantly affect mitochondria and lead to cell death. The pathogenesis of inflammation in acute and chronic pancreatitis is tightly linked to the induction of necrosis and apoptosis. There is currently no specific therapy for pancreatitis, but recent findings of an endogenous protective mechanism against Ca²⁺ overload--and particularly the potential to boost this protection--bring hope of new therapeutic approaches.
Collapse
|
3
|
Baumgartner HK, Gerasimenko JV, Thorne C, Ferdek P, Pozzan T, Tepikin AV, Petersen OH, Sutton R, Watson AJM, Gerasimenko OV. Calcium elevation in mitochondria is the main Ca2+ requirement for mitochondrial permeability transition pore (mPTP) opening. J Biol Chem 2009; 284:20796-803. [PMID: 19515844 PMCID: PMC2742844 DOI: 10.1074/jbc.m109.025353] [Citation(s) in RCA: 202] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Indexed: 01/16/2023] Open
Abstract
We have investigated in detail the role of intra-organelle Ca2+ content during induction of apoptosis by the oxidant menadione while changing and monitoring the Ca2+ load of endoplasmic reticulum (ER), mitochondria, and acidic organelles. Menadione causes production of reactive oxygen species, induction of oxidative stress, and subsequently apoptosis. In both pancreatic acinar and pancreatic tumor AR42J cells, menadione was found to induce repetitive cytosolic Ca2+ responses because of the release of Ca2+ from both ER and acidic stores. Ca2+ responses to menadione were accompanied by elevation of Ca2+ in mitochondria, mitochondrial depolarization, and mitochondrial permeability transition pore (mPTP) opening. Emptying of both the ER and acidic Ca2+ stores did not necessarily prevent menadione-induced apoptosis. High mitochondrial Ca2+ at the time of menadione application was the major factor determining cell fate. However, if mitochondria were prevented from loading with Ca2+ with 10 mum RU360, then caspase-9 activation did not occur irrespective of the content of other Ca2+ stores. These results were confirmed by ratiometric measurements of intramitochondrial Ca2+ with pericam. We conclude that elevated Ca2+ in mitochondria is the crucial factor in determining whether cells undergo oxidative stress-induced apoptosis.
Collapse
Affiliation(s)
- Heidi K. Baumgartner
- From the Physiological Laboratory, School of Biomedical Sciences
- the Division of Gastroenterology, School of Clinical Sciences, and
| | | | | | - Pawel Ferdek
- From the Physiological Laboratory, School of Biomedical Sciences
| | - Tullio Pozzan
- the Department of Biomedical Sciences and CNR Institute of Neurosciences, University of Padua, Viale G Colombo 3, 35121 Padua, Italy
| | | | - Ole H. Petersen
- From the Physiological Laboratory, School of Biomedical Sciences
| | - Robert Sutton
- the Division of Surgery and Oncology, School of Cancer Studies, Liverpool University, Liverpool L69 3BX, United Kingdom and
| | | | | |
Collapse
|
4
|
Bick RJ, Poindexter BJ, Davis RA, Schiess MC. Determination of the site of action of calcitonin gene-related peptide in the alteration of intracellular calcium levels in adult and neonatal rodent myocytes. Peptides 2005; 26:2231-8. [PMID: 15979760 DOI: 10.1016/j.peptides.2005.04.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2005] [Revised: 04/21/2005] [Accepted: 04/22/2005] [Indexed: 11/19/2022]
Abstract
The purpose of this study is to elucidate the mechanism of action and site of action of calcitonin gene-related peptide (CGRP) and its effects on calcium concentrations in two types of cardiomyocytes, neonatal and adult, by employing real-time fluorescence imaging. CGRP caused an increase in intramyocytic calcium with adult cells, but a decrease with neonates. Treatment of adult myocytes with ouabain and ryanodine yielded results suggesting that CGRP action is not at the ryanodine receptor (RyR) and does not involve Na+ +K+ ATPase. Furthermore, in neonatal cardiomyocytes CGRP caused a reduction in intramyocytic calcium levels, and challenges with ryanodine and ouabain gave results supporting the hypothesis that CGRP acts at the sarcolemmal L-type calcium channel. Employing real-time fluorescence measurements in cultured, dedifferentiated adult cardiomyocytes, which are known to express a fetal phenotype and exhibit neonatal-like calcium transients, our acquisitions demonstrated a major reduction in intracellular calcium levels. Finally, our collaborative studies in human myocardium using fluorescence deconvolution microscopy revealed that CGRP localization was found in a pattern similar to that of the sarcolemmal L-type calcium channel.
Collapse
Affiliation(s)
- Roger J Bick
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, 6431 Fannin Street, Houston, TX 77030, USA.
| | | | | | | |
Collapse
|
5
|
Bertelli E, Bendayan M. Association between endocrine pancreas and ductal system. More than an epiphenomenon of endocrine differentiation and development? J Histochem Cytochem 2005; 53:1071-86. [PMID: 15956021 DOI: 10.1369/jhc.5r6640.2005] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Traditional histological descriptions of the pancreas distinguish between the exocrine and the endocrine pancreas, as if they were two functionally distinct glands. This view has been proven incorrect and can be considered obsolete. Interactions between acinar and islet tissues have been well established through numerous studies that reveal the existence of anatomical and functional relationships between these compartments of the gland. Less attention, however, has traditionally been paid to the relationships occurring between the endocrine pancreas and the ductal system. Associations between islet tissue and ducts are considered by most researchers as only a transient epiphenomenon of endocrine development. This article reviews the evidence that has emerged in the last 10 years demonstrating the existence of stable, close, and systematic relationships between these two pancreatic compartments. Functional and pathophysiological implications are considered, and the existence of an "acinar-duct-islet" axis is put forward. The pancreas appears at present to be an integrated organ composed of three functionally related components of well-orchestrated endocrine and exocrine physiological responses.
Collapse
Affiliation(s)
- Eugenio Bertelli
- Department of Pharmacology Giorgio Segre, Section of Morphology, University of Siena, Via Aldo Moro 4, I-53100 Siena, Italy.
| | | |
Collapse
|
6
|
Young A. Effects on digestive secretions. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2005; 52:123-50. [PMID: 16492544 DOI: 10.1016/s1054-3589(05)52007-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Rat amylin subcutaneously injected into rats dose-dependently inhibits pentagastrin-stimulated gastric acid secretion and protects the stomach from ethanol-induced gastritis. The ED50s for these actions (0.050 and 0.036 microg, respectively) are the lowest for any dose-dependent effect of amylin thus far described, and their similar potencies are consistent with a mechanistic (causal) association. At higher amylin doses, inhibition of gastric acid secretion was almost complete (93.4%). Gastric injury (measured by a subjective analog scale) was inhibited by up to 67%. The observation that effective doses of amylin result in plasma concentrations of 7-10 pM (i.e., within the reported range; Pieber et al., 1994) supports the interpretation that inhibition of gastric acid secretion and maintenance of gastric mucosal integrity are physiological actions of endogenous amylin. The pharmacology of these responses fits with one mediated via amylin-like receptors. Rat amylin inhibited CCK-stimulated secretion of pancreatic enzymes,amylase, and lipase by up to approximately 60% without having significant effect in the absence of CCK. ED50s for the effect were in the 0.1-0.2 microg range, calculated to produce plasma amylin excursions within the physiological range. Effects of informative ligands are consistent with the concept of amylin receptor mediation. Amylin was effective in ameliorating the severity of pancreatitis in a rodent model. The amylin analog pramlintide inhibited gallbladder emptying in mice as measured by total weight of acutely excised gallbladders. Amylin inhibition of gastric acid secretion, pancreatic enzyme secretion, and bile secretion likely represents part of an orchestrated control of nutrient appearance. Modulation of digestive function fits with a general role of amylin in regulating nutrient uptake. Rate of ingestion, rate of release from the stomach, and rate of digestion of various food groups appear to be under coordinate control.
Collapse
Affiliation(s)
- Andrew Young
- Amylin Pharmaceuticals, Inc., San Diego, California, USA
| |
Collapse
|
7
|
Zaki M, Koduru S, McCuen R, Vuyyuru L, Schubert ML. Amylin, released from the gastric fundus, stimulates somatostatin and thus inhibits histamine and acid secretion in mice. Gastroenterology 2002; 123:247-55. [PMID: 12105853 DOI: 10.1053/gast.2002.34176] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND & AIMS Amylin, a peptide that displays 50% homology with calcitonin gene-related peptide (CGRP), is colocalized with somatostatin in endocrine cells of the gastric fundus. The present study was designed to determine the mechanism of action of amylin on gastric exocrine and endocrine secretion. METHODS Acid secretion was measured in the isolated mouse stomach by titration. Somatostatin and histamine secretion were measured in rat fundic segments by radioimmunoassay. RESULTS In isolated mouse stomach, amylin caused a concentration-dependent decrease in acid secretion. In rat fundic segments, amylin and CGRP each caused a concentration-dependent increase in somatostatin and a decrease in histamine secretion. Changes in histamine secretion induced by amylin reflected changes in somatostatin secretion and could be abolished by addition of somatostatin antibody. Both the somatostatin and the histamine responses to amylin were abolished by the selective amylin antagonist AC187 but were unaffected by the CGRP antagonist CGRP8-37. In contrast, the responses to CGRP were abolished by CGRP8-37 but were unaffected by AC187. AC187 alone decreased somatostatin and increased histamine in fundic segments and increased acid secretion in isolated stomach, indicating that endogenous amylin participates in the regulation of gastric endocrine (somatostatin and histamine) and exocrine (acid) secretion. CONCLUSIONS In gastric fundus, release of amylin from somatostatin cells interacts with distinct amylin receptors to enhance somatostatin secretion via an autocrine pathway that leads to inhibition of histamine and acid secretion.
Collapse
Affiliation(s)
- Muhammad Zaki
- Department of Medicine, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia, USA
| | | | | | | | | |
Collapse
|
8
|
Cooper GJS. Amylin and Related Proteins: Physiology and Pathophysiology. Compr Physiol 2001. [DOI: 10.1002/cphy.cp070210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
9
|
Phillips AR, Abu-Zidan FM, Farrant GJ, Zwi JL, Cooper GJ, Windsor JA. Plasma amylin concentration is related to the severity of intestinal ischemic injury in rats. Surgery 2001; 129:730-5. [PMID: 11391372 DOI: 10.1067/msy.2001.113892] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Previous work has demonstrated that intestinal ischemia increases plasma amylin concentration. This study examined the relationship between the degree of intestinal ischemia injury and plasma amylin in an experimental rat model. METHODS Wistar rats were divided into a control group (n = 6); a sham-operated group (n = 9); and 3 intestinal ischemia-reperfusion groups (n = 8 in each), which underwent clamping of the superior mesenteric artery for either 15, 30, or 45 minutes followed by 15 minutes of reperfusion. Samples were then collected for intestinal histology and measurement of amylin, insulin, and glucose. RESULTS There was a positive correlation between the histologic score of the intestinal injury and the measured plasma amylin concentration (R = 0.48, P =.007). The median plasma concentration of amylin was 62 pmol/L (range, 42-97 pmol/L) in the 30-minute intestinal ischemia group and 58 pmol/L (42-86 pmol/L) in the 45-minute intestinal ischemia group. Both these groups were increased compared with the sham-operated group (29 pmol/L; range, 22-57 pmol/L; P <.001 and P <.005, respectively) and the control group (28 pmol/L; range, 26-42 pmol/L; P <.001 and P <.0005, respectively). The median plasma concentration of insulin in the 30-minute intestinal ischemia group was 4230 pmol/L (range, 1360-5770 pmol/L), which was increased compared with both the control group (950 pmol/L; range, 550-1510 pmol/L; P <.005) and the sham-operated group (720 pmol/L; range, 280-4180 pmol/L; P<.005). There were no differences between any of the other groups either for glucose, insulin, or amylin. CONCLUSIONS Plasma amylin concentration is related to the severity of intestinal ischemic injury.
Collapse
Affiliation(s)
- A R Phillips
- Pancreatitis Research Group, Department of Surgery, University of Auckland, Auckland, New Zealand
| | | | | | | | | | | |
Collapse
|
10
|
Sibilia V, Pagani F, Lattuada N, Rapetti D, Guidobono F, Netti C. Amylin compared with calcitonin: competitive binding studies in rat brain and antinociceptive activity. Brain Res 2000; 854:79-84. [PMID: 10784109 DOI: 10.1016/s0006-8993(99)02286-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Binding studies for rat amylin (AMY) and salmon calcitonin (sCT) were performed on rat membranes prepared from pons and medulla oblongata of rats. The aim was to see whether specific binding sites for AMY and/or for sCT present in these areas could be relevant to some of the biological activities of the two peptides. Binding sites specific for [125I]AMY are present in the pons-medulla of rat brain as AMY, but not sCT, was able to displace radiolabeled AMY binding with an IC50 = 3.7+/-0.5x10(-10) M. In contrast, binding of [125I]sCT was displaced by both sCT and AMY, although with different potencies, the IC50 for sCT being 1+/-0.1x10(-11) M, and for AMY, 1.8+/-0.08x10(-7) M. The functional significance of the presence of these binding sites was evaluated in two different nociceptive tests, hot-plate and tail-flick. In the tail-flick test neither AMY (5-10 microg/rat, i.c.v.) nor sCT (10 microg/rat i.c.v.) showed antinociceptive activity, whereas in the hot-plate test AMY (10 microg/rat, i.c.v.) significantly increased the response latencies as did sCT (250 ng/rat, i.c.v.). These results demonstrated that a 40-fold greater dose of AMY is necessary to produce a comparable antinociceptive effect to that exerted by sCT. These findings are in accordance with the low affinity of AMY for sCT binding sites in rat pons-medulla. It is therefore suggested that the central inhibitory activity of AMY on pain perception involves interaction with sCT receptors whereas the selective AMY binding sites subserve other (as yet unknown) functions.
Collapse
Affiliation(s)
- V Sibilia
- Department of Pharmacology, Chemotherapy and Medical Toxicology, University of Milano, Milan, Italy.
| | | | | | | | | | | |
Collapse
|
11
|
|
12
|
Wookey PJ, Cooper ME. Amylin: physiological roles in the kidney and a hypothesis for its role in hypertension. Clin Exp Pharmacol Physiol 1998; 25:653-60. [PMID: 9750952 DOI: 10.1111/j.1440-1681.1998.tb02272.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
1. There are high-affinity binding sites for amylin in the renal cortex associated with proximal tubules. These appear to represent seven transmembrane (heptatopic) receptors that are known to form ternary complexes with G-proteins and activate second messenger systems. 2. Amylin stimulates sodium/water reabsorption from the basolateral side of the proximal tubules and plays a role in sodium homeostasis. 3. The transient expression of amylin-like mRNA has been detected perinatally, using in situ hybridization, in the subnephrogenic zone of the metanephros and is associated with proximal tubules of the developing nephron. There it is thought to play a role as a growth factor for brush border epithelial cells in the developing kidney and in renal regrowth in the adult kidney. 4. In two models of hypertension, the spontaneously hypertensive rat (SHR) and one created surgically by subtotal nephrectomy, renal amylin receptors are activated. In the SHR, activation precedes the rise in blood pressure and suggests that activation of the amylin system may be an important event in the development of hypertension.
Collapse
Affiliation(s)
- P J Wookey
- Department of Medicine, University of Melbourne, Austin & Repatriation Medical Centre, West Heidelberg, Victoria, Australia.
| | | |
Collapse
|
13
|
Cui ZJ. Types of voltage-dependent calcium channels involved in high potassium depolarization-induced amylase secretion in the exocrine pancreatic tumour cell line AR4-2J. Cell Res 1998; 8:23-31. [PMID: 9570014 DOI: 10.1038/cr.1998.3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In the perifused fura-2 loaded exocrine pancreatic acinar cell line AR4-2J pulses of high potassium induced repetitive increases in intracellular calcium. Attached cells when stimulated with high potassium secreted large amount of amylase. High potassium-induced secretion was dependent both on the concentration of potassium and duration of stimulation. High potassium induced increases in intracellular calcium were inhibited by voltage-dependent calcium channel antagonists with an order of potency as follows: nifedipine > omega-agatoxin IVA > omega-conotoxin GVIA. In contrast, the L-type calcium channel antagonist nifedipine almost completely inhibited potassium-induced amylase secretion, whereas the N-type channel antagonist omega-conotoxin GVIA was without effect. The P-type channel antagonist omega-agatoxin IVA had a small inhibitory effect, but this inhibition was not significant at the level of amylase secretion. In conclusion, the AR4-2J cell line possesses different voltage-dependent calcium channels (L, P, N) with the L-type predominantly involved in depolarization induced amylase secretion.
Collapse
Affiliation(s)
- Z J Cui
- Beijing Agricultural University Faculty of Biological Sciences, China
| |
Collapse
|
14
|
Chai SY, Christopoulos G, Cooper ME, Sexton PM. Characterization of binding sites for amylin, calcitonin, and CGRP in primate kidney. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:F51-62. [PMID: 9458823 DOI: 10.1152/ajprenal.1998.274.1.f51] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Analysis of receptor distributions for 125I-labeled amylin, 125I-labeled calcitonin, and 125I-labeled calcitonin gene-related peptide (CGRP) in Macaca fascicularis kidney by in vitro autoradiography revealed distinct patterns of binding for each peptide. 125I-rat amylin bound primarily to the cortex, being associated with the distal tubule, including apparent binding to the juxtaglomerular apparatus. 125I-salmon calcitonin displayed high-density binding in the cortex with low-density binding to the medulla. Emulsion autoradiography indicated that binding was associated with both distal tubule and thick ascending limb of the loop of Henle. Intense binding was also found often over juxtaglomerular apparatus. 125I-rat CGRP-alpha exhibited low- to moderate-density binding to the inner medulla/papilla with high-density binding over small-, medium-, and large-caliber arteries. Weak binding to the glomerulus was also seen, but no binding was associated with cortical tubules. Competition binding studies, performed with each of the radioligands, revealed peptide specificity profiles for CGRP and calcitonin receptors that were similar to those described in rat. However, the monkey amylin receptors differed from those in rat, exhibiting relatively higher affinity for calcitonin peptides but reduced affinity for CGRP peptides. These studies suggest potential roles for amylin, calcitonin, and CGRP in primate renal function.
Collapse
Affiliation(s)
- S Y Chai
- Howard Florey Institute of Experimental Physiology and Medicine, Parkville, Victoria, Australia
| | | | | | | |
Collapse
|