1
|
Novel insights on GM1 and Parkinson's disease: A critical review. Glycoconj J 2022; 39:27-38. [PMID: 35064857 PMCID: PMC8979868 DOI: 10.1007/s10719-021-10019-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/02/2021] [Accepted: 08/24/2021] [Indexed: 11/24/2022]
Abstract
GM1 is a crucial component of neuronal membrane residing both in the soma and nerve terminals. As reported in Parkinson’s disease patients, the reduction of GM1 determines the failure of fundamental functional processes leading to cumulative cell distress up to neuron death. This review reports on the role of GM1 in the pathogenesis of the disease, illustrating the current data available but also hypotheses on the additional mechanisms in which GM1 could be involved and which require further study. In the manuscript we discuss these points trying to explain the role of diminished content of brain GM1, particularly in the nigro-striatal system, in Parkinson’s disease etiology and progression.
Collapse
|
2
|
|
3
|
Inokuchi JI. Neurotrophic and neuroprotective actions of an enhancer of ganglioside biosynthesis. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2009; 85:319-36. [PMID: 19607978 DOI: 10.1016/s0074-7742(09)85022-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
To address the role of brain gangliosides in synaptic plasticity, the synthetic ceramide analog, 1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP) was used to manipulate the biosynthesis of gangliosides in cultured cortical neurons. Spontaneous synchronized oscillatory activity of intracellular Ca(2+) between the neurons, which represents synapse formation, was suppressed by the depletion of endogenous gangliosides by d-threo-PDMP, an inhibitor of glucosylceramide synthase. On the other hand, the enantiomer of inhibitor, l-threo-PDMP, could elevate cellular levels of gangliosides by upregulating several glycosyltransferases responsible for ganglioside biosynthesis. This review presents our findings on the neurotrophic actions of l-threo-PDMP in vitro and in vivo. We found that l-PDMP could upregulate neurite outgrowth, and functional synapse formation through activating GM3, GD3, and GQ1b synthases. Simultaneously, the activity of p42 mitogen-activated protein kinase was also facilitated by l-PDMP. To evaluate the efficacy of this drug on long term memory, rats were trained for 2 weeks using an 8-arm radial maze task, and then forebrain ischemia was induced by four-vessel occlusion. Repeated treatment of l-PDMP starting 24h after the ischemia, improved the deficit of the well-learned spatial memory and prevented the ischemia-induced apoptosis in hippocampus, demonstrating the potential therapeutic use of the ceramide analog for treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Jin-Ichi Inokuchi
- Division of Glycopathology, Institute of Molecular Biomembranes and Glycobiology, Tohoku Pharmaceutical University, 4-4-1, komatsushima, Aoba-ku, Sendai 981-8558, Miyagi, Japan
| |
Collapse
|
4
|
Yamagishi K, Mishima K, Ohgami Y, Iwasaki K, Jimbo M, Masuda H, Igarashi Y, Inokuchi JI, Fujiwara M. A synthetic ceramide analog ameliorates spatial cognition deficit and stimulates biosynthesis of brain gangliosides in rats with cerebral ischemia. Eur J Pharmacol 2003; 462:53-60. [PMID: 12591095 DOI: 10.1016/s0014-2999(03)01325-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A synthetic ceramide analog, L-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (L-PDMP) upregulates ganglioside biosynthesis in several cell lines. In cultured cortical neurons, neurotrophic effects of L-PDMP on neurite outgrowth and synaptic activity were demonstrated. In addition, it was found that L-PDMP could ameliorate the spatial cognition deficit in rats with ischemia. To elucidate this effect, we evaluated the effect of L-PDMP on brain ganglioside biosynthesis and its therapeutic efficacy against spatial cognition deficit in rats made ischemic. Rats were trained for 2 weeks, using an 8-arm radial maze task, and then forebrain ischemia was induced. L-PDMP was injected i.p. at 40 mg/kg twice a day starting from day 1 or 3 after ischemia induction for 6 or 4 days, respectively. The first study showed significantly reduced spatial cognition deficit at 12 h after the final drug administration, and L-PDMP tended to attenuate apoptosis in hippocampal CA1. To examine the effect of L-PDMP on brain ganglioside biosynthesis, N-[3H]acetyl-D-mannosamine was infused into the lateral ventricle via an injection cannula at 12 h after the final drug administration. After 4 h, the brain gangliosides were purified and analyzed. Upregulation of ganglioside biosynthesis by L-PDMP was observed on days 3 and 5 after ischemia. These results are an indication that L-PDMP may ameliorate spatial cognition deficit by upregulating ganglioside biosynthesis in ischemic brain.
Collapse
Affiliation(s)
- Kiwamu Yamagishi
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan, Fukuoka 814-80, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Fujii S, Igarashi K, Sasaki H, Furuse H, Ito KI, Kaneko K, Kato H, Inokuchi JI, Waki H, Ando S. Effects of the mono- and tetrasialogangliosides GM1 and GQ1b on ATP-induced long-term potentiation in hippocampal CA1 neurons. Glycobiology 2002; 12:339-44. [PMID: 12070076 DOI: 10.1093/glycob/12.5.339] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The effects of the mono- and tetrasialogangliosides, GM1 and GQ1b, on ATP-induced long-term potentiation (LTP) were studied in CA1 neurons of guinea pig hippocampal slices. Application of 5 or 10 microM ATP for 10 min resulted in a transient depression followed by a slow augmentation of synaptic transmission, leading to LTP. LTP induced by treatment with 5 microM ATP was facilitated in hippocampal slices prepared from animals treated for 6 days with a ceramide analog, L-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propranol, which stimulates ganglioside biosynthesis. In addition, LTP induced by 5 microM ATP was significantly enhanced when naive slices were incubated with GQ1b but not with GM1. These results suggest that a cooperative effect between extracellular ATP and GQ1b enhances ATP-induced LTP in hippocampal CA1 neurons. In addition, the LTP induced by 10 microM ATP was blocked by coapplication of the NMDA antagonist AP5 (5 microM or 50 microM), and this effect was partially inhibited by GQ1b pretreatment of the slices, suggesting that in hippocampal CA1 neurons, the enhancing effect of GQ1b on ATP-induced LTP is mediated by modulation of NMDA receptors/Ca(2+) channels.
Collapse
Affiliation(s)
- Satoshi Fujii
- Department of Physiology, Yamagata University School of Medicine, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Saito Y, Takagi K, Teshima R, Ikebuchi H, Yamazaki T, Sawada J. Role of ecto-kinase in phorbol ester-enhanced growth hormone-binding protein release from human IM-9 cells. Mol Cell Endocrinol 1999; 152:65-72. [PMID: 10432224 DOI: 10.1016/s0303-7207(99)00055-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Previously we reported that a phorbol ester, phorbol 12, 13-dibutyrate (PDBu), increased the release of human growth hormone-binding protein (hGH-BP) in IM-9 cells, and that this phorbol ester-enhanced release was mediated by protein kinase Ca (PKCalpha). In the present study, the mechanisms of the phorbol ester-enhanced hGH-BP release were further investigated. Treatment of IM-9 cells with PDBu did not increase hGH-BPs (55-60 kDa) in the intracellular soluble fraction. When the cells were treated with trypsin to remove human growth hormone receptors (hGHRs) on the cell surface after stimulation, no hGH-BPs were detected in the culture supernatants, nor did treatment with bafilomycin A1 or chloroquine affect the PDBu-enhanced hGH-BP release. These results suggest that hGH-BPs released by PDBu stimulation are derived from cell surface hGHRs and not generated within the cells. Protein kinase inhibitors with broad specificities, K-252a and K-252b, inhibited the PDBu-enhanced release with almost the same dose-dependency, although only a trace amount of K-252b was incorporated into IM-9 cells than K-252a, suggesting that K-252b probably inhibits an ecto-kinase extracellularly. PDBu actually enhanced the phosphorylation of several extracellular proteins, and this enhanced phosphorylation was completely inhibited by K-252b treatment. Moreover, the PKCalpha-specific inhibitor bisindolylmaleimide III which inhibits PDBu enhanced hGH-BP release inhibited the PDBu-enhanced phosphorylation of extracellular proteins. On the other hand, the impermeable PKC inhibitor PKC inhibitor peptide 19-31 did not inhibit PDBu-enhanced release, suggesting that the target PKCalpha for PDBu is not present on the extracellular surface. Taken together, these results suggest that, in addition to intracellular PKCalpha, activation of an undefined ecto-kinase may also be involved in the PDBu-enhanced hGH-BP release.
Collapse
Affiliation(s)
- Y Saito
- Division of Biochemistry and Immunochemistry, National Institute of Health Sciences, Setagaya, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
7
|
Riboni L, Viani P, Bassi R, Prinetti A, Tettamanti G. The role of sphingolipids in the process of signal transduction. Prog Lipid Res 1997; 36:153-95. [PMID: 9624426 DOI: 10.1016/s0163-7827(97)00008-8] [Citation(s) in RCA: 150] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- L Riboni
- Department of Medical Chemistry and Biochemistry, Medical Faculty, University of Milan, Italy
| | | | | | | | | |
Collapse
|
8
|
Abstract
GM2 ganglioside, although scarce in normal adult brain, is the predominant ganglioside accumulating in several types of lysosomal disorders, most notably Tay-Sachs disease. Pyramidal neurons of cerebral cortex in Tay-Sachs, as well as many other types of neuronal storage disorders, are known to exhibit a phenomenon believed unique to storage disorders: growth of ectopic dendrites. Recent studies have shown that a common metabolic abnormality shared by storage diseases with ectopic dendrite growth is the abnormal accumulation of GM2 ganglioside. The correlation between increased levels of GM2 and the presence of ectopic dendrites has been found in both ganglioside and nonganglioside storage disorders, the latter including sphingomyelin-cholesterol lipidosis, mucopolysaccharidosis, and alpha-mannosidosis. Quantitative HPTLC analysis has shown that increases in GM2 occur in proportion to the incidence of ectopic dendrite growth, whereas other gangliosides, including GM1, lack similar increases. Immunocytochemical studies of all nonganglioside storage diseases which exhibit ectopic dendritogenesis have revealed heightened GM2 ganglioside-immunoreactivity in the cortical pyramidal cell population, whereas nerurons in normal adult brain exhibit little or no staining for this ganglioside. Further, studies examining disease development have consistently shown that accumulation of GM2 ganglioside precedes growth of ectopic dendrites, indicating that it is not simply occurring secondary to new membrane production. These findings have prompted an examination for a similar relationship between GM2 ganglioside and dendritogenesis in cortical neurons of normal developing brain. Results show that GM2 ganglioside-immunoreactivity is consistently elevated in immature neurons during the period when they are undergoing active dendritic initiation, but this staining diminishes dramatically as the dendritic trees of these cells mature. Collectively, these studies on diseased and normal brain offer compelling evidence that GM2 ganglioside plays a pivotal role in the regulation of dendritogenesis in cortical pyramidal neurons.
Collapse
Affiliation(s)
- S U Walkley
- Department of Neuroscience, Rose F. Kennedy Center for Research in Mental Retardation and Human Development, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
9
|
Terada T, Toyoda T, Ishida H, Kiso M, Hasegawa A. Synthetic Studies on Sialoglycoconjugates 74: Synthesis of KDN-gangliosides GM1, GM2, and GD1a. J Carbohydr Chem 1995. [DOI: 10.1080/07328309508005375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
Sjoberg ER, Chammas R, Ozawa H, Kawashima I, Khoo KH, Morris HR, Dell A, Tai T, Varki A. Expression of de-N-acetyl-gangliosides in human melanoma cells is induced by genistein or nocodazole. J Biol Chem 1995; 270:2921-30. [PMID: 7852370 DOI: 10.1074/jbc.270.7.2921] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Neuraminic acid is the core structure of most known sialic acids. In natural systems, the amino group at the 5 position of neuraminic acid residues is usually assumed to be acylated. Previously, synthetic de-N-acetyl-gangliosides (with free amino groups at the 5 position of neuraminic acids) have been shown to modulate cellular proliferation and tyrosine phosphokinase reactions. While indirect evidence has suggested that traces of these molecules exist naturally in certain tumor cells, further exploration has been hampered by the lack of a system showing consistent expression at an easily detectable level. Using synthetic compounds as antigens, we have developed highly specific monoclonal antibodies against de-N-acetyl-GM3 and de-N-acetyl-GD3 that require both the free amino group and the exocyclic side chain of sialic acids for recognition. Cultured human melanoma cells showed low but variably detectable levels of reactivity with these antibodies. The ability of various biologically active molecules to stimulate this reactivity was explored. Of many compounds tested, only the tyrosine kinase inhibitor genistein induced reactivity in a dose-dependent manner. Antibody reactivity with ganglioside extracts from genistein-treated cells was abolished by chemical re-N-acetylation and/or truncation of sialic acid side chains by mild periodate oxidation. High performance thin layer chromatography immuno-overlay analysis confirmed the presence of the novel compound de-N-acetyl-GD3 in these extracts. Several other tyrosine kinase inhibitors tested did not give the same increase in de-N-acetyl-ganglioside expression. However, the microtubule inhibitor nocodazole caused a similar accumulation of these molecules, particularly in non-adherent cells expected to be arrested at metaphase. Thus, genistein may induce de-N-acetyl-ganglioside expression by virtue of its known ability to arrest cells in the G2M phase, rather than as a general consequence of tyrosine kinase inhibition. These studies also provide a system in which to analyze the enzymatic basis of de-N-acetyl-ganglioside expression and their potential roles as growth regulating molecules.
Collapse
Affiliation(s)
- E R Sjoberg
- Glycobiology Program, University of California, San Diego, La Jolla 92093
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Brain gangliosides, a sialic acid-containing glycosphingolipid family enriched in brain, are discriminated from those of extra neural tissues by their characteristic structures of carbohydrate chain with large molecular diversity. Numerous minor components and monoclonal antibodies to them are useful to identify type, distribution and lineage of the cells, as shown in the recent finding of the ganglioside epitope of cholinergic neuron-specific Chol-1 antigens. Various cell biological effects of exogenous gangliosides (bioactive gangliosides) particularly with regard to cell growth and differentiation strongly suggest involvement of gangliosides and possibly their metabolic intermediates as second messenger in signaling pathways. The neuritogenic as well as synaptogenic effects of gangliosides may be interpreted by their action on protein kinases. The analysis of the neuritogenic activity of GQ1b ganglioside on human neuroblastoma cell lines strongly indicates the possibility that the action is carried out by coupling of GQ1b sugar-specific glycoreceptor of cell surface membrane and a unique, cell surface localized protein kinase (ecto-protein kinase) to phosphorylate cell surface protein(s) with extracellular ATP. This cell surface (ecto) type of protein phosphorylation system which is in contrast to intracellular (endo) type of protein phosphorylation seems to highly develop in neuron. Possible involvement of gangliosides in synaptic function including ion-transport and long-term potentiation is also suggested.
Collapse
Affiliation(s)
- Y Nagai
- Tokyo Metropolitan Institute of Medical Science, Japan
| |
Collapse
|
12
|
Affiliation(s)
- H K Ishida
- Department of Applied Bioorganic Chemistry, Gifu University, Japan
| | | | | | | |
Collapse
|
13
|
Nagai Y, Tsuji S. Significance of ganglioside-mediated glycosignal transduction in neuronal differentiation and development. PROGRESS IN BRAIN RESEARCH 1994; 101:119-26. [PMID: 8029445 DOI: 10.1016/s0079-6123(08)61944-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Y Nagai
- Tokyo Metropolitan Institute of Medical Science, Japan
| | | |
Collapse
|