1
|
Weerasinghe-Mudiyanselage PDE, Ang MJ, Kang S, Kim JS, Moon C. Structural Plasticity of the Hippocampus in Neurodegenerative Diseases. Int J Mol Sci 2022; 23:3349. [PMID: 35328770 PMCID: PMC8955928 DOI: 10.3390/ijms23063349] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 12/10/2022] Open
Abstract
Neuroplasticity is the capacity of neural networks in the brain to alter through development and rearrangement. It can be classified as structural and functional plasticity. The hippocampus is more susceptible to neuroplasticity as compared to other brain regions. Structural modifications in the hippocampus underpin several neurodegenerative diseases that exhibit cognitive and emotional dysregulation. This article reviews the findings of several preclinical and clinical studies about the role of structural plasticity in the hippocampus in neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, and multiple sclerosis. In this study, literature was surveyed using Google Scholar, PubMed, Web of Science, and Scopus, to review the mechanisms that underlie the alterations in the structural plasticity of the hippocampus in neurodegenerative diseases. This review summarizes the role of structural plasticity in the hippocampus for the etiopathogenesis of neurodegenerative diseases and identifies the current focus and gaps in knowledge about hippocampal dysfunctions. Ultimately, this information will be useful to propel future mechanistic and therapeutic research in neurodegenerative diseases.
Collapse
Affiliation(s)
- Poornima D. E. Weerasinghe-Mudiyanselage
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Korea; (P.D.E.W.-M.); (M.J.A.); (S.K.); (J.-S.K.)
| | - Mary Jasmin Ang
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Korea; (P.D.E.W.-M.); (M.J.A.); (S.K.); (J.-S.K.)
- College of Veterinary Medicine, University of the Philippines Los Baños, Los Baños 4031, Philippines
| | - Sohi Kang
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Korea; (P.D.E.W.-M.); (M.J.A.); (S.K.); (J.-S.K.)
| | - Joong-Sun Kim
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Korea; (P.D.E.W.-M.); (M.J.A.); (S.K.); (J.-S.K.)
| | - Changjong Moon
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Korea; (P.D.E.W.-M.); (M.J.A.); (S.K.); (J.-S.K.)
| |
Collapse
|
2
|
Gao T, Deng B, Wang J, Wang J, Yi G. The passive properties of dendrites modulate the propagation of slowly-varying firing rate in feedforward networks. Neural Netw 2022; 150:377-391. [DOI: 10.1016/j.neunet.2022.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/12/2022] [Accepted: 03/02/2022] [Indexed: 10/18/2022]
|
3
|
Age-related forgetting in locomotor adaptation. Neurobiol Learn Mem 2015; 128:1-6. [PMID: 26589520 DOI: 10.1016/j.nlm.2015.11.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 10/26/2015] [Accepted: 11/05/2015] [Indexed: 11/23/2022]
Abstract
The healthy aging process affects the ability to learn and remember new facts and tasks. Prior work has shown that motor learning can be adversely affected by non-motor deficits, such as time. Here we investigated how age, and a dual task influence the learning and forgetting of a new walking pattern. We studied healthy younger (<30 yo) and older adults (>50 yo) as they alternated between 5-min bouts of split-belt treadmill walking and resting. Older subjects learned a new walking pattern at the same rate as younger subjects, but forgot some of the new pattern during the rest breaks. We tested if forgetting was due to reliance on a cognitive strategy that was not fully engaged after rest breaks. When older subjects performed a dual cognitive task to reduce strategic control of split-belt walking, their adaptation rate slowed, but they still forgot much of the new pattern during the rest breaks. Our results demonstrate that the healthy aging process is one component that weakens motor memories during rest breaks and that this phenomenon cannot be explained solely by reliance on a conscious strategy in older adults.
Collapse
|
4
|
Han C, Bae H, Won SD, Roh S, Kim DJ. The relationship between brain-derived neurotrophic factor and cognitive functions in alcohol-dependent patients: a preliminary study. Ann Gen Psychiatry 2015; 14:30. [PMID: 26405456 PMCID: PMC4581104 DOI: 10.1186/s12991-015-0065-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 09/08/2015] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND As a neurotoxic substance, alcohol can induce neurodegenesis in the brain. Alcohol-dependent patients' cognitive functioning can be affected by chronic alcohol use. In addition, brain-derived neurotrophic factor (BDNF) is known to reflect the status of neuroadaptive changes. The purpose of this study was to investigate the relationship between cognitive functions and BDNF in alcohol-dependent patients. METHODS The subjects were 39 alcohol-dependent patients. BDNF was measured using an enzyme-linked immunosorbent assay kit. We examined clinical features and administered the Korean version of Alcohol Dependence Scale. We also used the Consortium to Establish a Registry for Alzheimer's Disease (CERAD) to measure cognitive functioning. Then, we determined the relationships between BDNF and various parts of the CERAD. RESULTS The performance of alcohol-dependent patients proved stable in most parts of the CERAD. Within the different parts of the CERAD, only Trail Making Test B correlated with BDNF. Trail Making Test specifically assesses executive functions. CONCLUSIONS BDNF might play an important role in the detection of neurocognitive function among individuals with alcohol dependence.
Collapse
Affiliation(s)
- Changwoo Han
- Department of Psychiatry, College of Medicine, Korea University, Ansan Hospital, Ansan, Korea
| | - Hwallip Bae
- Department of Psychiatry, Seonam University, Myongji Hospital, Goyang, Korea
| | - Sung-Doo Won
- Keyo Medical Foundation, Keyo Hospital, Uiwang, Korea
| | - Sungwon Roh
- Department of Mental Health Research, Seoul National Hospital, Seoul, Korea
| | - Dai-Jin Kim
- Department of Psychiatry, Seoul St. Mary's Hospital, The Catholic University of Korea College of Medicine, Seoul, 137-701 Korea
| |
Collapse
|
5
|
Cassidy LL, Dlugos FF, Dlugos CA. Time course of SERCA 2b and calreticulin expression in Purkinje neurons of ethanol-fed rats with behavioral correlates. Alcohol Alcohol 2013; 48:667-78. [PMID: 23884168 PMCID: PMC3799558 DOI: 10.1093/alcalc/agt062] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
UNLABELLED Chronic ethanol consumption for 40 weeks in adult rats results in dilation of the extensive smooth endoplasmic reticulum (SER), a major component of the calcium homeostatic system within Purkinje neuron (PN) dendrites. AIMS The aim of the present study was to determine whether chronic ethanol consumption results in alterations of the sarco/endoplasmic reticulum Ca(2+) ATPase pump (SERCA) on the SER membrane of PN dendrites. The density of calreticulin, a calcium chaperone, was also investigated in the PN along with balancing ability. METHODS Ninety 8-month-old rats were exposed to rat chow, the AIN-93 M liquid control or ethanol diets (30/diet) for a duration of 10, 20 or 40 weeks (30/duration). Age changes relative to the rat chow controls were assessed with 3-month-old control rats (n = 10). Balance was assessed prior to euthanasia. Quantitative immunocytochemistry was used to determine the density of SERCA 2b + dendrites and calreticulin + PN soma and nuclei. Molecular layer volumes were also determined. RESULTS Following 40 weeks of ethanol treatment, there were ethanol-induced decreases in SERCA 2b densities within the dendritic arbor and decreased balancing ability on the more difficult round rod balance test. There were no ethanol-induced changes in calreticulin densities. CONCLUSION It can be concluded that ethanol-induced decreases in the SERCA pump accompany SER dilation and contribute to previously reported ethanol-induced dendritic regression in PN. Ethanol-induced changes in balance also occurred. Chronic ethanol consumption does not alter calreticulin expression in PN.
Collapse
Affiliation(s)
- Linda L Cassidy
- Corresponding author: Department of Pathology and Anatomical Sciences, 206 Farber Hall, School of Medicine and Biomedical Sciences, Main Street, Buffalo, NY 14214, USA
| | | | | |
Collapse
|
6
|
Rodrigues J, Assunção M, Lukoyanov N, Cardoso A, Carvalho F, Andrade JP. Protective effects of a catechin-rich extract on the hippocampal formation and spatial memory in aging rats. Behav Brain Res 2013; 246:94-102. [PMID: 23473881 DOI: 10.1016/j.bbr.2013.02.040] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 02/22/2013] [Accepted: 02/26/2013] [Indexed: 11/19/2022]
Abstract
Green tea (GT) displays strong anti-oxidant and anti-inflammatory properties mostly attributed to (-)-epigallocatechin-3-gallate (EGCG), while experiments focusing on other catechins are scarce. With the present work we intended to analyze the neuroprotective effects of prolonged consumption of a GT extract (GTE) rich in catechins but poor in EGCG and other GT bioactive components that could also afford benefit. The endpoints evaluated were aging-induced biochemical and morphological changes in the rat hippocampal formation (HF) and behavioral alterations. Male Wistar rats aged 12 months were treated with GTE until 19 months of age. This group of animals was compared with control groups aged 19 (C-19M) or 12 months (C-12M). We found that aging increased oxidative markers but GTE consumption protected proteins and lipids against oxidation. The age-associated increase in lipofuscin content and lysosomal volume was also prevented by treatment with GTE. The dendritic arborizations of dentate granule cells of GTE-treated animals presented plastic changes accompanied by an improved spatial learning evaluated with the Morris water maze. Altogether our results demonstrate that the consumption of an extract rich in catechins other than EGCG protected the HF from aging-related declines contributing to improve the redox status and preventing the structural damage observed in old animals, with repercussions on behavioral performance.
Collapse
Affiliation(s)
- Jorge Rodrigues
- Department of Anatomy, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, Porto, Portugal
| | | | | | | | | | | |
Collapse
|
7
|
Dickstein DL, Weaver CM, Luebke JI, Hof PR. Dendritic spine changes associated with normal aging. Neuroscience 2012; 251:21-32. [PMID: 23069756 DOI: 10.1016/j.neuroscience.2012.09.077] [Citation(s) in RCA: 179] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 09/25/2012] [Accepted: 09/27/2012] [Indexed: 12/14/2022]
Abstract
Given the rapid rate of population aging and the increased incidence of cognitive decline and neurodegenerative diseases with advanced age, it is important to ascertain the determinants that result in cognitive impairment. It is also important to note that much of the aged population exhibit 'successful' cognitive aging, in which cognitive impairment is minimal. One main goal of normal aging studies is to distinguish the neural changes that occur in unsuccessful (functionally impaired) subjects from those of successful (functionally unimpaired) subjects. In this review, we present some of the structural adaptations that neurons and spines undergo throughout normal aging and discuss their likely contributions to electrophysiological properties and cognition. Structural changes of neurons and dendritic spines during aging, and the functional consequences of such changes, remain poorly understood. Elucidating the structural and functional synaptic age-related changes that lead to cognitive impairment may lead to the development of drug treatments that can restore or protect neural circuits and mediate cognition and successful aging.
Collapse
Affiliation(s)
- D L Dickstein
- Fishberg Department of Neuroscience, Friedman Brain Institute, Mount Sinai School of Medicine, New York, NY 10029, USA; Computational Neurobiology and Imaging Center, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | | | |
Collapse
|
8
|
Janmaat S, Akwa Y, Doulazmi M, Bakouche J, Gautheron V, Liere P, Eychenne B, Pianos A, Luiten P, Groothuis T, Baulieu EE, Mariani J, Sherrard RM, Frédéric F. Age-related Purkinje cell death is steroid dependent: RORα haplo-insufficiency impairs plasma and cerebellar steroids and Purkinje cell survival. AGE (DORDRECHT, NETHERLANDS) 2011; 33:565-578. [PMID: 21222044 PMCID: PMC3220403 DOI: 10.1007/s11357-010-9203-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 12/16/2010] [Indexed: 05/30/2023]
Abstract
A major problem of ageing is progressive impairment of neuronal function and ultimately cell death. Since sex steroids are neuroprotective, their decrease with age may underlie age-related neuronal degeneration. To test this, we examined Purkinje cell numbers, plasma sex steroids and cerebellar neurosteroid concentrations during normal ageing (wild-type mice, WT), in our model of precocious ageing (Rora(+/sg), heterozygous staggerer mice in which expression of the neuroprotective factor RORα is disrupted) and after long-term hormone insufficiency (WT post-gonadectomy). During normal ageing (WT), circulating sex steroids declined prior to or in parallel with Purkinje cell loss, which began at 18 months of age. Although Purkinje cell death was advanced in WT long-term steroid deficiency, this premature neuronal loss did not begin until 9 months, indicating that vulnerability to sex steroid deficiency is a phenomenon of ageing Purkinje neurons. In precocious ageing (Rora(+/sg)), circulating sex steroids decreased prematurely, in conjunction with marked Purkinje cell death from 9 months. Although Rora(+/sg) Purkinje cells are vulnerable through their RORα haplo-insufficiency, it is only as they age (after 9 months) that sex steroid failure becomes critical. Finally, cerebellar neurosteroids did not decrease with age in either genotype or gender; but were profoundly reduced by 3 months in male Rora(+/sg) cerebella, which may contribute to the fragility of their Purkinje neurons. These data suggest that ageing Purkinje cells are maintained by circulating sex steroids, rather than local neurosteroids, and that in Rora(+/sg) their age-related death is advanced by premature sex steroid loss induced by RORα haplo-insufficiency.
Collapse
Affiliation(s)
- Sonja Janmaat
- UMR7102 Neurobiologie des Processus Adaptatifs, UPMC Univ Paris 6, 75005 Paris, France
- UMR7102 Neurobiologie des Processus Adaptatifs, CNRS, 75005 Paris, France
- Molecular Imaging and Electron Microscopy, University Medical Centre, Groningen, 9700 AD The Netherlands
- Department of Molecular Neurobiology and Biological Psychiatry, University of Groningen, 9750 AA Haren, The Netherlands
| | - Yvette Akwa
- INSERM U788 and Université Paris-Sud, Faculté de Médecine, UMR-S788, Le Kremlin-Bicêtre, 94276 France
| | - Mohamed Doulazmi
- UMR7102 Neurobiologie des Processus Adaptatifs, UPMC Univ Paris 6, 75005 Paris, France
- UMR7102 Neurobiologie des Processus Adaptatifs, CNRS, 75005 Paris, France
| | - Joëlle Bakouche
- UMR7102 Neurobiologie des Processus Adaptatifs, UPMC Univ Paris 6, 75005 Paris, France
- UMR7102 Neurobiologie des Processus Adaptatifs, CNRS, 75005 Paris, France
| | - Vanessa Gautheron
- UMR7102 Neurobiologie des Processus Adaptatifs, UPMC Univ Paris 6, 75005 Paris, France
- UMR7102 Neurobiologie des Processus Adaptatifs, CNRS, 75005 Paris, France
| | - Philippe Liere
- INSERM U788 and Université Paris-Sud, Faculté de Médecine, UMR-S788, Le Kremlin-Bicêtre, 94276 France
| | - Bernard Eychenne
- INSERM U788 and Université Paris-Sud, Faculté de Médecine, UMR-S788, Le Kremlin-Bicêtre, 94276 France
| | - Antoine Pianos
- INSERM U788 and Université Paris-Sud, Faculté de Médecine, UMR-S788, Le Kremlin-Bicêtre, 94276 France
| | - Paul Luiten
- Department of Molecular Neurobiology and Biological Psychiatry, University of Groningen, 9750 AA Haren, The Netherlands
| | - Ton Groothuis
- Department of Molecular Neurobiology and Biological Psychiatry, University of Groningen, 9750 AA Haren, The Netherlands
| | - Etienne-Emile Baulieu
- INSERM U788 and Université Paris-Sud, Faculté de Médecine, UMR-S788, Le Kremlin-Bicêtre, 94276 France
| | - Jean Mariani
- UMR7102 Neurobiologie des Processus Adaptatifs, UPMC Univ Paris 6, 75005 Paris, France
- UMR7102 Neurobiologie des Processus Adaptatifs, CNRS, 75005 Paris, France
- AP-HP, Hôpital Charles Foix, UEF, 94200 Ivry-sur-Seine, France
| | - Rachel M. Sherrard
- UMR7102 Neurobiologie des Processus Adaptatifs, UPMC Univ Paris 6, 75005 Paris, France
- UMR7102 Neurobiologie des Processus Adaptatifs, CNRS, 75005 Paris, France
| | - Florence Frédéric
- UMR7102 Neurobiologie des Processus Adaptatifs, UPMC Univ Paris 6, 75005 Paris, France
- UMR7102 Neurobiologie des Processus Adaptatifs, CNRS, 75005 Paris, France
| |
Collapse
|
9
|
Abstract
Cerebellar Purkinje cells (PCs), the sole output neurons in the cerebellar cortex, play an important role in the cerebellar circuit. PCs appear to be rather sensitive to aging, exhibiting significant changes in both morphology and function during senescence. This article reviews such changes during the normal aging process, including a decrease in the quantity of cells, atrophy in the soma, retraction in the dendritic arborizations, degeneration in the subcellular organelles, a decline in synapse density, disorder in the neurotransmitter system, and alterations in electrophysiological properties. Although these deteriorative changes occur during aging, compensatory mechanisms exist to counteract the impairments in the aging PCs. The possible neural mechanisms underlying these changes and potential preventive treatments are discussed.
Collapse
|
10
|
Turlejski K, Djavadian R. Life-long stability of neurons: a century of research on neurogenesis, neuronal death and neuron quantification in adult CNS. PROGRESS IN BRAIN RESEARCH 2002; 136:39-65. [PMID: 12143397 DOI: 10.1016/s0079-6123(02)36006-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this chapter we provide an extensive review of 100 years of research on the stability of neurons in the mammalian brain, with special emphasis on humans. Although Cajal formulated the Neuronal Doctrine, he was wrong in his beliefs that adult neurogenesis did not occur and adult neurons are dying throughout life. These two beliefs became accepted "common knowledge" and have shaped much of neuroscience research and provided much of the basis for clinical treatment of age-related brain diseases. In this review, we consider adult neurogenesis from a historical and evolutionary perspective. It is concluded, that while adult neurogenesis is a factor in the dynamics of the dentate gyrus and olfactory bulb, it is probably not a major factor during the life-span in most brain areas. Likewise, the acceptance of neuronal death as an explanation for normal age-related senility is challenged with evidence collected over the last fifty years. Much of the problem in changing this common belief of dying neurons was the inadequacies of neuronal counting methods. In this review we discuss in detail implications of recent improvements in neuronal quantification. We conclude: First, age-related neuronal atrophy is the major factor in functional deterioration of existing neurons and could be slowed down, or even reversed by various pharmacological interventions. Second, in most cases neuronal degeneration during aging is a pathology that in principle may be avoided. Third, loss of myelin and of the white matter is more frequent and important than the limited neuronal death in normal aging.
Collapse
Affiliation(s)
- Kris Turlejski
- Department of Neurophysiology, Nencki Institute of Experimental Biology, 3 Pasteur Street, 02-093 Warsaw, Poland.
| | | |
Collapse
|
11
|
Grill JD, Riddle DR. Age-related and laminar-specific dendritic changes in the medial frontal cortex of the rat. Brain Res 2002; 937:8-21. [PMID: 12020857 DOI: 10.1016/s0006-8993(02)02457-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Early hypotheses that normal brain aging involves widespread loss of neurons have been revised in light of accumulating evidence that, in most regions of the brain, the number of neurons is stable throughout adulthood and senescence. It is not clear, however, that all aspects of neuronal structure are similarly maintained, and anatomical changes are likely to contribute to age-related declines in cognitive function. The extent and pattern of dendritic branches is one likely target for age-dependent regulation since dendrites remain plastic into adulthood and since dendrites, as the site of most synapses, critically regulate neuronal function. This study quantified the dendritic extent and geometry of superficial and deep pyramidal neurons in the medial frontal cortex of Brown Norway rats from young adulthood through senescence. This region of cortex is of specific interest given its involvement in a variety of cognitive functions that change with age. In the present study, age-related changes in dendritic extent were found to occur with remarkable specificity. Superficial, but not deep, pyramidal neurons exhibited ongoing dendritic growth after 2 months-of-age and then dendritic regression after 18 months-of-age. Apical and basal dendrites were similarly regulated; in each arbor adult growth and regression were limited to terminal dendritic segments. The focal specificity of age-related changes suggests several possible regulatory mechanisms, including regional changes in trophic support and in neuronal activity. Although restricted to specific neuronal populations, dendritic regression in aged animals is likely to contribute to cognitive changes associated with senescence.
Collapse
Affiliation(s)
- Joshua D Grill
- Program in Neuroscience, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1010, USA
| | | |
Collapse
|
12
|
Tabbaa S, Dlugos C, Pentney R. The number of granule cells and spine density on Purkinje cells in aged, ethanol-fed rats. Alcohol 1999; 17:253-60. [PMID: 10231174 DOI: 10.1016/s0741-8329(98)00059-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The purpose of this study was to determine whether chronic intake of ethanol by aged F344 rats was associated with a reduction in parallel fiber input to cerebellar Purkinje neurons (PN). Previous results from this laboratory provided direct evidence that synaptic density in PN dendritic arbors was significantly decreased and indirect evidence that terminal dendritic segments of PN were deleted during chronic ethanol treatment. From these results, it was hypothesized that an ethanol-related deletion of PN terminal dendritic segments might result from 1) a reduction in parallel fiber input to PN from cerebellar granule neurons or 2) a reduction in dendritic spines, the postsynaptic sites for parallel fiber input to PN dendrites. Measurements of the total number of cerebellar granule neurons (GN) and the volume of the GN layer, and measurements of the density of spines on PN terminal dendritic segments were made in separate groups of aged, ethanol-treated and control rats. There were no significant ethanol-related changes in these parameters after 40-48 weeks of ethanol treatment.
Collapse
Affiliation(s)
- S Tabbaa
- Department of Oral Diagnostic Sciences, School of Dental Medicine, SUNY at Buffalo, NY 14214-3000, USA
| | | | | |
Collapse
|
13
|
Turner DA, Buhl EH, Hailer NP, Nitsch R. Morphological features of the entorhinal-hippocampal connection. Prog Neurobiol 1998; 55:537-62. [PMID: 9670217 DOI: 10.1016/s0301-0082(98)00019-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The goal of this review in an overview of the structural elements of the entorhinal-hippocampal connection. The development of the dendrites of hippocampal neurons will be outlined in relation to afferent pathway specificity and the mature dendritic structure compared. Interneurons will be contrasted to pyramidal cells in terms of processing of physiological signals and convergence and divergence in control of hippocampal circuits. Mechanisms of axonal guidance and target recognition, target structures, the involvement of receptor distribution on hippocampal dendrites and the involvement of non-neuronal cellular elements in the establishment of specific connections will be presented. Mechanisms relevant for the maintenance of shape and morphological specializations of hippocampal dendrites will be reviewed. One of the significant contexts in which to view these structural elements is the degree of plasticity in which they participate, during development and origination of dendrites, mature synaptic plasticity and after lesions, when the cells must continue to maintain and reconstitute function, to remain part of the circuitry in the hippocampus. This review will be presented in four main sections: (1) interneurons-development, role in synchronizing influence and hippocampal network functioning; (2) principal cells in CA1, CA3 and dentate gyrus regions-their development, function in terms of synaptic integration, differentiating structure and alterations with lesions; (3) glia and glia/neuronal interactions-response to lesions and developmental guidance mechanisms; and (4) network and circuit aspects of hippocampal morphology and functioning. Finally, the interwoven role of these various elements participating in hippocampal network function will be discussed.
Collapse
Affiliation(s)
- D A Turner
- Neurosurgery and Neurobiology, Duke University Medical Center 27710, USA.
| | | | | | | |
Collapse
|
14
|
Wenisch S, Hild A, Bitsch I, Leiser R, Hummel G. Ultrastructure of rat Purkinje neurons after chronic ethanol consumption and prolonged abstinence. Anat Histol Embryol 1997; 26:93-8. [PMID: 9210781 DOI: 10.1111/j.1439-0264.1997.tb00106.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In the present study of nutrition control of Wistar white rats, the ultrastructure of cerebellar Purkinje cells was studied after chronic ethanol exposure and a subsequent period of prolonged abstinence: a qualitative investigation of the perikarya of Purkinje cells was performed in age-matched controls (group A) and rats alcohol-fed for 5 months and withdrawn from this diet for 3 months (group B). The results showed massive accumulation of small dense bodies as well as obvious deposition of lipofuscin in the Purkinje cells of group B. Furthermore, ring-shaped Golgi apparatus units, lamellar bodies and degenerative foci dispersed throughout the cytoplasm of the alcohol-treated animals referred to degeneration processes and neuronal cell death, the morphological characteristics and the aetiology of which are discussed.
Collapse
Affiliation(s)
- S Wenisch
- Institute of Veterinary Anatomy, Histology and Embryology, University of Giessen, Germany
| | | | | | | | | |
Collapse
|
15
|
Henrique RM, Monteiro RA, Rocha E, Marini-Abreu MM. A stereological study on the nuclear volume of cerebellar granule cells in aging rats. Neurobiol Aging 1997; 18:199-203. [PMID: 9258897 DOI: 10.1016/s0197-4580(97)00006-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A morphometric study on age changes of rat cerebellar cortex (Crus I and Crus II) was carried out. The nuclear volume of the granule cells was estimated by means of two unbiased stereological methods: the nucleator, which enabled the estimation of the number-weighted mean volume (VN), and the point-sampled intercepts method, allowing the determination of the volume-weighted mean volume (VV). These parameters enabled the estimation of the coefficient of variation of nuclear volume in the number-weighted distribution [CV(VN)]. All parameters were determined in eight age groups (2, 6, 9, 12, 15, 18, 21, and 24 months--five animals per age) and the mean values of each age group were compared using one-way ANOVA with post hoc comparisons, and regression analysis. It was demonstrated for the first time, using unbiased techniques, that the nucleus of granule cells of the cerebellar cortex showed a significant decrease in its mean volumes (VV) with age, especially from 21 months onwards. Although CV(VN) was not correlated with age, it was also demonstrated that these cells bear a considerable nuclear size pleomorphy that was maintained throughout the age spectrum.
Collapse
Affiliation(s)
- R M Henrique
- Laboratory of Histology and Embryology, University of Oporto, Portugal
| | | | | | | |
Collapse
|
16
|
Abstract
Age-related dendritic alterations were evaluated in F344 rats following a water maze assessment of spatial memory. Based on the probe trial times, 39% of the aged animals were designated impaired. CA1 pyramidal neurons were labeled intracellularly with neurobiotin in brain slices prepared from these animals. Neurons (aged: n = 15; young: n = 11) were reconstructed using a microscope-based three-dimensional system. Increased dendritic length was observed in the aged neurons both for basal dendrites (aged = 4.54 mm and young = 3.33 mm) and the entire neurons (aged = 14.8 mm and young = 10.8 mm). However, dendritic length values did not correlate with the individual animal's probe trial time. Sholl analysis revealed a diffuse increase in dendritic branch intersections in the cells from aged rats, which on branch order analysis was noted to be due to an increased number of distal branches. Mean electrotonic distance to dendritic terminals, a functional assessment of synaptic efficacy, was longer in the aged neurons (aged = 0.67 lambda and young = 0.55 lambda). These results suggest a lengthening and increased complexity of CA1 pyramidal neurons with successful aging, which may represent either an intrinsic response to aging or a reactive partial denervation response to a loss of afferent inputs.
Collapse
Affiliation(s)
- G K Pyapali
- Department of Surgery (Neurosurgery), Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
17
|
Abstract
In this study, the Purkinje neurons and granule neurons in the cerebellar cortex were studied in male Fischer 344 rats at 3, 9, 18, and 27 months of age. The numbers of Purkinje cells (PC) and granule cells (GC) in folia IV, VII, and X of the vermis were quantitated with the disector stereological technique. The numbers of PC and GC and the ratio of PC to GC were stable with advancing age. Measurements of the molecular layer, however, showed that this layer, the site of synaptic contact between GC and PC, decreased in volume with age.
Collapse
Affiliation(s)
- C A Dlugos
- Department of Anatomical Sciences, State University of New York at Buffalo 14214
| | | |
Collapse
|
18
|
Uylings HB, van Pelt J, Parnavelas JG, Ruiz-Marcos A. Geometrical and topological characteristics in the dendritic development of cortical pyramidal and non-pyramidal neurons. PROGRESS IN BRAIN RESEARCH 1994; 102:109-23. [PMID: 7800808 DOI: 10.1016/s0079-6123(08)60535-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- H B Uylings
- Graduate School of Neuroscience, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
19
|
Abstract
A recent interest in aging of the nervous system is related to the remarkable increase in the numbers of elderly persons throughout the world. As a reflection of the added years, pathologies in the older person have also increased. Primary among those which affect the activities and behavior of these people are the dementias, especially Alzheimer's Disease. To focus on such problems, however, requires an understanding of the changes which take place in the normal aging nervous system. This paper reviews some of the accepted criteria for these changes as well as the possible attempts by the nervous system to alter its structure in response to these changes.
Collapse
Affiliation(s)
- H Brody
- Department of Anatomical Sciences, State University of New York, Buffalo 14214
| |
Collapse
|
20
|
Pentney RJ, Quackenbush LJ. Effects of long durations of ethanol treatment during aging on dendritic plasticity in Fischer 344 rats. Alcohol Clin Exp Res 1991; 15:1024-30. [PMID: 1789377 DOI: 10.1111/j.1530-0277.1991.tb05205.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Twelve-month-old Fischer 344 rats were fed a liquid diet containing 35% ethanol until they were 18 or 24 months old. Pair-fed and chow-fed control rats were matched to each ethanol-fed rat for concurrent treatment. Cerebellar Purkinje cell networks were measured in half of the rats at the end of the ethanol treatment and in the remaining rats after a subsequent 2-month recovery period. Chronic ethanol consumption resulted in significant elongation of terminal segments in the networks, and the unpaired terminal segments were the predominant sites of this growth. An increase in the duration of ethanol consumption from 24 to 48 weeks caused significantly greater segment elongation in the ethanol-fed rats in spite of the fact that circulating blood levels of ethanol declined markedly with the increased duration of treatment. During the same period of time, a pattern of terminal segment regression followed by terminal segment regrowth characterized age-induced changes in these networks. Thus the effects of long-term ethanol consumption were distinct from effects of concurrent aging processes in the Purkinje cell networks. There were significant interactions between the diets and the longer duration of treatment, such that as segments elongated in the ethanol-fed rats, they shortened in the pair-fed rats, and between the diets and the recovery period, such that as segments elongated during recovery in the pair-fed rats, they shortened in the ethanol-fed rats.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- R J Pentney
- Department of Anatomical Sciences, State University of New York, Buffalo 14214
| | | |
Collapse
|
21
|
Pentney RJ, Quackenbush LJ. Dendritic hypertrophy in Purkinje neurons of old Fischer 344 rats after long-term ethanol treatment. Alcohol Clin Exp Res 1990; 14:878-86. [PMID: 2088124 DOI: 10.1111/j.1530-0277.1990.tb01831.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Metric parameters of Purkinje cell dendritic networks in 24- to 26-month-old Fischer 344 rats were determined after 48 weeks of chronic ethanol intake. Measurements included the total number and length of all segments/network, the total number and length of segments within topologically defined segment categories, and the mean length of segments in each category. A main effect of ethanol was expressed as a significant increase in cumulative length within one category of terminal segments. This increase was the result of a significant increase in mean length/segment in that category. Metric changes in other segment categories were not significant, showing that changes in the networks during ethanol treatment were not distributed randomly. Recovery after ethanol treatment was associated with further nonrandom remodeling of these networks. Significant differences in lengths of terminal segments were no longer present, but internal segments in networks of both pair-fed and ethanol-fed rats were significantly longer. Only one category of internal segments showed this change during recovery. The data showed that long term ethanol treatment in old rats, at a time when effects of aging processes were prominent in Purkinje cell networks, was associated with remodeling of those networks through dendritic extension. This effect was interpreted as compensatory growth in surviving networks following ethanol-related neuronal loss and/or damage to the surrounding neuropil. Recovery from dietary treatment produced further internal remodeling of those networks that was not related specifically to ethanol. It could be shown, however, that the restructuring processes that resulted in longer internal segments after dietary recovery were different in the pair-fed and the ethanolfed rats.
Collapse
Affiliation(s)
- R J Pentney
- Department of Anatomical Sciences, State University of New York, Buffalo 14214
| | | |
Collapse
|