1
|
Gong C, Zhang D, Ou W, Ou M, Liang P, Liao D, Zhang W, Zhu T, Liu J, Zhou C. Deficiency of Mitochondrial Functions and Peroxidation of Frontoparietal Cortex Enhance Isoflurane Sensitivity in Aging Mice. Front Aging Neurosci 2020; 12:583542. [PMID: 33343330 PMCID: PMC7744615 DOI: 10.3389/fnagi.2020.583542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/09/2020] [Indexed: 02/05/2023] Open
Abstract
Background: Hypersensitivity to general anesthetics may predict poor postoperative outcomes, especially among the older subjects. Therefore, it is essential to elucidate the mechanism underlying hypersensitivity to volatile anesthetics in the aging population. Given the fact that isoflurane sensitivity increases with aging, we hypothesized that deficiencies of mitochondrial function and elevated oxidative levels in the frontoparietal cortex may contribute to the enhanced sensitivity to isoflurane in aging mice. Methods: Isoflurane sensitivity in aging mice was determined by the concentration of isoflurane that is required for loss of righting reflex (LORR). Mitochondrial bioenergetics of the frontoparietal cortex was measured using a Seahorse XFp analyzer. Protein oxidation and lipid oxidation in the frontoparietal cortex were assessed using the Oxyblot protein oxidation detection kit and thiobarbituric acid reactive substance (TBARS) assay, respectively. Contributions of mitochondrial complex II inhibition by malonate and peroxidation by ozone to isoflurane sensitivity were tested in vivo. Besides, effects of antioxidative therapy on mitochondrial function and isoflurane sensitivity in mice were also measured. Results: The mean concentration of isoflurane that is required for LORR in aging mice (14-16 months old) was 0.83% ± 0.13% (mean ± SD, n = 80). Then, the mice were divided into three groups as sensitive group (S group, mean - SD), medium group (M group), and resistant group (R group, mean + SD) based on individual concentrations of isoflurane required for LORR. Activities of mitochondrial complex II and complex IV in mice of the S group were significantly lower than those of the R group, while frontoparietal cortical malondialdehyde (MDA) levels were higher in the mice of S group. Both inhibition of mitochondrial complexes and peroxidation significantly decreased the concentration of isoflurane that is required for LORR in vivo. After treatment with idebenone, the levels of lipid oxidation were alleviated and mitochondrial function was restored in aging mice. The concentration of isoflurane that required for LORR was also elevated after idebenone treatment. Conclusions: Decreased mitochondrial functions and higher oxidative stress levels in the frontoparietal cortex may contribute to the hypersensitivity to isoflurane in aging mice.
Collapse
Affiliation(s)
- Cansheng Gong
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China.,Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China.,Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Donghang Zhang
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China.,Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
| | - Wei Ou
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China.,Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
| | - Mengchan Ou
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China.,Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
| | - Peng Liang
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
| | - Daqing Liao
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Weiyi Zhang
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
| | - Tao Zhu
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
| | - Jin Liu
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China.,Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
| | - Cheng Zhou
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China.,Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Abstract
SIGNIFICANCE Oxidative stress increases in the brain with aging and neurodegenerative diseases. Previous work emphasized irreversible oxidative damage in relation to cognitive impairment. This research has evolved to consider a continuum of alterations, from redox signaling to oxidative damage, which provides a basis for understanding the onset and progression of cognitive impairment. This review provides an update on research linking redox signaling to altered function of neural circuits involved in information processing and memory. Recent Advances: Starting in middle age, redox signaling triggers changes in nervous system physiology described as senescent physiology. Hippocampal senescent physiology involves decreased cell excitability, altered synaptic plasticity, and decreased synaptic transmission. Recent studies indicate N-methyl-d-aspartate and ryanodine receptors and Ca2+ signaling molecules as molecular substrates of redox-mediated senescent physiology. CRITICAL ISSUES We review redox homeostasis mechanisms and consider the chemical character of reactive oxygen and nitrogen species and their role in regulating different transmitter systems. In this regard, senescent physiology may represent the co-opting of pathways normally responsible for feedback regulation of synaptic transmission. Furthermore, differences across transmitter systems may underlie differential vulnerability of brain regions and neuronal circuits to aging and disease. FUTURE DIRECTIONS It will be important to identify the intrinsic mechanisms for the shift in oxidative/reductive processes. Intrinsic mechanism will depend on the transmitter system, oxidative stressors, and expression/activity of antioxidant enzymes. In addition, it will be important to identify how intrinsic processes interact with other aging factors, including changes in inflammatory or hormonal signals. Antioxid. Redox Signal. 28, 1724-1745.
Collapse
Affiliation(s)
- Ashok Kumar
- 1 Department of Neuroscience, McKnight Brain Institute, University of Florida , Gainesville, Florida
| | - Brittney Yegla
- 1 Department of Neuroscience, McKnight Brain Institute, University of Florida , Gainesville, Florida
| | - Thomas C Foster
- 1 Department of Neuroscience, McKnight Brain Institute, University of Florida , Gainesville, Florida.,2 Genetics and Genomics Program, Genetics Institute, University of Florida , Gainesville, Florida
| |
Collapse
|
3
|
Mishra M, Singh R, Mukherjee S, Sharma D. Dehydroepiandrosterone's antiepileptic action in FeCl3-induced epileptogenesis involves upregulation of glutamate transporters. Epilepsy Res 2013; 106:83-91. [PMID: 23891458 DOI: 10.1016/j.eplepsyres.2013.06.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 06/06/2013] [Accepted: 06/25/2013] [Indexed: 10/26/2022]
Abstract
Dehydroepiandrosterone (DHEA), a neuroactive androgen steroid, has antiepileptic action in iron-induced experimental epilepsy (which models post-traumatic clinical epilepsy). In iron-induced epilepsy increased extracellular glutamate resulting from its reduced glial uptake due to the down-regulation (decreased expression) of transporters (glial and or neuronal) is active during epileptogenesis. The present study was aimed at determining whether the mechanism of antiepileptic action of DHEA involved upregulation (increased expression) of glutamate transporters. Iron-induced epileptogenesis was performed in rats by FeCl3 injection into the cerebral cortex. DHEA was administered intraperitoneally to the iron-induced epileptic rats for 7, 14 and 21 days. Levels of glutamate transporters mRNAs expression were measured using quantitative PCR in the hippocampus during the chronic phase of iron-induced epileptogenesis. There were significant reductions in the glutamate transporter mRNAs in epileptogenesis. DHEA treatment resulted in a significant elevation of glutamate transporters: GLT-1, GLAST and EACC-1 mRNA indicating that the DHEA treatment induced upregulation of these transporters. The results are of significance in respect of the mechanism of the antiepileptic action of neurosteroids and the glutamate transporters as therapeutic targets in glutamatergic epileptogenesis.
Collapse
Affiliation(s)
- Monika Mishra
- Neurobiology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | | | | | | |
Collapse
|
4
|
Rodrigues J, Assunção M, Lukoyanov N, Cardoso A, Carvalho F, Andrade JP. Protective effects of a catechin-rich extract on the hippocampal formation and spatial memory in aging rats. Behav Brain Res 2013; 246:94-102. [PMID: 23473881 DOI: 10.1016/j.bbr.2013.02.040] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 02/22/2013] [Accepted: 02/26/2013] [Indexed: 11/19/2022]
Abstract
Green tea (GT) displays strong anti-oxidant and anti-inflammatory properties mostly attributed to (-)-epigallocatechin-3-gallate (EGCG), while experiments focusing on other catechins are scarce. With the present work we intended to analyze the neuroprotective effects of prolonged consumption of a GT extract (GTE) rich in catechins but poor in EGCG and other GT bioactive components that could also afford benefit. The endpoints evaluated were aging-induced biochemical and morphological changes in the rat hippocampal formation (HF) and behavioral alterations. Male Wistar rats aged 12 months were treated with GTE until 19 months of age. This group of animals was compared with control groups aged 19 (C-19M) or 12 months (C-12M). We found that aging increased oxidative markers but GTE consumption protected proteins and lipids against oxidation. The age-associated increase in lipofuscin content and lysosomal volume was also prevented by treatment with GTE. The dendritic arborizations of dentate granule cells of GTE-treated animals presented plastic changes accompanied by an improved spatial learning evaluated with the Morris water maze. Altogether our results demonstrate that the consumption of an extract rich in catechins other than EGCG protected the HF from aging-related declines contributing to improve the redox status and preventing the structural damage observed in old animals, with repercussions on behavioral performance.
Collapse
Affiliation(s)
- Jorge Rodrigues
- Department of Anatomy, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, Porto, Portugal
| | | | | | | | | | | |
Collapse
|
5
|
Teplyuk NM. Near-to-perfect homeostasis: examples of universal aging rule which germline evades. J Cell Biochem 2012; 113:388-96. [PMID: 21928349 DOI: 10.1002/jcb.23366] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Aging is considered to be a progressive decline in an organism's functioning over time and is almost universal throughout the living world. Currently, many different aging mechanisms have been reported at all levels of biological organization, with a variety of biochemical, metabolic, and genetic pathways involved. Some of these mechanisms are common across species, and others work different, but each of them is constitutive. This review describes the common characteristics of the aging processes, which are consistent changes over time that involve either the accumulation or depletion of particular system components. These accumulations and depletions may result from imperfect homeostasis, which is the incomplete compensation of a particular biological process with another process evolved to compensate it. In accordance with disposable-soma theory, this imperfection in homeostasis may originate as a function of cell differentiation as early as in yeasts. It may result either from antagonistic pleiotropy mechanisms, or be simply negligible as a subject of natural selection if an adverse effect of the accumulation phenotypically manifests in organism's post-reproductive age. If this phenomenon holds true for many different functions it would lead to the occurrence of a wide variety of aging mechanisms, some of which are common among species, while others unique, because aging is the inherent property of most biological processes that have not yet evolved to be perfectly in balance. Examples of imperfect homeostasis mechanisms of aging, the ways in which germ line escapes from them, and the possibilities of anti-aging treatment are discussed in this review.
Collapse
Affiliation(s)
- Nadiya M Teplyuk
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
6
|
Hua Y, Yang B, Tang J, Ma Z, Gao Q, Zhao M. Structural analysis of water-soluble polysaccharides in the fruiting body of Dictyophora indusiata and their in vivo antioxidant activities. Carbohydr Polym 2012; 87:343-347. [DOI: 10.1016/j.carbpol.2011.07.056] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 07/19/2011] [Accepted: 07/26/2011] [Indexed: 10/17/2022]
|
7
|
Xu R, Shang N, Li P. In vitro and in vivo antioxidant activity of exopolysaccharide fractions from Bifidobacterium animalis RH. Anaerobe 2011; 17:226-31. [PMID: 21875680 DOI: 10.1016/j.anaerobe.2011.07.010] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 06/30/2011] [Accepted: 07/29/2011] [Indexed: 11/19/2022]
Affiliation(s)
- Rihua Xu
- Key Lab of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Haidian District, Beijing, China
| | | | | |
Collapse
|
8
|
The neuroprotective effect of curcumin and Nigella sativa oil against oxidative stress in the pilocarpine model of epilepsy: a comparison with valproate. Neurochem Res 2011; 36:2195-204. [PMID: 21751034 DOI: 10.1007/s11064-011-0544-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2011] [Indexed: 12/18/2022]
Abstract
Oxidative stress has been implicated to play a role in epileptogenesis and pilocarpine-induced seizures. The present study aims to evaluate the antioxidant effects of curcumin, Nigella sativa oil (NSO) and valproate on the levels of malondialdehyde, nitric oxide, reduced glutathione and the activities of catalase, Na⁺, K⁺-ATPase and acetylcholinesterase in the hippocampus of pilocarpine-treated rats. The animal model of epilepsy was induced by pilocarpine and left for 22 days to establish the chronic phase of epilepsy. These animals were then treated with curcumin, NSO or valproate for 21 days. The data revealed evidence of oxidative stress in the hippocampus of pilocarpinized rats as indicated by the increased nitric oxide levels and the decreased glutathione levels and catalase activity. Moreover, a decrease in Na⁺, K⁺-ATPase activity and an increase in acetylcholinesterase activity occurred in the hippocampus after pilocarpine. Treatment with curcumin, NSO or valproate ameliorated most of the changes induced by pilocarpine and restored Na⁺, K⁺-ATPase activity in the hippocampus to control levels. This study reflects the promising anticonvulsant and potent antioxidant effects of curcumin and NSO in reducing oxidative stress, excitability and the induction of seizures in epileptic animals and improving some of the adverse effects of antiepileptic drugs.
Collapse
|
9
|
Assunção M, Santos-Marques MJ, Carvalho F, Lukoyanov NV, Andrade JP. Chronic green tea consumption prevents age-related changes in rat hippocampal formation. Neurobiol Aging 2011; 32:707-17. [PMID: 19411127 DOI: 10.1016/j.neurobiolaging.2009.03.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Revised: 02/20/2009] [Accepted: 03/30/2009] [Indexed: 10/20/2022]
|
10
|
In Vitro and In Vivo Antioxidant Activity of Bifidobacterium animalis 01 Isolated from Centenarians. Curr Microbiol 2010; 62:1097-103. [DOI: 10.1007/s00284-010-9827-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Accepted: 11/18/2010] [Indexed: 10/18/2022]
|
11
|
Mishra M, Singh R, Sharma D. Antiepileptic action of exogenous dehydroepiandrosterone in iron-induced epilepsy in rat brain. Epilepsy Behav 2010; 19:264-71. [PMID: 20801087 DOI: 10.1016/j.yebeh.2010.06.048] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 06/23/2010] [Accepted: 06/24/2010] [Indexed: 10/19/2022]
Abstract
In the study described here, the antiepileptic effect of dehydroepiandrosterone (DHEA) treatment on iron-induced focal epileptiform activity in the rat brain was investigated. DHEA is a neuroactive corticosteroid hormone synthesized both in the adrenal cortex and in the brain. Its antioxidant properties are well known. As oxidative stress seems to play a major role in epileptogenesis in the iron-induced model of posttraumatic epilepsy, it was of interest to examine whether DHEA would exert antiepileptic activity. DHEA at a dose of 30 mg/kg/day administered intraperitoneally for 7, 14, and 21 days to iron-induced epileptic rats prevented epileptiform electrophysiological activity. Morris water maze and open-field tests on iron-induced epileptic rats revealed that DHEA also prevented behavioral alterations related to epileptiform activity. Thus, DHEA attenuated the cognitive defects produced by epileptic activity. Moreover, alterations in epileptogenesis-related biochemical parameters-lipid peroxidation, protein oxidation and Na(+), K(+)-ATPase (sodium pump) activity--were also countered by DHEA.
Collapse
Affiliation(s)
- Monika Mishra
- Laboratory of Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | | |
Collapse
|
12
|
A metabolic and functional overview of brain aging linked to neurological disorders. Biogerontology 2009; 10:377-413. [DOI: 10.1007/s10522-009-9226-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Accepted: 04/02/2009] [Indexed: 12/21/2022]
|
13
|
Sethi P, Jyoti A, Hussain E, Sharma D. Curcumin attenuates aluminium-induced functional neurotoxicity in rats. Pharmacol Biochem Behav 2009; 93:31-9. [PMID: 19376155 DOI: 10.1016/j.pbb.2009.04.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 03/14/2009] [Accepted: 04/02/2009] [Indexed: 11/24/2022]
Abstract
Curcumin is a polyphenol extracted from the rhizome of Curcuma longa and well known as a multi-functional drug with antioxidative, anti-cancerous and anti-inflammatory activities. Curcumin's antiaging and neuroprotective potential is widely reported. In the present study, effect of curcumin treatment dose 30 mg kg(-1) day(-1) was investigated against aluminium neurotoxicity in young and old animals. Direct and indirect intakes of aluminium have been reported to be involved in the etiology of several neurodegenerative disorders like Alzheimer's and Parkinson's diseases. Long term Al was administered through drinking water at a dose of 50 mg/kg/day for 6 months in both young (4 months) and old (18 months) male Wistar rats. Result obtained demonstrates that curcumin treatment attenuates the Al-induced alterations at biochemical, behavioral and ultrastructural levels which was well reflected in the electrophysiological recordings. Our results indicate that curcumin's ability to bind redox active metals and cross the blood-brain barrier could be playing crucial role in preventing against Al-induced neurotoxicity.
Collapse
Affiliation(s)
- Pallavi Sethi
- Neurobiology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | | | | | | |
Collapse
|
14
|
Jyoti A, Sethi P, Sharma D. Curcumin protects against electrobehavioral progression of seizures in the iron-induced experimental model of epileptogenesis. Epilepsy Behav 2009; 14:300-8. [PMID: 19100339 DOI: 10.1016/j.yebeh.2008.11.011] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 11/17/2008] [Accepted: 11/18/2008] [Indexed: 01/06/2023]
Abstract
The purpose of the study was to investigate whether dietary intake of curcumin can inhibit the onset and progression of seizures and their associated pathophysiology in experimental FeCl(3)-induced epileptogenesis. Curcumin was considered for this study because it can cross the blood-brain barrier and bind redox-active metal ions. It is also well known for its antioxidative, anticancer, and anti-inflammatory properties. In the present study, seizures were induced by intracortical injection of FeCl(3) into young rats. Synchronized video/EEG recordings were obtained to diagnose the progression of seizures. Short-term treatment with a curcumin-supplemented diet (1500 pp mw/w) significantly inhibited the onset of grade III and IV seizures in rats with iron-induced epilepsy. The lower dose of curcumin (500 ppm) was not effective in inhibiting grade III seizures, but retarded the onset and progression of generalized seizures. The seizure-suppressing potential of curcumin is explained by the observed biochemical, behavioral, and ultrastructural results. Our results indicate that curcumin significantly prevents generalization of electroclinical seizure activity as well as the pathogenesis associated with iron-induced epileptogenesis.
Collapse
Affiliation(s)
- Amar Jyoti
- Neurobiology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | | |
Collapse
|
15
|
Sharma D, Sethi P, Hussain E, Singh R. Curcumin counteracts the aluminium-induced ageing-related alterations in oxidative stress, Na+, K+ ATPase and protein kinase C in adult and old rat brain regions. Biogerontology 2008; 10:489-502. [DOI: 10.1007/s10522-008-9195-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Accepted: 10/28/2008] [Indexed: 12/23/2022]
|
16
|
Sethi P, Jyoti A, Singh R, Hussain E, Sharma D. Aluminium-induced electrophysiological, biochemical and cognitive modifications in the hippocampus of aging rats. Neurotoxicology 2008; 29:1069-79. [DOI: 10.1016/j.neuro.2008.08.005] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Revised: 08/14/2008] [Accepted: 08/22/2008] [Indexed: 12/14/2022]
|
17
|
Effect of paradoxical sleep deprivation on oxidative stress parameters in brain regions of adult and old rats. Biogerontology 2008; 9:153-62. [DOI: 10.1007/s10522-008-9124-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Accepted: 01/05/2008] [Indexed: 10/22/2022]
|
18
|
Effect of dehydroepiandrosterone (DHEA) on monoamine oxidase activity, lipid peroxidation and lipofuscin accumulation in aging rat brain regions. Biogerontology 2008; 9:235-46. [DOI: 10.1007/s10522-008-9133-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Accepted: 02/11/2008] [Indexed: 10/22/2022]
|
19
|
Sharma V, Babu PP, Singh A, Singh S, Singh R. Iron-induced experimental cortical seizures: Electroencephalographic mapping of seizure spread in the subcortical brain areas. Seizure 2007; 16:680-90. [PMID: 17629512 DOI: 10.1016/j.seizure.2007.05.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2005] [Revised: 05/06/2007] [Accepted: 05/23/2007] [Indexed: 11/26/2022] Open
Abstract
The iron-induced model of post-traumatic chronic focal epilepsy in rats was studied by depth-electrode mapping to investigate the spread of epileptiform activity into subcortical brain structures after its onset in the cortical epileptic focus. Electrical seizure activity was recorded in the hippocampal CA1 and CA3 areas, amygdala and caudate-putamen, in rats with iron-induced chronic cortical focal epilepsy. These experiments showed that the epileptiform activity with its onset in the cortical focus synchronously propagated into the studied subcortical brain areas. Seizure behaviours seemed to increase in correspondence with the spread of the epileptic electrographic activity in subcortical areas. Comparison of the cortical focus electroencephalographic and associated multiple-unit action potential recordings with those from the subcortical structures showed that the occurrence and evolution of the epileptiform activity in the subcortical structures were in parallel with that in the cortical focus. The intracerebral anatomic progression and delineation of seizure spread (mapped by field potential (EEG) and multiple-unit action potentials (MUA) recordings) indicated participation of these regions in the generalization of seizure activity in this model of epilepsy. The seizure-induced activation of the hippocampus appeared to evolve into an epileptic focus independent of the cortical focus. The present study demonstrates the propagation of epileptic activity from the cortical focus into the limbic and basal ganglia regions. Treatment of iron-induced epileptic rats with ethosuximide, an anti-absence drug, resulted in suppression of the epileptiform activity in the cortical focus as well as in the subcortical brain areas.
Collapse
Affiliation(s)
- Varsha Sharma
- Neurobiology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | | | | | | | | |
Collapse
|
20
|
Nehru B, Bhalla P, Garg A. Further evidence of centrophenoxine mediated protection in aluminium exposed rats by biochemical and light microscopy analysis. Food Chem Toxicol 2007; 45:2499-505. [PMID: 17688990 DOI: 10.1016/j.fct.2007.05.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Revised: 05/03/2007] [Accepted: 05/22/2007] [Indexed: 11/21/2022]
Abstract
The environmental agent aluminium has been intensively investigated in the initiation and progression of various neurological disorders and the role of oxidative stress in these disorders is a widely discussed phenomenon. In this light, the present study is focused on the role of aluminium in mediating oxidative stress, which may help in better understanding its role in neuronal degeneration. Further, we have exploited a known anti-aging drug centrophenoxine to explore its potential in the conditions of metal induced oxidative damage. Aluminium was administered orally at a dose level of 100 mg/kg b.wt./day for a period of 6 weeks followed by a post treatment of centrophenoxine at a dose level of 100 mg/kg b.wt./day for another 6 weeks. Following aluminium exposure, a significant increase in lipid peroxidation levels (estimated by MDA) were observed which was accompanied by a decrease in reduced glutathione content in both cerebrum and cerebellum of rat brain. Post treatment of centrophenoxine significantly reduced the lipid peroxidation levels and also increased the reduced glutathione content in both the regions. Histologically observed marked deteriorations in the organization of various cellular layers in both cerebrum and cerebellum were observed after aluminium administration. Centrophenoxine treated animals showed an appreciable improvement in the histoarchitecture of the cellular layers. Our results indicate that centrophenoxine has an antioxidant potential and should be examined further in aluminium toxic conditions.
Collapse
Affiliation(s)
- Bimla Nehru
- Department of Biophysics, Panjab University, Chandigarh 160014, India.
| | | | | |
Collapse
|
21
|
Ahn J, Um M, Choi W, Kim S, Ha T. Protective effects of Glycyrrhiza uralensis Fisch. on the cognitive deficits caused by beta-amyloid peptide 25-35 in young mice. Biogerontology 2006; 7:239-47. [PMID: 16821116 DOI: 10.1007/s10522-006-9023-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2005] [Accepted: 03/27/2006] [Indexed: 01/23/2023]
Abstract
Amyloid beta protein (Abeta) may be involved in the progression of Alzheimer's disease (AD), by acting as a neurotoxin and eliciting oxidative stress. This study was designed to determine the effects of Glycyrrhiza uralensis Fisch. water extract (GWE) on the cognitive deficits and oxidative stress induced by the administration of Abeta(25-35) in mice. Mice in two of the four animal groups were fed an experimental diet containing either 0.5 or 1% GWE for the entire 6-week experimental period. Control mice and a further experimental group were fed a non-GWE diet. Abeta(25-35) was administered to the three experimental groups by intracerebroventricular (i.c.v.) injection (10 microg/10 microl/mouse) once per week in weeks 5 and 6 of the experimental period. Behavioral changes were assessed using both a passive avoidance (after the injection of Abeta(25-35) in week 5) and the Morris water-maze tests (after the injection of Abeta(25-35) in week 6). Control animals were administered vehicle alone. The prolonged consumption of a diet containing GWE ameliorated the cognitive deficits caused by the i.c.v. injections of Abeta(25-35). Treatment with Abeta(25-35) led to higher concentrations of thiobarbituric acid reactive substances in the brain, and GWE attenuated this response. There was a decrease in catalase activity in the group provided with 1% GWE. Acetylcholinesterase activity was significantly reduced in the brains of all GWE-treated animals compared to that in the non-GWE-fed experimental group. These results suggest that GWE exerts a protective effect against the cognitive impairments often observed in AD, and that in mice this effect is mediated by antioxidant actions against oxidative stress.
Collapse
Affiliation(s)
- J Ahn
- Biofunction Research Team, Food Function Research Division, Korea Food Research Institute, San 46-1, Baekhyun-dong, Bundang-gu, Seongnam-si, Gyeonggi-do 463-746, Republic of Korea
| | | | | | | | | |
Collapse
|
22
|
Bala K, Tripathy BC, Sharma D. Neuroprotective and Anti-ageing Effects of Curcumin in Aged Rat Brain Regions. Biogerontology 2006; 7:81-9. [PMID: 16802111 DOI: 10.1007/s10522-006-6495-x] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2005] [Accepted: 12/22/2005] [Indexed: 11/24/2022]
Abstract
This study investigated the influence of chronically administered curcumin on normal ageing-related parameters: lipid peroxidation, lipofuscin concentration and intraneuronal lipofuscin accumulation, activities of the enzymes superoxide dismutase (SOD), glutathione peroxidase (GPx), and Na(+), K(+), -adenosine triphosphatase (Na(+), K(+), -ATPase) in different brain regions (cerebral cortex, hippocampus, cerebellum and medulla) of 6- and 24-month-old rats. In normal ageing, lipid peroxidation and lipofuscin concentration were found to increase with ageing, the activities of SOD, GPx and Na(+), K(+), -ATPase, however, decreased with ageing. Chronic curcumin treatment of both 6 and 24 months old rats resulted in significant decreases in lipid peroxide and the lipofuscin contents in brain regions, the activities of SOD, GPx and Na(+), K(+), -ATPase however, showed significant increase in various brain regions. The present study, thus, demonstrated the antioxidative, antilipofusinogenesic and anti-ageing effects of curcumin in the brain.
Collapse
Affiliation(s)
- Kiran Bala
- School of Life Sciences, Jawaharlal Nehru University, 110 067, New Delhi, India
| | | | | |
Collapse
|
23
|
Eli R, Fasciano JA. An adjunctive preventive treatment for heart disease and a set of diagnostic tests to detect it: insulin-like growth factor-1 deficiency and cell membrane pathology are an inevitable cause of heart disease. Med Hypotheses 2006; 66:964-8. [PMID: 16412584 DOI: 10.1016/j.mehy.2005.11.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2005] [Revised: 11/15/2005] [Accepted: 11/17/2005] [Indexed: 10/25/2022]
Abstract
Coronary heart disease (CHD) is a preventable disease with high morbidity and mortality. Largely omitted from the efforts at detection and treatment are the contributions of the lungs, the skeletal muscles and the arteries to heart disease pathology. Also omitted are the effects of the age-related decline in insulin-like growth factor-1 (IGF-1) and the age-related increase in cell membrane pathology. The hypothesis on which this model is based postulates that growing older, over time, necessarily results in pathological changes in the heart, the lungs, the skeletal muscles and the arteries. Additionally, the age-related decline in (IGF-1) that occurs in the otherwise healthy aged population also causes similar pathological changes. The drug portion of the proposed treatment includes the use of the drug acetyl-l-carnitine (ALC) to increase the age-related decreased IGF-1 levels. The drug centrophenoxine (CPH) is used to reverse the age-related pathological changes that inevitably occur in the heart, the lungs, the skeletal muscles and the arteries. A testing procedure is included to improve the detection of heart disease and to monitor the results. It consists of five tests: the monitoring of plasma IGF-1 levels; the monitoring of blood pressure, and in particular elevated systolic blood pressure; the monitoring of blood pressure variability over time; a heart rate recovery time test and a heart rate reserve test. Heart rate reserve is defined as the difference between maximal heart rate and resting heart rate, after treadmill exercise. The changes in test results noted during treatment are an indicator of progress or deterioration in the prevention of heart disease, whatever the case may be.
Collapse
|
24
|
Araujo JA, Studzinski CM, Head E, Cotman CW, Milgram NW. Assessment of nutritional interventions for modification of age-associated cognitive decline using a canine model of human aging. AGE (DORDRECHT, NETHERLANDS) 2005; 27:27-37. [PMID: 23598601 PMCID: PMC3456092 DOI: 10.1007/s11357-005-4001-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2005] [Accepted: 03/11/2005] [Indexed: 05/15/2023]
Abstract
The present review focuses on the utility of a canine model in evaluating nutritional interventions for age-related cognitive dysfunction. Aged dogs demonstrate progressive cognitive decline with concurrent amyloid-beta pathology that parallels the pathology observed in aging humans. Dogs, therefore, provide a natural model of human pathological aging. We have and are in the process of evaluating several nutritional-based interventions aimed at preventing cognitive decline and brain aging. In a three-year longitudinal study, we examined the effects of a diet enriched with antioxidants and mitochondrial cofactors on several measures of cognition and brain aging. Compared to controls, aged dogs on the enriched diet demonstrated both short- and long-term cognitive benefits, as well decreased deposition of amyloid-beta protein. The diet also reduced behavioral signs associated with canine Cognitive Dysfunction Syndrome when assessed in veterinary clinical trials. We also have preliminary evidence suggesting a beneficial effect of a proprietary blend of docosahexaenoic acid and phospholipids on both cognitive and physiological measures. Collectively, our data indicate (1) that the dog, either in the laboratory or in the clinic, provides an important tool for assessing nutritional interventions and (2) that combination interventions aimed at several mechanisms of pathological aging may prove more effective than single nutritive components in human trials.
Collapse
Affiliation(s)
- Joseph A. Araujo
- Department of Pharmacology, University of Toronto, Toronto, Ontario Canada
| | | | - Elizabeth Head
- Institute for Brain Aging and Dementia, University of California, Irvine, California USA
| | - Carl W. Cotman
- Institute for Brain Aging and Dementia, University of California, Irvine, California USA
| | - Norton W. Milgram
- Department of Pharmacology, University of Toronto, Toronto, Ontario Canada
- Division of Life Sciences, University of Toronto at Scarborough, 1265 Military Trail, Scarborough, ON M1C 1A4 Canada
| |
Collapse
|
25
|
Kaur J, Sharma D, Singh R. Acetyl-L-carnitine enhances Na(+), K(+)-ATPase glutathione-S-transferase and multiple unit activity and reduces lipid peroxidation and lipofuscin concentration in aged rat brain regions. Neurosci Lett 2001; 301:1-4. [PMID: 11239702 DOI: 10.1016/s0304-3940(01)01576-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study investigated the effects of chronically administered acetyl-L-carnitine (ALC) on sodium potassium adenosine triphosphatase (Na(+), K(+)-ATPase), glutathione-S-transferase (GST), glutathione peroxidase (GPx), multiple unit activity (MUA) and lipid peroxidation (LP) and lipofuscin (LF) concentration in brain regions: cerebral cortex, hippocampus, striatum and thalamus, of 24-month-old rats. The activity of Na(+), K(+)-ATPase and GST was enhanced; that of GPx was unaffected. The MUA was increased while the levels of LP and LF were decreased. These novel data provide new additional evidence concerning the antiaging attributes of ALC.
Collapse
Affiliation(s)
- J Kaur
- Neurobiology Laboratory, School of Life Sciences, Jawaharlal Nehru University, 110 067, New Delhi, India
| | | | | |
Collapse
|
26
|
Gopal PV, Sriram AV, Sharma D, Singh R. Glutathione-S-transferase in the ageing rat brain cerebrum and the effect of chlorpromazine. Gerontology 2000; 46:7-11. [PMID: 11111222 DOI: 10.1159/000022126] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Lipid peroxidation increases during ageing and has been implicated in the pathogenesis of degenerative processes associated with ageing. Despite the importance of the enzyme glutathione-S-transferase (GST) in the biotransformation and detoxification of lipid peroxidation products, there have been extremely limited studies of GST in the ageing brain. The drug chlorpromazine is known to have an activating influence on the activities of certain antioxidant enzymes (glutathione peroxidase, superoxide dismutase, etc.) and it also has anti-lipid peroxidative and anti-lipofuscin influences. Therefore, information about the age-related changes in brain GST and the effect of chlorpromazine on it in the ageing brain will be of further interest. We have, therefore, studied the effect of age on the activity of GST in the whole homogenate and cytosol fractions from the cerebral hemispheres of rats aged 1, 2, 3, 6, 12, 18 and 24 months. The effect of chlorpromazine treatment (10 mg/kg i.p. on alternate days for 6 months) was examined in the whole homogenate and cytosol fraction from the cerebral hemispheres of 6-, 12-, 18- and 24-month-old rats. The results showed that the values for GST specific activities in the cytosol fraction from all the age groups were higher then those in the whole homogenate; and the pattern of age changes in the whole homogenate differed from that in the cytosol. In the cytosol fraction the enzyme activity showed several phases of alterations: a progressive increase at 3 months of age, followed by a steady level up to 12 months of age; this phase was followed by a fall in the activity (at 18 months of age) then turned to a gradual increase. In the whole homogenate there were two phases of alterations: a progressive increase up to 12 months of age, which then turned to a somewhat gradual decrease with ageing. Thus, the decline in GST activity during ageing was evident in both the whole homogenate and cytosol. The results from chlorpromazine experiments showed that the drug elevated the GST activity in 12-, 18-, and 24-month-old animals but not in the 6-month-old animals. The drug's effects were most profound in 12-month-old animals. In conclusion, this study demonstrated an impairment of brain GST activity during ageing and the results further showed that the drug chlorpromazine attenuated the age-related impairment in the enzyme activity. The enhancement of the GST status of the ageing brain following chlorpromazine treatment is indicative of an additional antioxidative property of this drug.
Collapse
Affiliation(s)
- P V Gopal
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | | | | |
Collapse
|
27
|
Murray CA, Clements MP, Lynch MA. Interleukin-1 induces lipid peroxidation and membrane changes in rat hippocampus: An age-related study. Gerontology 1999; 45:136-42. [PMID: 10202258 DOI: 10.1159/000022076] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The proinflammatory cytokine, interleukin-1, is traditionally associated with the immune response but recent evidence indicates that it plays a role in neuronal function. Its expression is increased in neurodegenerative conditions and preliminary evidence suggests that it is also increased with increasing age. Receptors for interleukin-1 are differentially distributed in the brain with a high density in the hippocampus, where interleukin-1beta exerts inhibitory effects on release and calcium channel function. OBJECTIVE The aim of this study was to investigate the possibility that interleukin-1 might lead to age-related changes in membrane composition. METHODS Lipid peroxidation was assessed in the presence or absence of interleukin-1beta in hippocampal tissue prepared from 4- and 22-month-old rats. These data were analysed in parallel with age-related changes in arachidonic acid and interleukin-1beta concentrations in the hippocampus. RESULTS We report that interleukin-1beta increased lipid peroxidation in hippocampal tissue prepared from 4- but not 22-month-old rats, and that this effect was inhibited by alpha-tocopherol. The attenuated response to interleukin-1beta in tissue prepared from aged rats correlated with increased expression of endogenous interleukin-1beta. Thus, using an ELISA, we have demonstrated an age-related increase in the concentration of interleukin-1beta, which is accompanied by an age-related decrease in membrane arachidonic acid. CONCLUSION We propose that increased interleukin-1beta expression impacts on membrane composition and therefore contributes to age-related impairments in neuronal function.
Collapse
Affiliation(s)
- C A Murray
- Department of Physiology, Trinity College, Dublin, Ireland, UK
| | | | | |
Collapse
|
28
|
TERMAN ALEXEI, WELANDER MARTIN. Centrophenoxine Slows Down, but Does Not Reverse, Lipofuscin Accumulation in Cultured Cells. ACTA ACUST UNITED AC 1999. [DOI: 10.1089/rej.1.1999.2.265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
29
|
Hentall ID. Excitation of cells in the rostral medial medulla of the rat by the nitric oxide-cyclic guanosine monophosphate messenger system. Neurosci Lett 1995; 195:155-8. [PMID: 8584198 DOI: 10.1016/0304-3940(95)11802-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Analgesia has been reported to be facilitated by supraspinal nitric oxide (NO) and cyclic guanosine monophosphate (cGMP). In the rostromedial medulla, an important pain-suppressing region, iontophoretically delivered 8-bromo-cGMP excited most single recorded cells (9/10), and methylene blue (a guanylyl cyclase inhibitor) inhibited all cells (7/7). Nitrite and ferrous ions together, shown voltammetrically ex vivo to yield nitric oxide (NO), excited some cells (14/28) and inhibited others (7/28). Methylene blue blocked excitation (3/3) but not inhibition (4/4) by the putative NO. Spontaneous or glutamate-evoked firing was gradually inhibited (23/32) or unaffected by N omega-nitro-L-arginine (a NO synthase inhibitor), but was mostly inhibited by L-arginine (the NO precursor) (23/26), although a rapid onset militated against elevated NO production. These substances, excepting L-arginine, produced changes consistent with an excitatory cGMP-NO cascade contributing to analgesia.
Collapse
Affiliation(s)
- I D Hentall
- Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford 61107-1897, USA
| |
Collapse
|
30
|
Benzi G, Moretti A. Age- and peroxidative stress-related modifications of the cerebral enzymatic activities linked to mitochondria and the glutathione system. Free Radic Biol Med 1995; 19:77-101. [PMID: 7635361 DOI: 10.1016/0891-5849(94)00244-e] [Citation(s) in RCA: 191] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The aging brain undergoes a process of enhanced peroxidative stress, as shown by reports of altered membrane lipids, oxidized proteins, and damaged DNA. The aims of this review are to examine: (1) the possible contribution of mitochondrial processes to the formation and release of reactive oxygen species (ROS) in the aging brain; and (2) the age-related changes of antioxidant defenses, both enzymatic and nonenzymatic. It will focus on studies investigating the role of the electron transfer chain as the site of ROS formation in brain aging and the alterations of the glutathione system, also in relation to the effects of exogenous pro-oxidant agents. The possible role of peroxidative stress in age-related neurodegenerative diseases will also be discussed.
Collapse
Affiliation(s)
- G Benzi
- Institute of Pharmacology, Faculty of Science, University of Pavia, Italy
| | | |
Collapse
|
31
|
Abstract
Lipid peroxidation (LP) and protein oxidation (PO) were investigated in hippocampus and frontal cortex homogenates from young (5 months), mature (13 months) and old (24 months) Wistar rats and young (5 months) and old (24 months) Brown Norway rats. LP and PO were determined in basal conditions and after incubation without iron (spontaneous condition) or with iron (stimulated condition). LP was measured as HPLC-assayed malondialdehyde (MDA) and PO as protein carbonyl (CO) content. Brain homogenates formed considerable amounts of MDA and CO spontaneously and, to an even greater extent, in the presence of Fe2+. Old rats showed greater iron-stimulated LP in the cortex than young rats, but the difference was not significant. Basal (but not spontaneous or stimulated) PO was significantly increased (19%) in the hippocampus of old compared to young rats. This study does not confirm the age-related increase in LP reported in the literature and only partially confirms the findings concerning PO.
Collapse
Affiliation(s)
- M Cini
- Business Unit Therapeutics Preclinical Research, Pharmacia Farmitalia Carlo Erba, Nerviano, Italy
| | | |
Collapse
|