1
|
Eng SW, Muniandy V, Punniamoorthy L, Tew HX, Norazmi MN, Ravichandran M, Lee SY. Live Attenuated Bacterial Vectors as Vehicles for DNA Vaccine Delivery: A Mini Review. Malays J Med Sci 2024; 31:6-20. [PMID: 39830112 PMCID: PMC11740808 DOI: 10.21315/mjms2024.31.6.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 08/16/2024] [Indexed: 01/22/2025] Open
Abstract
DNA vaccines are third-generation vaccines composed of plasmids that encode vaccine antigens. Their advantages include fast development, safety, stability, and cost effectiveness, which make them an attractive vaccine platform for genetic and infectious diseases. However, the low transfection efficiency of DNA vaccines results in poor performance in both larger animals and humans, thereby limiting their clinical use. To overcome this issue, live attenuated bacterial vector (LABV) has been proposed as a DNA delivery vehicle. LABV is known to improve DNA vaccine transfection efficiency, thus enhancing the immune response. This article highlights recent advancements in the development of LABV DNA vaccines, the design of shuttle plasmids and adjuvants, and the potential applications of LABV candidates.
Collapse
Affiliation(s)
- Sze Wei Eng
- Faculty of Applied Sciences, AIMST University, Kedah, Malaysia
- Centre of Excellence for Vaccine Development (CoEVD), Faculty of Applied Science, AIMST University, Kedah, Malaysia
| | - Vilassini Muniandy
- Faculty of Applied Sciences, AIMST University, Kedah, Malaysia
- Centre of Excellence for Vaccine Development (CoEVD), Faculty of Applied Science, AIMST University, Kedah, Malaysia
| | - Lohshinni Punniamoorthy
- Faculty of Applied Sciences, AIMST University, Kedah, Malaysia
- Centre of Excellence for Vaccine Development (CoEVD), Faculty of Applied Science, AIMST University, Kedah, Malaysia
| | - Hui Xian Tew
- Faculty of Applied Sciences, AIMST University, Kedah, Malaysia
- Centre of Excellence for Vaccine Development (CoEVD), Faculty of Applied Science, AIMST University, Kedah, Malaysia
| | - Mohd Nor Norazmi
- School of Health Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
- Malaysia Genome and Vaccine Institute, National Institutes of Biotechnology Malaysia, Selangor, Malaysia
| | - Manickam Ravichandran
- Faculty of Applied Sciences, AIMST University, Kedah, Malaysia
- MyGenome Sdn Bhd, Kuala Lumpur, Malaysia
| | - Su Yin Lee
- Faculty of Applied Sciences, AIMST University, Kedah, Malaysia
- Centre of Excellence for Vaccine Development (CoEVD), Faculty of Applied Science, AIMST University, Kedah, Malaysia
| |
Collapse
|
2
|
Mu J, Lei L, Zheng Y, Li D, Li J, Fu Y, Wang G, Liu Y. Comparative study of subcutaneous, intramuscular, and oral administration of bovine pathogenic Escherichia coli bacterial ghost vaccine in mice. Front Immunol 2022; 13:1008131. [DOI: 10.3389/fimmu.2022.1008131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/27/2022] [Indexed: 11/15/2022] Open
Abstract
Escherichia coli is one of the most common bacterial pathogens in cattle. Prophylactic vaccines are considered promising strategies with the potential to reduce the incidence of colibacillosis. Some studies suggested that bacterial ghosts may serve as a novel approach for preventing bacterial infections. However, the roles of administration route on vaccine immunogenicity and efficacy have not been investigated. In this study, the efficacy of vaccination via different immune routes in generating humoral and cellular immune response was compared through subcutaneous (SC), intramuscular (IM), and oral (O) administration in female BALB/c mice with bacterial ghosts prepared using wild type Escherichia coli isolates CE9, while phosphate buffer saline (PBS) and inactivated vaccines containing aluminum adjuvants (Killed) were used as control. Our results showed that the plasmid pBV220-E-aa-SNA containing E. coli was efficiently cleaved at 42°C with 94.8% positive ratio as assessed by colony counts. Transmission electron microscopy (TEM) confirmed bacteria retained intact surface structure while devoid of cytoplasmic component. We found that total IgG titers in killed, IM and SC groups showed significant increase on 7, 14, 21 and 28 days post-immunization. The IgA level of the IM group was higher than that of all other groups on the 28th day. Meanwhile, four experimental groups showed a significant difference in IgA levels compared with PBS control. In the IM group, an increase in the relative percentages of CD3+CD4+ T cells was accompanied by an increase in the relative percentages of splenic CD3+CD8+ T cells. In comparison with the inactivated vaccine, intramuscular CE9 ghosts immunization elicited higher levels of IL-1β, IL-2, IL-6 and IL-12. Subcutaneous and intramuscular immunizations were significantly associated with improved survival in comparison with oral route, traditional vaccine and the control. Pathologic assessment revealed that less severe tissue damage and inflammation were found in lung, kidney, and intestine of IM group compared with other groups. The results above demonstrate that immunization of Escherichia coli CE9 ghosts via intramuscular injection elicits a more robust antigen-specific immune response in mice to prevent the Escherichia coli infection.
Collapse
|
3
|
Ji S, Gong Q, Zhang W, Zheng J, Peng B, Yang M. Recombinant Vibrio parahaemolyticus ghosts protect zebrafish against infection by Vibrio species. FISH & SHELLFISH IMMUNOLOGY 2020; 107:64-72. [PMID: 33038509 DOI: 10.1016/j.fsi.2020.10.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/07/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
Aquatic animals are frequently threated by bacterial pathogens. The most economic and efficient protection against bacterial infection are through vaccine immunization. The various serotypes of the pathogens, such as Vibrios, hurdle the development of the vaccines, especially polyvalent vaccines. Here, we demonstrate that recombinant bacterial ghost is a good candidate for multivalent vaccine. By expressing PhiX174 gene E alone or co-expressing the gene E with two genes encoding outer membrane proteins (VP1667 and VP2369) in V. parahaemolyticus, we generated the recombinant V. parahaemolyticus ghosts VPG and rVPGs respectively. Fish immunized with either VPG or rVPG showed increased survival against the infection by either V. parahaemolyticus or V. alginolyticus, with a better protective effect by immunization with rVPG. Our furthermore studies show that rVPG stimulates stronger innate immune responses by increasing the expression of tnfα, il1β, il6, il8 and il10 as well as that of c3b, lyz, and tlr5, the key players linking the innate and adaptive immune responses upon microbial stimulation. In summary, VPG and rVPG can protect zebrafish against the infection from at least two Vibrio species, suggesting its potential value for further aquaculture vaccines development.
Collapse
Affiliation(s)
- Shengle Ji
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Hangzhou, 311300, China
| | - Qiyang Gong
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Wenwen Zhang
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Jun Zheng
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Bo Peng
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Menghua Yang
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Hangzhou, 311300, China.
| |
Collapse
|
4
|
Abstract
INTRODUCTION Bacterial ghosts are intact bacterial cell envelopes that are emptied of their content by gentle biological or chemical poring methods. Ghost techniques increase the safety of the killed vaccines, while maintaining their antigenicity due to mild preparation procedures. Moreover, ghost-platforms may express and/or carry several antigens or plasmid-DNA encoding for protein epitopes. AREAS COVERED In this review, the development in ghost-vaccine production over the last 30 years is classified and discussed. The different applications of ghost-vaccines, how they trigger the immune system, their advantages and limitations are displayed. The phage-mediated lysis, molecular manipulation of the lysis-genes, and the biotechnological production of ghosts are described. The trials are classified according to the pattern of lysis and to the type of bacteria. Further subdivision includes chronological ordered application of the ghost as alternative-killed vaccine, recombinant antigen platform, plasmid DNA carrier, adjuvants, and dendritic cell inducer. Particular trials for specific pathogens or from distinct research schools are gathered. EXPERT OPINION Ghosts are highly qualified to act as immune-presenting platforms that express and/or carry several recombinant and DNA vaccines, as well as, being efficient alternative-killed vaccines. The coming years will show more molecular advances to develop ghost-production and to express more antigens.
Collapse
Affiliation(s)
- Ali M Batah
- Tropical Disease Research Center, University of Science and Technology , Sana'a, Yemen
| | - Tarek A Ahmad
- Morehouse School of Medicine , Atlanta, GA, USA.,Library Sector, Bibliotheca Alexandrina , Alexandria, Egypt
| |
Collapse
|
5
|
Halimi M, Alishahi M, Abbaspour MR, Ghorbanpoor M, Tabandeh MR. High efficacy and economical procedure of oral vaccination against Lactococcus garvieae/Streptococcus iniae in rainbow trout (Oncorhynchus mykiss). FISH & SHELLFISH IMMUNOLOGY 2020; 99:505-513. [PMID: 32092407 DOI: 10.1016/j.fsi.2020.02.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/10/2020] [Accepted: 02/16/2020] [Indexed: 06/10/2023]
Abstract
The present study was aimed to examine the efficacy of chitosan-alginate coated vaccines against pathogenicity of Lactococcus garvieae and Streptococcus iniae in rainbow trout. Fish were divided into four groups including: Group A: fish immunized by chitosan-alginate coated vaccine, Group B: fish immunized by non-coated vaccine, Group C: fish feed by chitosan-alginate coated pellets without vaccine and Group D: fish feed by basic diet (non-coated and without vaccine). In groups A and B, the vaccination was carried out for 14 days and after that supplemented with fundamental diet (control diet). Comparable to groups A and B, fish of group C were also fed 14 days with test diets and after that fed control food. On day 0, 20, 40 and 60 of the experiment, serum samples were given. Fish have been challenged with live L. garvieae and S. iniae after 60 days. The levels of bactericidal activity and complement activity among innate immunity components extended on day 20 of the research and after that decreased in group A and B (P < 0.05) all through the examination. The relative expression of IL-6 and IgM in groups A and B extended on examination day 20. The expression of these genes illustrated no advancements in different groups in during the examination (P > 0.05). In group A, the serum antibody titer against L. garvieae and S. iniae broadly raised on day 40 and 60 of examination, whereas in group B, the immune response titer against S. iniae and L. garvieae illustrated a significant elevation on day 60 of the trial (P < 0.05). After challenge with live bacteria, survival rate of 83 ± 9.1%(challenged with S. iniae) and 72.18 ± 9.8% (challenged with L. garvieae) were gotten independently in group A, which were higher than survival of other exploratory groups (P < 0.05). In conclusion, the results of the present examination appear that the orally vaccination of rainbow trout with chitosan-alginate covered vaccine stimulates immunity system and also efficiently protects rainbow trout against Lactococcus garvieae and Streptococcus iniae.
Collapse
Affiliation(s)
- Mostafa Halimi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Mojtaba Alishahi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohammad Reza Abbaspour
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoud Ghorbanpoor
- Department of Microbiology and Immunology,Faculty of Veterinary Medicine,Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohammad Reza Tabandeh
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
6
|
Halimi M, Alishahi M, Abbaspour MR, Ghorbanpoor M, Tabandeh MR. Valuable method for production of oral vaccine by using alginate and chitosan against Lactococcus garvieae/Streptococcus iniae in rainbow trout (Oncorhynchus mykiss). FISH & SHELLFISH IMMUNOLOGY 2019; 90:431-439. [PMID: 31082516 DOI: 10.1016/j.fsi.2019.05.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 06/09/2023]
Abstract
The effectiveness of ionotropic gelation method (by combining alginate and chitosan) vaccine against Lactococcus garvieae and Streptococcus iniae was examined in rainbow trout. Fish were separated into four groups and fed the distinctive examined feeds. Our groups were included: A) fish immunized by chitosan-alginate coated vaccine, B) fish immunized by non-coated vaccine, C) fish feed by chitosan-alginate coated pellets without vaccine and D) fish feed by basic diet (non-coated and without vaccine). In groups A and B, the vaccination was carried out for 14 days. Fish of group C, like groups A and B were fed 14 days with pellets covered with chitosan-alginate without vaccine and a short time later they were fed with control diet. On day 0, 20, 40 and 60 of the trial, serum samples were extracted. Fish were challenged with L. garvieae and S. iniae after 60 days of research. Innate immunity components containing complement activity, total protein and IgM appeared no significant changes nearly in all groups during the 60 days that the examination finished. Although, bactericidal activity and lysozyme activity demonstrated a significant increase on days 20, 40 and 60 in group A compared to control groups (C and D) (P < 0.05) and similar results about the blood respiratory burst activity just on days 20 and 40 were obtained. Also, the relative expression of IL-6 of group A, was significantly higher compared to all of other groups (B, C and D) on days 20 and 60 of experiment (P < 0.05). The same results were obtained about the relative expression of IgM. The serum ELISA antibody titer against L. garvieae, increased significantly on days 20 and 40 of experiment in fish immunized by chitosan-alginate coated vaccine (Group A) compared to control groups (C and D)(P < 0.05) while the result of ELISA test against S. iniae was significantly higher on days 40 and 60 of experiment in group A compared to groups B, C and D (P < 0.05). After challenge with these two live bacteria (S. iniae and L. garvieae), a survival rates of 76.67 ± 5.77% (challenged with S. iniae) and 66.67 ± 5.77% (challenged with L. garvieae) were seen in group immunized with chitosan-alginate coated vaccine (Group A), which were higher than survival rates gotten in other trial groups (P < 0.05). The consequences of the present experiment show that the oral vaccination of rainbow trout with improved chitosan-alginate (via ionotropic procedure) (group A) properly secures this important fish against Lactococcus garvieae and Streptococcus iniae.
Collapse
Affiliation(s)
- Mostafa Halimi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Mojtaba Alishahi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohammad Reza Abbaspour
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoud Ghorbanpoor
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine,Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohammad Reza Tabandeh
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
7
|
Halimi M, Alishahi M, Abbaspour MR, Ghorbanpoor M, Tabandeh MR. Efficacy of a Eudragit L30D-55 encapsulated oral vaccine containing inactivated bacteria (Lactococcus garvieae/Streptococcus iniae) in rainbow trout (Oncorhynchus mykiss). FISH & SHELLFISH IMMUNOLOGY 2018; 81:430-437. [PMID: 30056210 DOI: 10.1016/j.fsi.2018.07.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 07/22/2018] [Accepted: 07/25/2018] [Indexed: 06/08/2023]
Abstract
The efficacy of a Eudragit L30D-55 encapsulated vaccine against Lactococcus garvieae and Streptococcus iniae was investigated in rainbow trout. Fish were divided into four groups and fed the different experimental feeds. Groups were: A) fish immunized by Eudragit-coated pellets containing vaccine, B) fish immunized by vaccine-coated pellets without Eudragit, C) fish fed Eudragit-coated pellets without vaccine and D) fish fed pellets without vaccine orEudragit (control group). In groups A and B, the vaccination was conducted for 14 days. Similar to groups A and B, fish of group C were fed 14 days with pellets coated with Eudragit and afterwards they were fed control diet. Serum samples were taken on day 0, 20, 40 and 60 of the experiment. After 60 days, fish were challenged with L. garvieae and S. iniae. In almost all groups, innate immunity components including alternative complement activity, lysozyme activity, bactericidal activity, IgM and total protein showed no significant changes during the 60 days that the experiment lasted. However, the blood respiratory burst activity and lysozyme activity showed a significant increase on day 20 of experiment in groups B and D respectively (P < 0.05). The relative expression of immune-related genes including IL-6 and IgM genes was higher in vaccinated fish, with the highest expression in those immunized by Eudragit-coated pellets (Group A). In addition, the relative expression of IL-6 and IgM peaked on day 20 but decreased on day 60 in vaccinated groups. The ELISA antibody titer against L. garvieae increased from day 20 and peaked on day 60 of experiment (P < 0.05). Also, the antibody titer against L. garvieae was higher in fish immunized by Eudragit-coated pellets (Group A) compared to fish of group C and control. After bacterial challenge, a survival percentages of % 85 ± 7.07% (challenged with S. iniae) and % 72.21 ± 7.8% (challenged with L. garvieae) were observed respectively in groups immunized with pellets coated with Eudragit L30D-55 (Group A), which were higher than survival percentages obtained in other experimental groups (P < 0.05). The results of the present study demonstrate that the oral administration of Eudragit L30D-55-encapsulated vaccine appropriately protects rainbow trout against Lactococcus garvieae and Streptococcus iniae.
Collapse
Affiliation(s)
- Mostafa Halimi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Mojtaba Alishahi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohammad Reza Abbaspour
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoud Ghorbanpoor
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohammad Reza Tabandeh
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
8
|
Abstract
Bacterial ghosts (BG) are empty cell envelopes derived from Gram-negative bacteria. They contain many innate immunostimulatory agonists, and are potent activators of a broad range of cell types involved in innate and adaptive immunity. Several considerable studies have demonstrated the effectiveness of BG as adjuvants as well as their ability to induce proinflammatory cytokine production by a range of immune and non-immune cell types. These proinflammatory cytokines trigger a generalized recruitment of T and B lymphocytes to lymph nodes that maximize the chances of encounter with their cognate antigen, and subsequent elicitation of potent immune responses. The plasticity of BG has allowed for the generation of envelope-bound foreign antigens in immunologically active forms that have proven to be effective vaccines in animal models. Besides their adjuvant property, BG also effectively deliver DNA-encoded antigens to dendritic cells, thereby leading to high transfection efficiencies, which subsequently result in higher gene expressions and improved immunogenicity of DNA-based vaccines. In this review, we summarize our understanding of BG interactions with the host immune system, their exploitation as an adjuvant and a delivery system, and address important areas of future research interest.
Collapse
Affiliation(s)
- Irshad A Hajam
- College of Veterinary Medicine, Chonbuk National University, Iksan, 54596, Republic of Korea
| | - Pervaiz A Dar
- Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, 43614, USA
| | - Gayeon Won
- College of Veterinary Medicine, Chonbuk National University, Iksan, 54596, Republic of Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Chonbuk National University, Iksan, 54596, Republic of Korea.
| |
Collapse
|
9
|
A Novel Dual Vector Coexpressing PhiX174 Lysis E Gene and Staphylococcal Nuclease A Gene on the Basis of Lambda Promoter pR and pL, Respectively. Mol Biotechnol 2012; 54:436-44. [DOI: 10.1007/s12033-012-9581-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
10
|
Generation of biotechnology-derived Flavobacterium columnare ghosts by PhiX174 gene E-mediated inactivation and the potential as vaccine candidates against infection in grass carp. J Biomed Biotechnol 2012; 2012:760730. [PMID: 22719209 PMCID: PMC3376489 DOI: 10.1155/2012/760730] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 04/05/2012] [Indexed: 11/17/2022] Open
Abstract
Flavobacterium columnare is a bacterial pathogen causing high mortality rates for many freshwater fish species. Fish vaccination with a safe and effective vaccine is a potential approach for prevention and control of fish disease. Here, in order to produce bacterial ghost vaccine, a specific Flavobacterium lysis plasmid pBV-E-cat was constructed by cloning PhiX174 lysis gene E and the cat gene with the promoter of F. columnare into the prokaryotic expression vector pBV220. The plasmid was successfully electroporated into the strain F. columnare G4cpN22 after curing of its endogenous plasmid. F. columnare G4cpN22 ghosts (FCGs) were generated for the first time by gene E-mediated lysis, and the vaccine potential of FCG was investigated in grass carp (Ctenopharyngodon idellus) by intraperitoneal route. Fish immunized with FCG showed significantly higher serum agglutination titers and bactericidal activity than fish immunized with FKC or PBS. Most importantly, after challenge with the parent strain G4, the relative percent survival (RPS) of fish in FCG group (70.9%) was significantly higher than FKC group (41.9%). These results showed that FCG could confer immune protection against F. columnare infection. As a nonliving whole cell envelope preparation, FCG may provide an ideal alternative to pathogen-based vaccines against columnaris in aquaculture.
Collapse
|
11
|
Liu J, Wang W, Liu Y, Liu S, Zhou B, Zhu L, Ji X, Sun Y, Feng S. Mice vaccinated with enteropathogenic Escherichia coli ghosts show significant protection against lethal challenges. Lett Appl Microbiol 2012; 54:255-62. [DOI: 10.1111/j.1472-765x.2011.03202.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Liu J, Wang W, Liu Y, Liu S, Zhou B, Zhu L, Ji X, Sun Y, Feng S. Mice vaccinated with enteropathogenic Escherichia coli ghosts show significant protection against lethal challenges. Lett Appl Microbiol 2012. [DOI: 10.1111/j.1472-765x.2012.03202.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
13
|
Attenuation of bacterial virulence by quorum sensing-regulated lysis. J Biotechnol 2010; 150:22-30. [PMID: 20673838 DOI: 10.1016/j.jbiotec.2010.07.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2010] [Revised: 06/20/2010] [Accepted: 07/20/2010] [Indexed: 11/24/2022]
Abstract
Genetically attenuated pathogenic bacteria have been extensively considered as vaccine candidates. However, insufficient attenuation has been a frequent limitation of this approach. Many pathogens use quorum sensing to escape host defense mechanism. Here, we hypothesized that quorum sensing can be manipulated to diminish pathogenesis. To test this hypothesis, we modified the quorum sensing circuitry of a live cholera vaccine strain to add a second layer of attenuation. Attenuation resulted from the expression of phage PhiX174 lysis gene E on a balanced lethal plasmid from the quorum sensing-regulated luxC promoter. For conditional expression of quorum sensing and positive selection in vivo, the host strain was deleted of its cqsA and thyA genes encoding cholera autoinducer 1 (CAI-1) synthase and thymidylate synthase, respectively. A recombinant cqsA gene expressed from the cholera toxin (CT) promoter and an active thyA gene was provided in trans. The resulting strain expressed CAI-1 in AKI cultures (CT permissive condition) but not in LB medium. Additionally, it expressed elevated biofilm in LB medium compared to AKI conditions where CAI-1 is synthesized to repress biofilm formation. Induction of lysis gene E by quorum sensing restricted growth to a lower cell density in AKI medium, the suckling mouse intestine or LB supplemented with exogenous CAI-1. Microscopic examination revealed the presence of Vibrio cholerae ghost cells at high cell density. Lysis was accompanied by the release of intracellular β-galactosidase to the culture medium. We conclude that it is possible to manipulate quorum sensing to attenuate a live vaccine vector and restrict its shedding to the environment and diminish its subsequent dissemination.
Collapse
|
14
|
Tu FP, Chu WH, Zhuang XY, Lu CP. Effect of oral immunization with Aeromonas hydrophila ghosts on protection against experimental fish infection. Lett Appl Microbiol 2010; 50:13-7. [PMID: 19843213 DOI: 10.1111/j.1472-765x.2009.02746.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AIMS To investigate whether oral immunization with Aeromonas hydrophila ghosts (AHG) vaccine can elicit mucosal and systemic immune responses of Carp (Carassius auratus gibelio) compared to conventional formalin-killed bacteria (FKC). METHODS AND RESULTS Fish were fed diets coated with AHG, FKC or phosphate buffered saline (PBS) alone, after immunization, more antigen-specific antibody was significantly detected in serum and intestinal mucus in AHG group than FKC group and PBS group. In addition, after challenged with the parent strain J-1, the survival of bacterial ghost-vaccinated fish was higher than PBS group and FKC group, the relative per cent survival (RPS) being 76.8%, 58.9%, respectively. CONCLUSIONS Oral immunization with A. hydrophila ghosts can elicit systemic and mucosal adaptive immune responses and has higher potential to induce protective adaptive immunity than normal vaccine. SIGNIFICANCE AND IMPACT OF THE STUDY Oral immunization with bacterial ghosts is a promising new solution with potential application to prevent diseases in fish.
Collapse
Affiliation(s)
- F P Tu
- Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | | | | | | |
Collapse
|
15
|
Kwon SR, Kang YJ, Lee DJ, Lee EH, Nam YK, Kim SK, Kim KH. Generation of Vibrio anguillarum ghost by coexpression of PhiX 174 lysis E gene and staphylococcal nuclease A gene. Mol Biotechnol 2009; 42:154-9. [PMID: 19191038 DOI: 10.1007/s12033-009-9147-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Accepted: 01/14/2009] [Indexed: 12/19/2022]
Abstract
Vibrio anguillarum ghosts (VAG) were generated, for the first time, using a conjugation vector containing a ghost bacteria inducing cassette, pRK-lambdaP(R)-cI-Elysis, in which the expression of PhiX174 lysis gene E was controlled by the P ( R )/cI regulatory system of lambda phage. By scanning electron microscopy, holes ranging 80-200 nm in diameter were observed in the VAG. To avoid the presence of bacterial genomic DNA and an antibiotic resistance gene in the final VAG product, we constructed a new dual vector, pRK-lambdaP(R)-cI-E-SNA, containing the E-mediated lysis cassette and the staphylococcal nuclease A (SNA)-mediated DNA degradation cassette, and generated safety-enhanced VAG for use as a fish vaccine.
Collapse
Affiliation(s)
- Se Ryun Kwon
- Department of Aquatic Life Medicine, Pukyong National University, Pusan, Korea
| | | | | | | | | | | | | |
Collapse
|
16
|
Applications of Bacterial Ghosts in Biomedicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 655:159-70. [DOI: 10.1007/978-1-4419-1132-2_12] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
17
|
Abstract
The development of more advanced and effective vaccines is of great interest in modern medicine. These new-generation vaccines, based on recombinant proteins or DNA, are often less reactogenic and immunogenic than traditional vaccines. Thus, there is an urgent need for the development of new and improved adjuvants. Besides many other immunostimulatory components, the bacterial ghost (BG) system is currently under investigation as a potent vaccine delivery system with intrinsic adjuvant properties. BGs are nonliving cell envelope preparations from Gram-negative cells, devoid of cytoplasmic contents, while their cellular morphology and native surface antigenic structures remain preserved. Owing to the particulate nature of BGs and the fact that they contain many well known immune-stimulating compounds, BGs have the potential to enhance immune responses against ghost-delivered target antigens.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Animals
- Antigens, Bacterial/administration & dosage
- Antigens, Bacterial/genetics
- Antigens, Bacterial/immunology
- Chemistry, Pharmaceutical
- Drug Carriers
- Genetic Vectors
- Gram-Negative Bacteria/genetics
- Gram-Negative Bacteria/immunology
- Humans
- Immunity, Mucosal
- Technology, Pharmaceutical/trends
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Vaccines, Subunit/administration & dosage
- Vaccines, Subunit/genetics
- Vaccines, Subunit/immunology
Collapse
Affiliation(s)
- Eva M Riedmann
- Department of Chromosome Biology, Max F Perutz Laboratories, University of Vienna, Vienna, Austria.
| | | | | | | |
Collapse
|
18
|
Macmillan L, Ifere GO, He Q, Igietseme JU, Kellar KL, Okenu DM, Eko FO. A recombinant multivalent combination vaccine protects against Chlamydia and genital herpes. ACTA ACUST UNITED AC 2006; 49:46-55. [PMID: 17094789 DOI: 10.1111/j.1574-695x.2006.00165.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chlamydia trachomatis and Herpes simplex virus type 2 (HSV-2) genital infections pose a considerable public health challenge worldwide. Considering the high incidence of coinfections by the two pathogens, a combination vaccine that can be administered as a single regimen would be highly desirable. Recombinant Vibrio cholerae ghosts (rVCG) offer an attractive approach for the induction of humoral and cellular immune responses against human and animal pathogens. In this study, we evaluated a bivalent combination vaccine formulation comprising rVCG expressing chlamydial MOMP and HSV-2 glycoprotein D in mice for immunogenicity and protective efficacy against genital challenge with either pathogen. Mice immunized with the combination vaccine elicited secretory IgA and IgG2a antibodies to both chlamydial and HSV-2 antigens in serum and vaginal secretions. Robust antigen-specific mucosal and systemic T helper type 1 responses were induced in mice as measured by increased interferon-gamma levels produced by immune T cells in response to restimulation with target antigen in vitro. In addition, mice immunized with the combination vaccine were prophylactically protected from genital challenge with high doses of live Chlamydia and HSV-2. Thus, the combination vaccine regimen delivered by rVCG elicited adequate immune effectors that simultaneously protected against the individual pathogens.
Collapse
Affiliation(s)
- Lucinda Macmillan
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, Georgia 30310, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Kwon SR, Nam YK, Kim SK, Kim KH. Protection of tilapia (Oreochromis mosambicus) from edwardsiellosis by vaccination with Edwardsiella tarda ghosts. FISH & SHELLFISH IMMUNOLOGY 2006; 20:621-6. [PMID: 16226892 DOI: 10.1016/j.fsi.2005.08.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2005] [Revised: 06/15/2005] [Accepted: 08/26/2005] [Indexed: 05/04/2023]
Abstract
The vaccine potential of Edwardsiella tarda ghosts produced by gene E mediated lysis was investigated using tilapia (Oreochromis mosambicus). Tilapia immunized with E. tarda ghosts (ETG) and formalin killed E. tarda (FKC) vaccines showed significantly higher serum agglutination titers than control fish. Fish immunized with ETG showed no significant differences with fish immunized with FKC in serum agglutination titers, but showed significantly higher bactericidal activity than fish immunized with FKC. Furthermore, fish immunized with ETG showed higher protection than fish immunized with FKC. As this promising type of a non-living whole cell envelope preparation seems to be favorable over conventional vaccines, we suggest E. tarda ghosts as a new vaccine candidate.
Collapse
Affiliation(s)
- Se Ryun Kwon
- Department of Aquatic Life Medicine, Pukyong National University, Pusan 608-737, Republic of Korea
| | | | | | | |
Collapse
|
20
|
Walker RI. Considerations for development of whole cell bacterial vaccines to prevent diarrheal diseases in children in developing countries. Vaccine 2005; 23:3369-85. [PMID: 15837361 DOI: 10.1016/j.vaccine.2004.12.029] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2004] [Revised: 11/23/2004] [Accepted: 12/06/2004] [Indexed: 10/25/2022]
Abstract
Enteric pathogens constitute a major pediatric threat in the developing world through their impact on morbidity and mortality, physical and cognitive development and cause and effect relationship with malnutrition. Although many bacterial pathogens can cause diarrheal diseases, a group of less than 10 including Shigella spp., enterotoxigenic Escherichia coli (ETEC), Vibrio cholerae, and possibly, Campylobacter jejuni account for a significant percentage of these diseases in developing countries. Rotavirus is also a major cause of diarrheal diseases. Vaccines against these agents offer a potentially effective control measure against these diseases, but safe, practical, and effective vaccines for many of these agents have yet to be realized. Many vaccine development approaches are under investigation, but the one that is currently most advanced and that has been most widely applied to enteric pathogens is the use of orally administered live or killed whole pathogen preparations. If inactivated, these vaccines will probably be administered as multiple doses with approximately 10(10) to 10(11) total particles per dose, but they are relatively safe for oral administration. Further, they may not require a buffer for delivery and can be stored in liquid formulations. Fewer doses may be required for some live attenuated pathogen vaccines, but a buffer will most likely be required for oral delivery and the product must be stored in a dried formulation. Also, safety becomes more of a concern with live pathogens depending on the degree of attenuation, host immunocompetence, and the total number and kinds of attenuated pathogens which may be present in a combined agent vaccine. Both live and killed whole pathogen vaccines can be immunogenic and have the possibility to serve as vectors for other antigens. Although many organisms and serotypes are clinically important, by exploiting antigenic cross reactivity and using some pathogen components as vectors for cloned antigens of other pathogens, it could be possible to induce immunity against major enteric pathogens/serotypes with <10 whole pathogen components in a multi-agent vaccine. Safe and effective mucosal adjuvants may in the future be useful in whole pathogen vaccines, but they do not seem to be essential for immunization. Further, dietary supplements such as zinc, mixed routes of delivery and new regimens are under study which may in the future enhance further the effectiveness of the whole pathogen vaccines which now seem realizable in the near term. For this to happen, however, a coordinated and committed effort is necessary now to address the immunologic, regulatory, manufacturing, testing and implementation issues which will be involved in the realization of this important product to benefit children's health worldwide.
Collapse
Affiliation(s)
- Richard I Walker
- Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, 1401 Rockville Pike (HFM-425), Rockville, MD 20851-1448, USA.
| |
Collapse
|
21
|
Eko FO, He Q, Brown T, McMillan L, Ifere GO, Ananaba GA, Lyn D, Lubitz W, Kellar KL, Black CM, Igietseme JU. A novel recombinant multisubunit vaccine against Chlamydia. THE JOURNAL OF IMMUNOLOGY 2004; 173:3375-82. [PMID: 15322201 DOI: 10.4049/jimmunol.173.5.3375] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The administration of an efficacious vaccine is the most effective long-term measure to control the oculogenital infections caused by Chlamydia trachomatis in humans. Chlamydia genome sequencing has identified a number of potential vaccine candidates, and the current challenge is to develop an effective delivery vehicle for induction of a high level of mucosal T and complementary B cell responses. Vibrio cholerae ghosts (VCG) are nontoxic, effective delivery vehicles with potent adjuvant properties, and are capable of inducing both T cell and Ab responses in mucosal tissues. We investigated the hypothesis that rVCG could serve as effective delivery vehicles for single or multiple subunit chlamydial vaccines to induce a high level of protective immunity. rVCG-expressing chlamydial outer membrane proteins were produced by a two-step genetic process, involving cloning of Omp genes in V. cholerae, followed by gene E-mediated lysis of the cells. The immunogenicity and vaccine efficacy of rVCG-expressing single and multiple subunits were compared. Immunologic analysis indicated that i.m. immunization of mice with either vaccine construct induced a strong mucosal and systemic specific Th1 response against the whole chlamydial organism. However, there was an immunogenic advantage associated with the multiple subunit vaccine that induced a higher frequency of Th1 cells and a relatively greater ability to confer protective immunity, compared with the single subunit construct. These results support the operational theory that the ability of a vaccine to confer protective immunity against Chlamydia is a function of the level of Th1 response elicited.
Collapse
Affiliation(s)
- Francis O Eko
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Haidinger W, Mayr UB, Szostak MP, Resch S, Lubitz W. Escherichia coli ghost production by expression of lysis gene E and Staphylococcal nuclease. Appl Environ Microbiol 2004; 69:6106-13. [PMID: 14532068 PMCID: PMC201253 DOI: 10.1128/aem.69.10.6106-6113.2003] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The production of bacterial ghosts from Escherichia coli is accomplished by the controlled expression of phage phiX174 lysis gene E and, in contrast to other gram-negative bacterial species, is accompanied by the rare detection of nonlysed, reproductive cells within the ghost preparation. To overcome this problem, the expression of a secondary killing gene was suggested to give rise to the complete genetic inactivation of the bacterial samples. The expression of staphylococcal nuclease A in E. coli resulted in intracellular accumulation of the protein and degradation of the host DNA into fragments shorter than 100 bp. Two expression systems for the nuclease are presented and were combined with the protein E-mediated lysis system. Under optimized conditions for the coexpression of gene E and the staphylococcal nuclease, the concentration of viable cells fell below the lower limit of detection, whereas the rates of ghost formation were not affected. With regard to the absence of reproductive cells from the ghost fractions, the reduction of viability could be determined as being at least 7 to 8 orders of magnitude. The lysis process was characterized by electrophoretic analysis and absolute quantification of the genetic material within the cells and the culture supernatant via real-time PCR. The ongoing degradation of the bacterial nucleic acids resulted in a continuous quantitative clearance of the genetic material associated with the lysing cells until the concentrations fell below the detection limits of either assay. No functional, released genetic units (genes) were detected within the supernatant during the lysis process, including nuclease expression.
Collapse
|
23
|
Marchart J, Dropmann G, Lechleitner S, Schlapp T, Wanner G, Szostak MP, Lubitz W. Pasteurella multocida- and Pasteurella haemolytica-ghosts: new vaccine candidates. Vaccine 2003; 21:3988-97. [PMID: 12922135 DOI: 10.1016/s0264-410x(03)00383-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Pasteurella multocida is an important animal pathogen. Bacterial ghosts produced by the expression of phage PhiX174 lysis gene E are empty cells devoid of cytoplasmic and genomic material. Lysis of P. multocida 7A and P. haemolytica A1 carrying Pasteurella-specific lysis vectors (pSR2 and pSON2) occurred 140 min after induction of gene E expression induced by temperature upshift. The E-mediated cell lysis and killing activity was the same in both Pasteurella species and no viable cells could be detected after lysis of P. multocida and P. haemolytica. Pasteurella ghosts were used for immunization of rabbits and mice. Rabbits immunized subcutaneously with either P. multocida- or P. haemolytica-ghosts developed antibodies reacting with the immunizating strain, as well as with other Pasteurella strains. The number of proteins in whole cell protein extracts recognized by the sera constantly increased during the observation period of 51 days. In addition, dose-dependent protection against homologous challenge was observed in mice immunized with P. multocida-ghosts. Animals which received 1.15 x 10(8) ghosts and a challenge dose of up to 60 cfu (LD90), showed 100% protection. According to these results, we suggest ghosts of P. multocida and P. haemolytica as new vaccine candidates.
Collapse
Affiliation(s)
- J Marchart
- Institute of Microbiology and Genetics, University of Vienna, Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
24
|
Eko FO, Schukovskaya T, Lotzmanova EY, Firstova VV, Emalyanova NV, Klueva SN, Kravtzov AL, Livanova LF, Kutyrev VV, Igietseme JU, Lubitz W. Evaluation of the protective efficacy of Vibrio cholerae ghost (VCG) candidate vaccines in rabbits. Vaccine 2003; 21:3663-74. [PMID: 12922096 DOI: 10.1016/s0264-410x(03)00388-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
An effective Vibrio cholerae vaccine is needed to reduce the morbidity and mortality caused by this pathogen. Despite the availability of current oral vaccines with measurable efficacy, there is need for more effective vaccines with broad-spectrum efficacy in target populations. Recent studies have shown that bacterial ghosts, produced by the expression of cloned lysis gene E, possess adjuvant properties and are immunogenic. In this study, ghosts were prepared from V. cholerae O1 or O139 and evaluated as vaccines in the reversible intestinal tie adult rabbit diarrhea (RITARD) model. Rabbits were orally immunized with different doses of V. cholerae ghost (VCG) formulations. The vaccine formulations elicited high levels of serum vibriocidal titers against indicator strains. The magnitude of the response was measured as the geometric mean titer (GMT) increase for all rabbits in relation to prevaccination titers. The induction of cross protection was evidenced by the ability of serum from VCG-immunized rabbits to mediate complement-dependent killing of both the homologous and the heterologous strains. Immunized rabbits were protected against intraduodenal challenge 30 days after primary immunization. Protective immunity against challenge appeared to be dose dependent and was associated with marked inhibition of colonization. These results indicate that VCGs represent a novel approach to cholera vaccine development and constitute an effective vaccine delivery vehicle.
Collapse
Affiliation(s)
- Francis O Eko
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, 720 Westview Dr., S.W., Atlanta, GA 30310, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Eko FO, Lubitz W, McMillan L, Ramey K, Moore TT, Ananaba GA, Lyn D, Black CM, Igietseme JU. Recombinant Vibrio cholerae ghosts as a delivery vehicle for vaccinating against Chlamydia trachomatis. Vaccine 2003; 21:1694-703. [PMID: 12639492 DOI: 10.1016/s0264-410x(02)00677-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
An efficacious vaccine is needed to control the morbidity and burden of rising healthcare costs associated with genital Chlamydia trachomatis infection. Despite considerable efforts, the development of reliable chlamydial vaccines using conventional strategies has proven to be elusive. The 40kDa major outer membrane protein (MOMP) of C. trachomatis is so far the most promising candidate for a subunit vaccine. The lack of satisfactory protective immunity with MOMP-based vaccine regimens to date would suggest that either MOMP alone is inadequate as a vaccine candidate or better delivery systems are needed to optimize the effect of MOMP. Recombinant Vibrio cholerae ghosts (rVCG) are attractive for use as non-living vaccines because they possess strong adjuvant properties and are excellent vehicles for delivery of antigens of vaccine relevance to mucosal sites. The suitability of the ghost technology for designing an anti-chlamydial vaccine was evaluated by constructing a rVCG vector-based candidate vaccine expressing MOMP (rVCG-MOMP) and assessing vaccine efficacy in a murine model of C. trachomatis genital infection. Intramuscular delivery of the rVCG-MOMP vaccine induced elevated local genital mucosal as well as systemic Th1 responses. In addition, immune T cells from immunized mice could transfer partial protection against a C. trachomatis genital challenge to nai;ve mice. These results suggest that rVCG expressing chlamydial proteins may constitute a suitable subunit vaccine for inducing an efficient mucosal T cell response that protects against C. trachomatis infection. Altogether, the potency and relatively low production cost of rVCG offer a significant technical advantage as a chlamydial vaccine.
Collapse
Affiliation(s)
- Francis O Eko
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, 720 Westview Dr. Atlanta, GA 30310, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Eko FO, Mayr UB, Attridge SR, Lubitz W. Characterization and immunogenicity of Vibrio cholerae ghosts expressing toxin-coregulated pili. J Biotechnol 2000; 83:115-23. [PMID: 11000467 DOI: 10.1016/s0168-1656(00)00315-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bacterial ghosts are attractive for use as non-living vaccines and as carriers of heterologous antigens of vaccine relevance. Ghosts were prepared from Vibrio cholerae strains of O1 or O139 serogroup after growth under culture conditions, which favor or repress the production of toxin-coregulated pili (TCP). Immunoblotting confirmed the TCP status of these V. cholerae ghosts (VCG), which retained the cellular morphology and envelope sub-component profile of viable bacteria. Rabbits were immunized with VCGs prepared from O139 bacteria with TCP-positive or TCP-negative phenotypes and the resulting sera assayed for antibodies to lipopolysaccharide (LPS) and to TCP. Regardless of the TCP status of the VCG preparations used for immunization, all animals produced antibodies to LPS as demonstrated in bactericidal assays. These antibodies were probably responsible for the capacity of the antisera to confer passive immunity to challenge with the homologous O139 strain in the infant mouse cholera model (IMCM). Only following immunization with TCP-positive VCG, however, were antibodies to TCP generated, as judged by the potential of antisera to mediate protection against a challenge strain of heterologous serogroup.
Collapse
Affiliation(s)
- F O Eko
- Institute of Microbiology and Genetics, University of Vienna, Biocenter, Dr. Bohrgasse 9, A-1030, Vienna, Austria.
| | | | | | | |
Collapse
|
27
|
Jain V, Mekalanos JJ. Use of lambda phage S and R gene products in an inducible lysis system for Vibrio cholerae- and Salmonella enterica serovar typhimurium-based DNA vaccine delivery systems. Infect Immun 2000; 68:986-9. [PMID: 10639478 PMCID: PMC97237 DOI: 10.1128/iai.68.2.986-989.2000] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Novel methods for adapting DNA vaccine technology to the prevention of mucosal diseases are greatly needed. Here we show that regulated expression of phage lambda lysis genes S and R causes dramatic lysis of both Vibrio cholerae and Salmonella enterica serovar Typhimurium cells with concomitant release of plasmid DNA into the surrounding media. We also used single and double DNase mutant strains to show that secreted V. cholerae DNases can adversely affect the integrity of DNA molecules released upon lysis. These results suggest that incorporation of lambda SR-mediated lysis constructs and DNA stabilizing mutations into candidate live attenuated bacterial vaccines offers a promising approach for the development of effective mucosal DNA delivery vectors for humans.
Collapse
Affiliation(s)
- V Jain
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
28
|
Lubitz W, Witte A, Eko FO, Kamal M, Jechlinger W, Brand E, Marchart J, Haidinger W, Huter V, Felnerova D, Stralis-Alves N, Lechleitner S, Melzer H, Szostak MP, Resch S, Mader H, Kuen B, Mayr B, Mayrhofer P, Geretschläger R, Haslberger A, Hensel A. Extended recombinant bacterial ghost system. J Biotechnol 1999; 73:261-73. [PMID: 10486935 DOI: 10.1016/s0168-1656(99)00144-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Controlled expression of cloned PhiX174 gene E in Gram-negative bacteria results in lysis of the bacteria by formation of an E-specific transmembrane tunnel structure built through the cell envelope complex. Bacterial ghosts from a variety of bacteria are used as non-living candidate vaccines. In the recombinant ghost system, foreign proteins are attached on the inside of the inner membrane as fusions with specific anchor sequences. Ghosts have a sealed periplasmic space and the export of proteins into this space vastly extends the capacity of ghosts or recombinant ghosts to function as carriers of foreign antigens. In addition, S-layer proteins forming shell-like self assembly structures can be expressed in candidate vaccine strains prior to E-mediated lysis. Such recombinant S-layer proteins carrying foreign epitopes further extend the possibilities of ghosts as carriers of foreign epitopes. As ghosts have inherent adjuvant properties, they can be used as adjuvants in combination with subunit vaccines. Subunits or other ligands can also be coupled to matrixes like dextran which are used to fill the internal lumen of ghosts. Oral, aerogenic or parenteral immunization of experimental animals with recombinant ghosts induced specific humoral and cellular immune responses against bacterial and target components including protective mucosal immunity. The most relevant advantage of recombinant bacterial ghosts as immunogens is that no inactivation procedures that denature relevant immunogenic determinants are employed in this production. This fact explains the superior quality of ghosts when compared to other inactivated vaccines. The endotoxic component of the outer membrane does not limit the use of ghosts as vaccine candidates but triggers the release of several potent immunoregulatory cytokines. As carriers, there is no limitation in the size of foreign antigens that can be inserted in the membrane and the capacity of all spaces including the membranes, peri-plasma and internal lumen of the ghosts can be fully utilized. This extended recombinant ghost system represents a new strategy for adjuvant free combination vaccines.
Collapse
Affiliation(s)
- W Lubitz
- Institute of Microbiology and Genetics, University of Vienna, Wien, Austria.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Eko FO, Witte A, Huter V, Kuen B, Fürst-Ladani S, Haslberger A, Katinger A, Hensel A, Szostak MP, Resch S, Mader H, Raza P, Brand E, Marchart J, Jechlinger W, Haidinger W, Lubitz W. New strategies for combination vaccines based on the extended recombinant bacterial ghost system. Vaccine 1999; 17:1643-9. [PMID: 10194817 DOI: 10.1016/s0264-410x(98)00423-x] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Controlled expression of cloned PhiX174 gene E in Gram-negative bacteria results in lysis of the bacteria by formation of an E-specific transmembrane tunnel structure built through the cell envelope complex. Bacterial ghosts have been produced from a great variety of bacteria and are used as non-living candidate vaccines. In the recombinant ghost system, foreign proteins are attached on the inside of the inner membrane as fusions with specific anchor sequences. Ghosts have a sealed periplasmic space and the export of proteins into this space vastly extents the capacity of ghosts or recombinant ghosts to function as carriers of foreign antigens, immunomodulators or other substances. In addition, S-layer proteins forming shell-like self assembly structures can be expressed in bacterial candidate vaccine strains prior to E-mediated lysis. Such recombinant S-layer proteins carrying inserts of foreign epitopes of up to 600 amino acids within the flexible surface loop areas of the S-layer further extend the possibilities of ghosts as carriers of foreign epitopes. As ghosts do not need the addition of adjuvants to induce immunity in experimental animals they can also be used as carriers or targeting vehicles or as adjuvants in combination with subunit vaccines. Matrixes like dextran which can be used to fill the internal lumen of ghosts can be substituted with various ligands to bind the subunit or other materials of interest. Oral, aerogenic or parenteral immunization of experimental animals with recombinant ghosts induced specific humoral and cellular immune responses against bacterial and target components including protective mucosal immunity. The most relevant advantage of ghosts and recombinant bacterial ghosts as immunogens is that no inactivation procedures that denature relevant immunogenic determinants are employed in the production of ghosts. This fact explains the superior quality of ghosts when compared to other inactivated vaccines. As carriers of foreign antigens there is no limitation in the size of foreign antigens to be inserted and the capacity of all spaces including the membranes, periplasma and internal lumen of the ghosts can be fully utilized. Using the different building blocks and combining them into the recombinant ghost system represents a new strategy for adjuvant free combination vaccines.
Collapse
Affiliation(s)
- F O Eko
- Institute of Microbiology and Genetics, University of Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Travel-related infectious diseases are exceedingly common, difficult to diagnose, and sometimes preventable. Vaccination is one tool for reducing the risk of infectious disease for some travelers. Both healthcare providers and travelers need to be aware of the new travel vaccines, and new formulations of older vaccines that now are available. This article presents an update on vaccines for cholera, Japanese encephalitis, rabies, rotavirus, typhoid, and malaria.
Collapse
Affiliation(s)
- R F Thompson
- International Travel Clinic, Camino Medical Group, Sunnyvale, California
| | | | | |
Collapse
|
31
|
Schroll G, Resch S, Gruber K, Wanner G, Lubitz W. Heterologous phi X174 gene E-expression in Ralstonia eutropha: E-mediated lysis is not restricted to gamma-subclass of proteobacteria. J Biotechnol 1998; 66:211-7. [PMID: 9866870 DOI: 10.1016/s0168-1656(98)00128-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
E-lysis of Ralstonia eutropha H16, which belongs to the beta-subclass, was undertaken to verify whether transmembrane tunnel formation is possible in bacteria which do not belong to the enterobacteriaceae. For this purpose, a new gene E expression plasmid, pKG12, with two origins of replication, oriV and oriT, from plasmid pRP4, chloramphenicol and kanamycin resistance genes and a casette composed of lambda cI857 and lambda pR gene E was constructed. Temperature upshift of R. eutropha H16 (pKG12) from 28 to 45 degrees C during exponential growth resulted in lysis of the strain with features characteristic of E-mediated lysis of Escherichia coli. The cytoplasmic contents released can easily be separated from the still intact envelope fraction by centrifugation or filtration. As R. eutropha H16 represents an important industrial organism, E-mediated lysis could facilitate procedures for the recovery of intracellular mediators or products like polyhydroxyalkanoates.
Collapse
Affiliation(s)
- G Schroll
- Institute of Microbiology and Genetics, University of Vienna, Austria.
| | | | | | | | | |
Collapse
|
32
|
Abstract
The release of recombinant bacteria into the environment is undesirable because of possible risks associated with the genetically modified organisms. The aim of this study was to establish a cold-sensitive killing system with a lethal gene, activated when bacteria encounter lower environmental temperatures. To obtain cold-sensitive lysis vectors, the lambdacI857 repressor/pR promoter expression system was combined with either the lacI/lacZpo or the phage 434 cI/pR system that control the expression of the lysis gene E of bacteriophage phiX174. Escherichia coli strains harbouring such suicide vectors are able to grow at 37 degrees C, but cell lysis takes place at temperatures below 30 degrees C. By replacing gene E with a beta-galactosidase reporter gene we also showed that the onset of beta-galactosidase activity corresponds with the onset of lysis at 28 degrees C. Results indicate that these newly combined promoter/repressor systems can also be used to confer cold-sensitive expression to any gene of interest.
Collapse
Affiliation(s)
- W Jechlinger
- Institute of Microbiology and Genetics, University of Vienna, Biocenter, Dr. Bohrgasse 9, A-1030, Vienna, Austria.
| | | | | |
Collapse
|
33
|
Construction of an efficient biologically contained pseudomonas putida strain and its survival in outdoor assays. Appl Environ Microbiol 1998; 64:2072-8. [PMID: 9603816 PMCID: PMC106280 DOI: 10.1128/aem.64.6.2072-2078.1998] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Active biological containment systems consist of two components, a killing element designed to induce cell death and a control element which modulates the expression of the killing function. We constructed a mini-Tn5 transposon bearing a fusion of the Plac promoter to the gef killing gene and a fusion of the Pm promoter to the lacI gene plus the positive regulator of the Pm promoter, the xylS gene. This mini-Tn5 transposon was transferred to the chromosome of Pseudomonas putida CMC4, and in culture this strain survived in the presence of 3-methylbenzoate (an XylS effector) and committed suicide in the absence of this aromatic compound. The rate of killing escape was on the order of 10(-8) per cell and per generation. This contained strain and an uncontained control strain were used in outdoor tests performed in the spring-summer and autumn-winter periods to determine their survival in planted and unplanted soils with and without 3-methylbenzoate. In unplanted soils the numbers of both the contained strain and the uncontained strain per gram of soil tended to decrease, but the numbers of the contained strain decreased faster in soils without 3-methylbenzoate. The decrease in the number of CFU per gram of soil was faster in the spring-summer period than in the autumn-winter period. In planted soils survival in the rhizosphere and survival in bulk soil were studied. In the rhizosphere the uncontained control strain tended to become established at levels on the order of 10(5) to 10(6) CFU/g of soil regardless of the presence of 3-methylbenzoate. In the bulk soil the numbers of bacterial cells were 2 to 3 orders of magnitude lower. In planted soils the contained strain tended to disappear, but this tendency was more pronounced in the absence of 3-methylbenzoate and occurred faster in the summer assay than in the winter assay. We found no evidence of dispersal of the test strains outside the experimental plots.
Collapse
|
34
|
Szostak MP, Hensel A, Eko FO, Klein R, Auer T, Mader H, Haslberger A, Bunka S, Wanner G, Lubitz W. Bacterial ghosts: non-living candidate vaccines. J Biotechnol 1996; 44:161-70. [PMID: 8717400 DOI: 10.1016/0168-1656(95)00123-9] [Citation(s) in RCA: 134] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Expression of cloned PhiX174 gene E in bacteria results in lysis of bacteria. It is unique among phage lysis systems as it introduces a transmembrane tunnel structure through the cell envelope complex of Gram-negative bacteria. The resulting bacterial ghosts have intact envelope structures devoid of cytoplasmic contents. E-mediated lysis has been achieved in a variety of Gram-negative bacteria including Escherichia coli, Salmonella typhimurium, Vibrio cholerae, Klebsiella pneumoniae, and Actinobacillus pleuropneumoniae. Such ghosts, derived from human or animal pathogens, have been proposed as non-living candidate vaccines and represent an alternative to heat or chemically inactivated bacteria. In 'recombinant ghosts', foreign proteins (e.g., viral proteins) are inserted into the inner membrane via specific N-, or C-, or N- and C-terminal anchor sequences prior to lysis. Relevant advantages of (recombinant) bacterial ghosts as immunogens include: (i) inactivation procedures that denature relevant immunogenic determinants are not employed in the production of ghosts used as vaccines or as carriers of relevant antigens; (ii) the recombinant proteins are inserted into a highly immune stimulatory environment; (iii) there is no size limitation of the foreign protein moieties: multiple antigenic determinants can be presented simultaneously; (iv) bacterial ghosts can be produced inexpensively in large quantities; (v) (recombinant) ghosts are stable for long periods of time and do not require the cold chain storage system. Intraperitoneal, subcutaneous or intramuscular applications of recombinant ghosts in experimental animals induced specific humoral and cellular immune responses against bacterial and viral components. Initial aerosol vaccinations of swine with ghosts from Actinobacillus pleuropneumoniae showed that protective immunity can be established by this route of application and that the well-preserved surface structures of ghosts obtained by E-mediated lysis are able to target the mucosal immune system.
Collapse
Affiliation(s)
- M P Szostak
- Institute of Microbiology and Genetics, University of Vienna, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|