1
|
Zhu J, Wang Z, Li Y, Zhang Z, Ren S, Wang J, Xie S, Liao Z, Song B, Wu W, Yan F, Peng C. Trimerized S expressed by modified vaccinia virus Ankara (MVA) confers superior protection against lethal SARS-CoV-2 challenge in mice. J Virol 2024; 98:e0052124. [PMID: 38874361 PMCID: PMC11264693 DOI: 10.1128/jvi.00521-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/16/2024] [Indexed: 06/15/2024] Open
Abstract
The reoccurrence of successive waves of SARS-CoV-2 variants suggests the exploration of more vaccine alternatives is imperative. Modified vaccinia virus Ankara (MVA) is a virus vector exhibiting excellent safety as well as efficacy for vaccine development. Here, a series of recombinant MVAs (rMVAs) expressing monomerized or trimerized S proteins from different SARS-CoV-2 variants are engineered. Trimerized S expressed from rMVAs is found predominantly as trimers on the surface of infected cells. Remarkably, immunization of mice with rMVAs demonstrates that S expressed in trimer elicits higher levels of binding IgG and IgA, as well as neutralizing antibodies for matched and mismatched S proteins than S in the monomer. In addition, trimerized S expressed by rMVA induces enhanced cytotoxic T-cell responses than S in the monomer. Importantly, the rMVA vaccines expressing trimerized S exhibit superior protection against a lethal SARS-CoV-2 challenge as the immunized animals all survive without displaying any pathological conditions. This study suggests that opting for trimerized S may represent a more effective approach and highlights that the MVA platform serves as an ideal foundation to continuously advance SARS-CoV-2 vaccine development. IMPORTANCE MVA is a promising vaccine vector and has been approved as a vaccine for smallpox and mpox. Our analyses suggested that recombinant MVA expressing S in trimer (rMVA-ST) elicited robust cellular and humoral immunity and was more effective than MVA-S-monomer. Importantly, the rMVA-ST vaccine was able to stimulate decent cross-reactive neutralization against pseudoviruses packaged using S from different sublineages, including Wuhan, Delta, and Omicron. Remarkably, mice immunized with rMVA-ST were completely protected from a lethal challenge of SARS-CoV-2 without displaying any pathological conditions. Our results demonstrated that an MVA vectored vaccine expressing trimerized S is a promising vaccine candidate for SARS-CoV-2 and the strategy might be adapted for future vaccine development for coronaviruses.
Collapse
Affiliation(s)
- Junda Zhu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhenshan Wang
- State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yarui Li
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zihui Zhang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Shuning Ren
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jing Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Shijie Xie
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhiyi Liao
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Baifen Song
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Wenxue Wu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Feihu Yan
- State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Chen Peng
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
2
|
Diaz-Cánova D, Moens U, Brinkmann A, Nitsche A, Okeke MI. Whole genome sequencing of recombinant viruses obtained from co-infection and superinfection of Vero cells with modified vaccinia virus ankara vectored influenza vaccine and a naturally occurring cowpox virus. Front Immunol 2024; 15:1277447. [PMID: 38633245 PMCID: PMC11021749 DOI: 10.3389/fimmu.2024.1277447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
Modified vaccinia virus Ankara (MVA) has been widely tested in clinical trials as recombinant vector vaccine against infectious diseases and cancers in humans and animals. However, one biosafety concern about the use of MVA vectored vaccine is the potential for MVA to recombine with naturally occurring orthopoxviruses in cells and hosts in which it multiplies poorly and, therefore, producing viruses with mosaic genomes with altered genetic and phenotypic properties. We previously conducted co-infection and superinfection experiments with MVA vectored influenza vaccine (MVA-HANP) and a feline Cowpox virus (CPXV-No-F1) in Vero cells (that were semi-permissive to MVA infection) and showed that recombination occurred in both co-infected and superinfected cells. In this study, we selected the putative recombinant viruses and performed genomic characterization of these viruses. Some putative recombinant viruses displayed plaque morphology distinct of that of the parental viruses. Our analysis demonstrated that they had mosaic genomes of different lengths. The recombinant viruses, with a genome more similar to MVA-HANP (>50%), rescued deleted and/or fragmented genes in MVA and gained new host ranges genes. Our analysis also revealed that some MVA-HANP contained a partially deleted transgene expression cassette and one recombinant virus contained part of the transgene expression cassette similar to that incomplete MVA-HANP. The recombination in co-infected and superinfected Vero cells resulted in recombinant viruses with unpredictable biological and genetic properties as well as recovery of delete/fragmented genes in MVA and transfer of the transgene into replication competent CPXV. These results are relevant to hazard characterization and risk assessment of MVA vectored biologicals.
Collapse
Affiliation(s)
- Diana Diaz-Cánova
- Molecular Inflammation Research Group, Department of Medical Biology, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Ugo Moens
- Molecular Inflammation Research Group, Department of Medical Biology, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Annika Brinkmann
- WHO Reference Laboratory for SARS-CoV-2 and WHO Collaborating Centre for Emerging Infections and Biological Threats, Robert Koch Institute, Berlin, Germany
| | - Andreas Nitsche
- WHO Reference Laboratory for SARS-CoV-2 and WHO Collaborating Centre for Emerging Infections and Biological Threats, Robert Koch Institute, Berlin, Germany
| | - Malachy Ifeanyi Okeke
- Section of Biomedical Sciences, Department of Natural and Environmental Sciences, School of Arts and Sciences, American University of Nigeria, Yola, Nigeria
| |
Collapse
|
3
|
Neckermann P, Mohr M, Billmeier M, Karlas A, Boilesen DR, Thirion C, Holst PJ, Jordan I, Sandig V, Asbach B, Wagner R. Transgene expression knock-down in recombinant Modified Vaccinia virus Ankara vectors improves genetic stability and sustained transgene maintenance across multiple passages. Front Immunol 2024; 15:1338492. [PMID: 38380318 PMCID: PMC10877035 DOI: 10.3389/fimmu.2024.1338492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/19/2024] [Indexed: 02/22/2024] Open
Abstract
Modified vaccinia virus Ankara is a versatile vaccine vector, well suited for transgene delivery, with an excellent safety profile. However, certain transgenes render recombinant MVA (rMVA) genetically unstable, leading to the accumulation of mutated rMVA with impaired transgene expression. This represents a major challenge for upscaling and manufacturing of rMVA vaccines. To prevent transgene-mediated negative selection, the continuous avian cell line AGE1.CR pIX (CR pIX) was modified to suppress transgene expression during rMVA generation and amplification. This was achieved by constitutively expressing a tetracycline repressor (TetR) together with a rat-derived shRNA in engineered CR pIX PRO suppressor cells targeting an operator element (tetO) and 3' untranslated sequence motif on a chimeric poxviral promoter and the transgene mRNA, respectively. This cell line was instrumental in generating two rMVA (isolate CR19) expressing a Macaca fascicularis papillomavirus type 3 (MfPV3) E1E2E6E7 artificially-fused polyprotein following recombination-mediated integration of the coding sequences into the DelIII (CR19 M-DelIII) or TK locus (CR19 M-TK), respectively. Characterization of rMVA on parental CR pIX or engineered CR pIX PRO suppressor cells revealed enhanced replication kinetics, higher virus titers and a focus morphology equaling wild-type MVA, when transgene expression was suppressed. Serially passaging both rMVA ten times on parental CR pIX cells and tracking E1E2E6E7 expression by flow cytometry revealed a rapid loss of transgene product after only few passages. PCR analysis and next-generation sequencing demonstrated that rMVA accumulated mutations within the E1E2E6E7 open reading frame (CR19 M-TK) or deletions of the whole transgene cassette (CR19 M-DelIII). In contrast, CR pIX PRO suppressor cells preserved robust transgene expression for up to 10 passages, however, rMVAs were more stable when E1E2E6E7 was integrated into the TK as compared to the DelIII locus. In conclusion, sustained knock-down of transgene expression in CR pIX PRO suppressor cells facilitates the generation, propagation and large-scale manufacturing of rMVA with transgenes hampering viral replication.
Collapse
Affiliation(s)
- Patrick Neckermann
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology), University of Regensburg, Regensburg, Germany
| | - Madlen Mohr
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology), University of Regensburg, Regensburg, Germany
| | - Martina Billmeier
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology), University of Regensburg, Regensburg, Germany
| | | | - Ditte R. Boilesen
- Department of Immunology and Microbiology, Center for Medical Parasitology, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
- InProTher APS, Copenhagen, Denmark
| | | | - Peter J. Holst
- Department of Immunology and Microbiology, Center for Medical Parasitology, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
- InProTher APS, Copenhagen, Denmark
| | | | | | - Benedikt Asbach
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology), University of Regensburg, Regensburg, Germany
| | - Ralf Wagner
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology), University of Regensburg, Regensburg, Germany
- Institue of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
4
|
Boulton S, Poutou J, Gill R, Alluqmani N, He X, Singaravelu R, Crupi MJ, Petryk J, Austin B, Angka L, Taha Z, Teo I, Singh S, Jamil R, Marius R, Martin N, Jamieson T, Azad T, Diallo JS, Ilkow CS, Bell JC. A T cell-targeted multi-antigen vaccine generates robust cellular and humoral immunity against SARS-CoV-2 infection. Mol Ther Methods Clin Dev 2023; 31:101110. [PMID: 37822719 PMCID: PMC10562195 DOI: 10.1016/j.omtm.2023.101110] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/13/2023] [Indexed: 10/13/2023]
Abstract
SARS-CoV-2, the etiological agent behind the coronavirus disease 2019 (COVID-19) pandemic, has continued to mutate and create new variants with increased resistance against the WHO-approved spike-based vaccines. With a significant portion of the worldwide population still unvaccinated and with waning immunity against newly emerging variants, there is a pressing need to develop novel vaccines that provide broader and longer-lasting protection. To generate broader protective immunity against COVID-19, we developed our second-generation vaccinia virus-based COVID-19 vaccine, TOH-VAC-2, encoded with modified versions of the spike (S) and nucleocapsid (N) proteins as well as a unique poly-epitope antigen that contains immunodominant T cell epitopes from seven different SARS-CoV-2 proteins. We show that the poly-epitope antigen restimulates T cells from the PBMCs of individuals formerly infected with SARS-CoV-2. In mice, TOH-VAC-2 vaccination produces high titers of S- and N-specific antibodies and generates robust T cell immunity against S, N, and poly-epitope antigens. The immunity generated from TOH-VAC-2 is also capable of protecting mice from heterologous challenge with recombinant VSV viruses that express the same SARS-CoV-2 antigens. Altogether, these findings demonstrate the effectiveness of our versatile vaccine platform as an alternative or complementary approach to current vaccines.
Collapse
Affiliation(s)
- Stephen Boulton
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Joanna Poutou
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Rida Gill
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Nouf Alluqmani
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Xiaohong He
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Ragunath Singaravelu
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Mathieu J.F. Crupi
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Julia Petryk
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Bradley Austin
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Leonard Angka
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Zaid Taha
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Iris Teo
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Siddarth Singh
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Rameen Jamil
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Ricardo Marius
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Nikolas Martin
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Taylor Jamieson
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Taha Azad
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Faculty of Medicine and Health Sciences, Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
- Centre de Recherche du CHUS, Sherbrooke, QC J1H 5N4, Canada
| | - Jean-Simon Diallo
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Carolina S. Ilkow
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - John C. Bell
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
5
|
Atay C, Medina-Echeverz J, Hochrein H, Suter M, Hinterberger M. Armored modified vaccinia Ankara in cancer immunotherapy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 379:87-142. [PMID: 37541728 DOI: 10.1016/bs.ircmb.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2023]
Abstract
Cancer immunotherapy relies on unleashing the patient´s immune system against tumor cells. Cancer vaccines aim to stimulate both the innate and adaptive arms of immunity to achieve durable clinical responses. Some roadblocks for a successful cancer vaccine in the clinic include the tumor antigen of choice, the adjuvants employed to strengthen antitumor-specific immune responses, and the risks associated with enhancing immune-related adverse effects in patients. Modified vaccinia Ankara (MVA) belongs to the family of poxviruses and is a versatile vaccine platform that combines several attributes crucial for cancer therapy. First, MVA is an excellent inducer of innate immune responses leading to type I interferon secretion and induction of T helper cell type 1 (Th1) immune responses. Second, it elicits robust and durable humoral and cellular immunity against vector-encoded heterologous antigens. Third, MVA has enormous genomic flexibility, which allows for the expression of multiple antigenic and costimulatory entities. And fourth, its replication deficit in human cells ensures a excellent safety profile. In this review, we summarize the current understanding of how MVA induces innate and adaptive immune responses. Furthermore, we will give an overview of the tumor-associated antigens and immunomodulatory molecules that have been used to armor MVA and describe their clinical use. Finally, the route of MVA immunization and its impact on therapeutic efficacy depending on the immunomodulatory molecules expressed will be discussed.
Collapse
Affiliation(s)
- Cigdem Atay
- Bavarian Nordic GmbH, Fraunhoferstr.13, Planegg, Germany
| | | | | | - Mark Suter
- Prof. em. University of Zurich, Switzerland
| | | |
Collapse
|
6
|
Lorenzo MM, Marín-López A, Chiem K, Jimenez-Cabello L, Ullah I, Utrilla-Trigo S, Calvo-Pinilla E, Lorenzo G, Moreno S, Ye C, Park JG, Matía A, Brun A, Sánchez-Puig JM, Nogales A, Mothes W, Uchil PD, Kumar P, Ortego J, Fikrig E, Martinez-Sobrido L, Blasco R. Vaccinia Virus Strain MVA Expressing a Prefusion-Stabilized SARS-CoV-2 Spike Glycoprotein Induces Robust Protection and Prevents Brain Infection in Mouse and Hamster Models. Vaccines (Basel) 2023; 11:1006. [PMID: 37243110 PMCID: PMC10220993 DOI: 10.3390/vaccines11051006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
The COVID-19 pandemic has underscored the importance of swift responses and the necessity of dependable technologies for vaccine development. Our team previously developed a fast cloning system for the modified vaccinia virus Ankara (MVA) vaccine platform. In this study, we reported on the construction and preclinical testing of a recombinant MVA vaccine obtained using this system. We obtained recombinant MVA expressing the unmodified full-length SARS-CoV-2 spike (S) protein containing the D614G amino-acid substitution (MVA-Sdg) and a version expressing a modified S protein containing amino-acid substitutions designed to stabilize the protein a in a pre-fusion conformation (MVA-Spf). S protein expressed by MVA-Sdg was found to be expressed and was correctly processed and transported to the cell surface, where it efficiently produced cell-cell fusion. Version Spf, however, was not proteolytically processed, and despite being transported to the plasma membrane, it failed to induce cell-cell fusion. We assessed both vaccine candidates in prime-boost regimens in the susceptible transgenic K18-human angiotensin-converting enzyme 2 (K18-hACE2) in mice and in golden Syrian hamsters. Robust immunity and protection from disease was induced with either vaccine in both animal models. Remarkably, the MVA-Spf vaccine candidate produced higher levels of antibodies, a stronger T cell response, and a higher degree of protection from challenge. In addition, the level of SARS-CoV-2 in the brain of MVA-Spf inoculated mice was decreased to undetectable levels. Those results add to our current experience and range of vaccine vectors and technologies for developing a safe and effective COVID-19 vaccine.
Collapse
Affiliation(s)
- María M. Lorenzo
- Departamento de Biotecnología, INIA CSIC, Carretera La Coruña km 7.5, E-28040 Madrid, Spain; (M.M.L.); (S.M.); (A.M.); (J.M.S.-P.)
| | - Alejandro Marín-López
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06519, USA; (A.M.-L.); (I.U.); (E.F.)
| | - Kevin Chiem
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA; (K.C.); (C.Y.); (J.-G.P.); (P.K.)
| | - Luis Jimenez-Cabello
- Centro de Investigación en Sanidad Animal, INIA CSIC, Carretera Valdeolmos a El Casar, Valdeolmos, E-28130 Madrid, Spain; (L.J.-C.); (S.U.-T.); (E.C.-P.); (G.L.); (A.B.); (A.N.); (J.O.)
| | - Irfan Ullah
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06519, USA; (A.M.-L.); (I.U.); (E.F.)
| | - Sergio Utrilla-Trigo
- Centro de Investigación en Sanidad Animal, INIA CSIC, Carretera Valdeolmos a El Casar, Valdeolmos, E-28130 Madrid, Spain; (L.J.-C.); (S.U.-T.); (E.C.-P.); (G.L.); (A.B.); (A.N.); (J.O.)
| | - Eva Calvo-Pinilla
- Centro de Investigación en Sanidad Animal, INIA CSIC, Carretera Valdeolmos a El Casar, Valdeolmos, E-28130 Madrid, Spain; (L.J.-C.); (S.U.-T.); (E.C.-P.); (G.L.); (A.B.); (A.N.); (J.O.)
| | - Gema Lorenzo
- Centro de Investigación en Sanidad Animal, INIA CSIC, Carretera Valdeolmos a El Casar, Valdeolmos, E-28130 Madrid, Spain; (L.J.-C.); (S.U.-T.); (E.C.-P.); (G.L.); (A.B.); (A.N.); (J.O.)
| | - Sandra Moreno
- Departamento de Biotecnología, INIA CSIC, Carretera La Coruña km 7.5, E-28040 Madrid, Spain; (M.M.L.); (S.M.); (A.M.); (J.M.S.-P.)
- Centro de Investigación en Sanidad Animal, INIA CSIC, Carretera Valdeolmos a El Casar, Valdeolmos, E-28130 Madrid, Spain; (L.J.-C.); (S.U.-T.); (E.C.-P.); (G.L.); (A.B.); (A.N.); (J.O.)
| | - Chengjin Ye
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA; (K.C.); (C.Y.); (J.-G.P.); (P.K.)
| | - Jun-Gyu Park
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA; (K.C.); (C.Y.); (J.-G.P.); (P.K.)
| | - Alejandro Matía
- Departamento de Biotecnología, INIA CSIC, Carretera La Coruña km 7.5, E-28040 Madrid, Spain; (M.M.L.); (S.M.); (A.M.); (J.M.S.-P.)
| | - Alejandro Brun
- Centro de Investigación en Sanidad Animal, INIA CSIC, Carretera Valdeolmos a El Casar, Valdeolmos, E-28130 Madrid, Spain; (L.J.-C.); (S.U.-T.); (E.C.-P.); (G.L.); (A.B.); (A.N.); (J.O.)
| | - Juana M. Sánchez-Puig
- Departamento de Biotecnología, INIA CSIC, Carretera La Coruña km 7.5, E-28040 Madrid, Spain; (M.M.L.); (S.M.); (A.M.); (J.M.S.-P.)
| | - Aitor Nogales
- Centro de Investigación en Sanidad Animal, INIA CSIC, Carretera Valdeolmos a El Casar, Valdeolmos, E-28130 Madrid, Spain; (L.J.-C.); (S.U.-T.); (E.C.-P.); (G.L.); (A.B.); (A.N.); (J.O.)
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06510, USA; (W.M.); (P.D.U.)
| | - Pradeep D. Uchil
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06510, USA; (W.M.); (P.D.U.)
| | - Priti Kumar
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA; (K.C.); (C.Y.); (J.-G.P.); (P.K.)
| | - Javier Ortego
- Centro de Investigación en Sanidad Animal, INIA CSIC, Carretera Valdeolmos a El Casar, Valdeolmos, E-28130 Madrid, Spain; (L.J.-C.); (S.U.-T.); (E.C.-P.); (G.L.); (A.B.); (A.N.); (J.O.)
| | - Erol Fikrig
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06519, USA; (A.M.-L.); (I.U.); (E.F.)
| | - Luis Martinez-Sobrido
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA; (K.C.); (C.Y.); (J.-G.P.); (P.K.)
| | - Rafael Blasco
- Departamento de Biotecnología, INIA CSIC, Carretera La Coruña km 7.5, E-28040 Madrid, Spain; (M.M.L.); (S.M.); (A.M.); (J.M.S.-P.)
| |
Collapse
|
7
|
Yang N, Garcia A, Meyer C, Tuschl T, Merghoub T, Wolchok JD, Deng L. Heat-inactivated modified vaccinia virus Ankara boosts Th1 cellular and humoral immunity as a vaccine adjuvant. NPJ Vaccines 2022; 7:120. [PMID: 36261460 PMCID: PMC9580433 DOI: 10.1038/s41541-022-00542-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 09/26/2022] [Indexed: 12/02/2022] Open
Abstract
Protein or peptide-based subunit vaccines have generated excitement and renewed interest in combating human cancer or COVID-19 outbreak. One major concern for subunit vaccine application is the weak immune responses induced by protein or peptides. Developing novel and effective vaccine adjuvants are critical for the success of subunit vaccines. Here we explored the potential of heat-inactivated MVA (heat-iMVA) as a vaccine adjuvant. Heat-iMVA dramatically enhances T cell responses and antibodies responses, mainly toward Th1 immune responses when combined with protein or peptide-based immunogen. The adjuvant effect of Heat-iMVA is stronger than live MVA and is dependent on the cGAS/STING-mediated cytosolic DNA-sensing pathway. In a therapeutic vaccination model based on tumor neoantigen peptide vaccine, Heat-iMVA significantly extended the survival and delayed tumor growth. When combined with SARS-CoV-2 spike protein, Heat-iMVA induced more robust spike-specific antibody production and more potent neutralization antibodies. Our results support that Heat-iMVA can be developed as a safe and potent vaccine adjuvant for subunit vaccines against cancer or SARS-CoV-2.
Collapse
Affiliation(s)
- Ning Yang
- Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Aitor Garcia
- Laboratory of RNA Molecular Biology, The Rockefeller University, New York, NY, 10065, USA
| | - Cindy Meyer
- Laboratory of RNA Molecular Biology, The Rockefeller University, New York, NY, 10065, USA
| | - Thomas Tuschl
- Laboratory of RNA Molecular Biology, The Rockefeller University, New York, NY, 10065, USA
| | - Taha Merghoub
- Immuno-oncology service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Jedd D Wolchok
- Immuno-oncology service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Liang Deng
- Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
- Immuno-oncology service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
8
|
Developing a Feline Immunodeficiency Virus Subtype B Vaccine Prototype Using a Recombinant MVA Vector. Vaccines (Basel) 2022; 10:vaccines10101717. [PMID: 36298582 PMCID: PMC9611692 DOI: 10.3390/vaccines10101717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/07/2022] Open
Abstract
The feline immunodeficiency virus (FIV) is a retrovirus with global impact and distribution, affecting both domestic and wild cats. This virus can cause severe and progressive immunosuppression culminating in the death of felids. Since the discovery of FIV, only one vaccine has been commercially available. This vaccine has proven efficiency against FIV subtypes A and D, whereas subtype B (FIV-B), found in multiple continents, is not currently preventable by vaccination. We, therefore, developed and evaluated a vaccine prototype against FIV-B using the recombinant viral vector modified vaccinia virus Ankara (MVA) expressing the variable region V1-V3 of the FIV-B envelope protein. We conducted preclinical tests in immunized mice (C57BL/6) using a prime-boost protocol with a 21 day interval and evaluated cellular and humoral responses as well the vaccine viability after lyophilization and storage. The animals immunized with the recombinant MVA/FIV virus developed specific splenocyte proliferation when stimulated with designed peptides. We also detected cellular and humoral immunity activation with IFN-y and antibody production. The data obtained in this study support further development of this immunogen and testing in cats.
Collapse
|
9
|
Hu Z, Lu SH, Lowrie DB, Fan XY. Research Advances for Virus-vectored Tuberculosis Vaccines and Latest Findings on Tuberculosis Vaccine Development. Front Immunol 2022; 13:895020. [PMID: 35812383 PMCID: PMC9259874 DOI: 10.3389/fimmu.2022.895020] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
Tuberculosis (TB), caused by respiratory infection with Mycobacterium tuberculosis, remains a major global health threat. The only licensed TB vaccine, the one-hundred-year-old Bacille Calmette-Guérin has variable efficacy and often provides poor protection against adult pulmonary TB, the transmissible form of the disease. Thus, the lack of an optimal TB vaccine is one of the key barriers to TB control. Recently, the development of highly efficacious COVID-19 vaccines within one year accelerated the vaccine development process in human use, with the notable example of mRNA vaccines and adenovirus-vectored vaccines, and increased the public acceptance of the concept of the controlled human challenge model. In the TB vaccine field, recent progress also facilitated the deployment of an effective TB vaccine. In this review, we provide an update on the current virus-vectored TB vaccine pipeline and summarize the latest findings that might facilitate TB vaccine development. In detail, on the one hand, we provide a systematic literature review of the virus-vectored TB vaccines are in clinical trials, and other promising candidate vaccines at an earlier stage of development are being evaluated in preclinical animal models. These research sharply increase the likelihood of finding a more effective TB vaccine in the near future. On the other hand, we provide an update on the latest tools and concept that facilitating TB vaccine research development. We propose that a pre-requisite for successful development may be a better understanding of both the lung-resident memory T cell-mediated mucosal immunity and the trained immunity of phagocytic cells. Such knowledge could reveal novel targets and result in the innovative vaccine designs that may be needed for a quantum leap forward in vaccine efficacy. We also summarized the research on controlled human infection and ultra-low-dose aerosol infection murine models, which may provide more realistic assessments of vaccine utility at earlier stages. In addition, we believe that the success in the ongoing efforts to identify correlates of protection would be a game-changer for streamlining the triage of multiple next-generation TB vaccine candidates. Thus, with more advanced knowledge of TB vaccine research, we remain hopeful that a more effective TB vaccine will eventually be developed in the near future.
Collapse
Affiliation(s)
- Zhidong Hu
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of Ministry of Education (MOE)/Ministry of Health (MOH), Fudan University, Shanghai, China
- *Correspondence: Zhidong Hu, ; Xiao-Yong Fan,
| | - Shui-Hua Lu
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of Ministry of Education (MOE)/Ministry of Health (MOH), Fudan University, Shanghai, China
- National Medical Center for Infectious Diseases of China, Shenzhen Third People Hospital, South Science & Technology University, Shenzhen, China
| | - Douglas B. Lowrie
- National Medical Center for Infectious Diseases of China, Shenzhen Third People Hospital, South Science & Technology University, Shenzhen, China
| | - Xiao-Yong Fan
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of Ministry of Education (MOE)/Ministry of Health (MOH), Fudan University, Shanghai, China
- *Correspondence: Zhidong Hu, ; Xiao-Yong Fan,
| |
Collapse
|
10
|
Hood AJM, Sumner RP, Maluquer de Motes C. Disruption of the cGAS/STING axis does not impair sensing of MVA in BHK21 cells. J Gen Virol 2022; 103. [PMID: 35584007 DOI: 10.1099/jgv.0.001755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Modified vaccinia Ankara (MVA) is an attenuated strain of vaccinia virus (VACV), a dsDNA virus that replicates its genome in the cytoplasm and as a result is canonically sensed by the cyclic GMP-AMP synthase (cGAS) and its downstream stimulator of interferon genes (STING). MVA has a highly restricted host range due to major deletions in its genome including inactivation of immunomodulatory genes, only being able to grow in avian cells and the hamster cell line BHK21. Here we studied the interplay between MVA and the cGAS/STING DNA in this permissive cell line and determined whether manipulation of this axis could impact MVA replication and cell responses. We demonstrate that BHK21 cells retain a functional cGAS/STING axis that responds to canonical DNA sensing agonists, upregulating interferon stimulated genes (ISGs). BHK21 cells also respond to MVA, but with a distinct ISG profile. This profile remains unaltered after CRISPR/Cas9 knock-out editing of STING and ablation of cytosolic DNA responses, indicating that MVA responses are independent of the cGAS/STING axis. Furthermore, infection by MVA diminishes the ability of BHK21 cells to respond to exogenous DNA suggesting that MVA still encodes uncharacterised inhibitors of DNA sensing. This suggests that using attenuated strains in permissive cell lines may assist in identification of novel host-virus interactions that may be of relevance to disease or the therapeutic applications of poxviruses.
Collapse
Affiliation(s)
- Alasdair J M Hood
- Department of Microbial Sciences, University of Surrey, Guildford, UK
| | - Rebecca P Sumner
- Department of Microbial Sciences, University of Surrey, Guildford, UK
| | | |
Collapse
|
11
|
Boulton S, Poutou J, Martin NT, Azad T, Singaravelu R, Crupi MJF, Jamieson T, He X, Marius R, Petryk J, Tanese de Souza C, Austin B, Taha Z, Whelan J, Khan ST, Pelin A, Rezaei R, Surendran A, Tucker S, Fekete EEF, Dave J, Diallo JS, Auer R, Angel JB, Cameron DW, Cailhier JF, Lapointe R, Potts K, Mahoney DJ, Bell JC, Ilkow CS. Single-dose replicating poxvirus vector-based RBD vaccine drives robust humoral and T cell immune response against SARS-CoV-2 infection. Mol Ther 2022; 30:1885-1896. [PMID: 34687845 PMCID: PMC8527104 DOI: 10.1016/j.ymthe.2021.10.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/24/2021] [Accepted: 10/10/2021] [Indexed: 02/01/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic requires the continued development of safe, long-lasting, and efficacious vaccines for preventive responses to major outbreaks around the world, and especially in isolated and developing countries. To combat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), we characterize a temperature-stable vaccine candidate (TOH-Vac1) that uses a replication-competent, attenuated vaccinia virus as a vector to express a membrane-tethered spike receptor binding domain (RBD) antigen. We evaluate the effects of dose escalation and administration routes on vaccine safety, efficacy, and immunogenicity in animal models. Our vaccine induces high levels of SARS-CoV-2 neutralizing antibodies and favorable T cell responses, while maintaining an optimal safety profile in mice and cynomolgus macaques. We demonstrate robust immune responses and protective immunity against SARS-CoV-2 variants after only a single dose. Together, these findings support further development of our novel and versatile vaccine platform as an alternative or complementary approach to current vaccines.
Collapse
Affiliation(s)
- Stephen Boulton
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Joanna Poutou
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Nikolas T Martin
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Taha Azad
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Ragunath Singaravelu
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Mathieu J F Crupi
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Taylor Jamieson
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Xiaohong He
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Ricardo Marius
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Julia Petryk
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Christiano Tanese de Souza
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Bradley Austin
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Zaid Taha
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Jack Whelan
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Sarwat T Khan
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Adrian Pelin
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Reza Rezaei
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Abera Surendran
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Sarah Tucker
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Emily E F Fekete
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Jaahnavi Dave
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Jean-Simon Diallo
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Rebecca Auer
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Jonathan B Angel
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Department of Medicine, The Ottawa Hospital, Ottawa, ON K1H 8L6, Canada
| | - D William Cameron
- Division of Infectious Disease, Department of Medicine, University of Ottawa at The Ottawa Hospital/ Research Institute, Ottawa, ON K1H 8L6, Canada
| | | | - Réjean Lapointe
- Institut du Cancer de Montréal, Montréal, Québec H2X 0A9, Canada
| | - Kyle Potts
- Arnie Charbonneau Cancer Institute, Calgary, AB T2N 4Z6, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 6A8, Canada; Department of Microbiology, Immunology and Infectious Disease, Cumming School of Medicine, University of Calgary, Calgary, AB T2T 1N4, Canada
| | - Douglas J Mahoney
- Arnie Charbonneau Cancer Institute, Calgary, AB T2N 4Z6, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 6A8, Canada; Department of Microbiology, Immunology and Infectious Disease, Cumming School of Medicine, University of Calgary, Calgary, AB T2T 1N4, Canada
| | - John C Bell
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| | - Carolina S Ilkow
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
12
|
Cordeiro AS, Patil-Sen Y, Shivkumar M, Patel R, Khedr A, Elsawy MA. Nanovaccine Delivery Approaches and Advanced Delivery Systems for the Prevention of Viral Infections: From Development to Clinical Application. Pharmaceutics 2021; 13:2091. [PMID: 34959372 PMCID: PMC8707864 DOI: 10.3390/pharmaceutics13122091] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 02/07/2023] Open
Abstract
Viral infections causing pandemics and chronic diseases are the main culprits implicated in devastating global clinical and socioeconomic impacts, as clearly manifested during the current COVID-19 pandemic. Immunoprophylaxis via mass immunisation with vaccines has been shown to be an efficient strategy to control such viral infections, with the successful and recently accelerated development of different types of vaccines, thanks to the advanced biotechnological techniques involved in the upstream and downstream processing of these products. However, there is still much work to be done for the improvement of efficacy and safety when it comes to the choice of delivery systems, formulations, dosage form and route of administration, which are not only crucial for immunisation effectiveness, but also for vaccine stability, dose frequency, patient convenience and logistics for mass immunisation. In this review, we discuss the main vaccine delivery systems and associated challenges, as well as the recent success in developing nanomaterials-based and advanced delivery systems to tackle these challenges. Manufacturing and regulatory requirements for the development of these systems for successful clinical and marketing authorisation were also considered. Here, we comprehensively review nanovaccines from development to clinical application, which will be relevant to vaccine developers, regulators, and clinicians.
Collapse
Affiliation(s)
- Ana Sara Cordeiro
- Leicester Institute for Pharmaceutical Innovation, Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK; (A.S.C.); (M.S.); (A.K.)
| | - Yogita Patil-Sen
- Wrightington, Wigan and Leigh Teaching Hospitals NHS Foundation Trust, National Health Service, Wigan WN6 0SZ, UK;
| | - Maitreyi Shivkumar
- Leicester Institute for Pharmaceutical Innovation, Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK; (A.S.C.); (M.S.); (A.K.)
| | - Ronak Patel
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK;
| | - Abdulwahhab Khedr
- Leicester Institute for Pharmaceutical Innovation, Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK; (A.S.C.); (M.S.); (A.K.)
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Mohamed A. Elsawy
- Leicester Institute for Pharmaceutical Innovation, Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK; (A.S.C.); (M.S.); (A.K.)
| |
Collapse
|
13
|
Bošnjak B, Odak I, Barros-Martins J, Sandrock I, Hammerschmidt SI, Permanyer M, Patzer GE, Greorgiev H, Gutierrez Jauregui R, Tscherne A, Schwarz JH, Kalodimou G, Ssebyatika G, Ciurkiewicz M, Willenzon S, Bubke A, Ristenpart J, Ritter C, Tuchel T, Meyer zu Natrup C, Shin DL, Clever S, Limpinsel L, Baumgärtner W, Krey T, Volz A, Sutter G, Förster R. Intranasal Delivery of MVA Vector Vaccine Induces Effective Pulmonary Immunity Against SARS-CoV-2 in Rodents. Front Immunol 2021; 12:772240. [PMID: 34858430 PMCID: PMC8632543 DOI: 10.3389/fimmu.2021.772240] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/25/2021] [Indexed: 01/08/2023] Open
Abstract
Antigen-specific tissue-resident memory T cells (Trms) and neutralizing IgA antibodies provide the most effective protection of the lungs from viral infections. To induce those essential components of lung immunity against SARS-CoV-2, we tested various immunization protocols involving intranasal delivery of a novel Modified Vaccinia virus Ankara (MVA)-SARS-2-spike vaccine candidate. We show that a single intranasal MVA-SARS-CoV-2-S application in mice strongly induced pulmonary spike-specific CD8+ T cells, albeit restricted production of neutralizing antibodies. In prime-boost protocols, intranasal booster vaccine delivery proved to be crucial for a massive expansion of systemic and lung tissue-resident spike-specific CD8+ T cells and the development of Th1 - but not Th2 - CD4+ T cells. Likewise, very high titers of IgG and IgA anti-spike antibodies were present in serum and broncho-alveolar lavages that possessed high virus neutralization capacities to all current SARS-CoV-2 variants of concern. Importantly, the MVA-SARS-2-spike vaccine applied in intramuscular priming and intranasal boosting treatment regimen completely protected hamsters from developing SARS-CoV-2 lung infection and pathology. Together, these results identify intramuscular priming followed by respiratory tract boosting with MVA-SARS-2-S as a promising approach for the induction of local, respiratory as well as systemic immune responses suited to protect from SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Berislav Bošnjak
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Ivan Odak
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | | | - Inga Sandrock
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | | | - Marc Permanyer
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | | | - Hristo Greorgiev
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | | | - Alina Tscherne
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximilian University (LMU) Munich, Munich, Germany
- German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Jan Hendrik Schwarz
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Georgia Kalodimou
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximilian University (LMU) Munich, Munich, Germany
- German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - George Ssebyatika
- Center of Structural and Cell Biology in Medicine, Institute of Biochemistry, University of Lübeck, Lübeck, Germany
| | | | | | - Anja Bubke
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | | | | | - Tamara Tuchel
- Institute for Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | | | - Dai-Lun Shin
- Institute for Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Sabrina Clever
- Institute for Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Leonard Limpinsel
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Thomas Krey
- Center of Structural and Cell Biology in Medicine, Institute of Biochemistry, University of Lübeck, Lübeck, Germany
- German Centre for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Lübeck, Germany
- Centre for Structural Systems Biology (CSSB), Hamburg, Germany
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Asisa Volz
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximilian University (LMU) Munich, Munich, Germany
- German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany
- Institute for Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Gerd Sutter
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximilian University (LMU) Munich, Munich, Germany
- German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover, Hannover, Germany
| |
Collapse
|
14
|
García-Arriaza J, Esteban M, López D. Modified Vaccinia Virus Ankara as a Viral Vector for Vaccine Candidates against Chikungunya Virus. Biomedicines 2021; 9:biomedicines9091122. [PMID: 34572308 PMCID: PMC8466845 DOI: 10.3390/biomedicines9091122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 01/16/2023] Open
Abstract
There is a need to develop a highly effective vaccine against the emerging chikungunya virus (CHIKV), a mosquito-borne Alphavirus that causes severe disease in humans consisting of acute febrile illness, followed by chronic debilitating polyarthralgia and polyarthritis. In this review, we provide a brief history of the development of the first poxvirus vaccines that led to smallpox eradication and its implications for further vaccine development. As an example, we summarize the development of vaccine candidates based on the modified vaccinia virus Ankara (MVA) vector expressing different CHIKV structural proteins, paying special attention to MVA-CHIKV expressing all of the CHIKV structural proteins: C, E3, E2, 6K and E1. We review the characterization of innate and adaptive immune responses induced in mice and nonhuman primates by the MVA-CHIKV vaccine candidate and examine its efficacy in animal models, with promising preclinical findings needed prior to the approval of human clinical trials.
Collapse
Affiliation(s)
- Juan García-Arriaza
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain
- Correspondence: (J.G.-A.); (M.E.); (D.L.)
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain
- Correspondence: (J.G.-A.); (M.E.); (D.L.)
| | - Daniel López
- Unidad de Presentación y Regulación Inmunes, Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220 Majadahonda, Spain
- Correspondence: (J.G.-A.); (M.E.); (D.L.)
| |
Collapse
|
15
|
Liu R, Americo JL, Cotter CA, Earl PL, Erez N, Peng C, Moss B. One or two injections of MVA-vectored vaccine shields hACE2 transgenic mice from SARS-CoV-2 upper and lower respiratory tract infection. Proc Natl Acad Sci U S A 2021; 118:e2026785118. [PMID: 33688035 PMCID: PMC8000198 DOI: 10.1073/pnas.2026785118] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Modified vaccinia virus Ankara (MVA) is a replication-restricted smallpox vaccine, and numerous clinical studies of recombinant MVAs (rMVAs) as vectors for prevention of other infectious diseases, including COVID-19, are in progress. Here, we characterize rMVAs expressing the S protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Modifications of full-length S individually or in combination included two proline substitutions, mutations of the furin recognition site, and deletion of the endoplasmic retrieval signal. Another rMVA in which the receptor binding domain (RBD) is flanked by the signal peptide and transmembrane domains of S was also constructed. Each modified S protein was displayed on the surface of rMVA-infected cells and was recognized by anti-RBD antibody and soluble hACE2 receptor. Intramuscular injection of mice with the rMVAs induced antibodies, which neutralized a pseudovirus in vitro and, upon passive transfer, protected hACE2 transgenic mice from lethal infection with SARS-CoV-2, as well as S-specific CD3+CD8+IFNγ+ T cells. Antibody boosting occurred following a second rMVA or adjuvanted purified RBD protein. Immunity conferred by a single vaccination of hACE2 mice prevented morbidity and weight loss upon intranasal infection with SARS-CoV-2 3 wk or 7 wk later. One or two rMVA vaccinations also prevented detection of infectious SARS-CoV-2 and subgenomic viral mRNAs in the lungs and greatly reduced induction of cytokine and chemokine mRNAs. A low amount of virus was found in the nasal turbinates of only one of eight rMVA-vaccinated mice on day 2 and none later. Detection of low levels of subgenomic mRNAs in turbinates indicated that replication was aborted in immunized animals.
Collapse
Affiliation(s)
- Ruikang Liu
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Jeffrey L Americo
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Catherine A Cotter
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Patricia L Earl
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Noam Erez
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Chen Peng
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Bernard Moss
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| |
Collapse
|
16
|
Liu R, Americo JL, Cotter CA, Earl PL, Erez N, Peng C, Moss B. MVA Vector Vaccines Inhibit SARS CoV-2 Replication in Upper and Lower Respiratory Tracts of Transgenic Mice and Prevent Lethal Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2020.12.30.424878. [PMID: 33442693 PMCID: PMC7805450 DOI: 10.1101/2020.12.30.424878] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Replication-restricted modified vaccinia virus Ankara (MVA) is a licensed smallpox vaccine and numerous clinical studies investigating recombinant MVAs (rMVAs) as vectors for prevention of other infectious diseases have been completed or are in progress. Two rMVA COVID-19 vaccine trials are at an initial stage, though no animal protection studies have been reported. Here, we characterize rMVAs expressing the S protein of CoV-2. Modifications of full length S individually or in combination included two proline substitutions, mutations of the furin recognition site and deletion of the endoplasmic retrieval signal. Another rMVA in which the receptor binding domain (RBD) flanked by the signal peptide and transmembrane domains of S was also constructed. Each modified S protein was displayed on the surface of rMVA-infected human cells and was recognized by anti-RBD antibody and by soluble hACE2 receptor. Intramuscular injection of mice with the rMVAs induced S-binding and pseudovirus-neutralizing antibodies. Boosting occurred following a second homologous rMVA but was higher with adjuvanted purified RBD protein. Weight loss and lethality following intranasal infection of transgenic hACE2 mice with CoV-2 was prevented by one or two immunizations with rMVAs or by passive transfer of serum from vaccinated mice. One or two rMVA vaccinations also prevented recovery of infectious CoV-2 from the lungs. A low amount of virus was detected in the nasal turbinates of only one of eight rMVA-vaccinated mice on day 2 and none later. Detection of subgenomic mRNA in turbinates on day 2 only indicated that replication was abortive in immunized animals.
Collapse
Affiliation(s)
| | | | - Catherine A. Cotter
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD 20892 USA
| | - Patricia L. Earl
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD 20892 USA
| | | | | | - Bernard Moss
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD 20892 USA
| |
Collapse
|
17
|
Sasso E, D'Alise AM, Zambrano N, Scarselli E, Folgori A, Nicosia A. New viral vectors for infectious diseases and cancer. Semin Immunol 2020; 50:101430. [PMID: 33262065 DOI: 10.1016/j.smim.2020.101430] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/23/2020] [Accepted: 11/16/2020] [Indexed: 12/12/2022]
Abstract
Since the discovery in 1796 by Edward Jenner of vaccinia virus as a way to prevent and finally eradicate smallpox, the concept of using a virus to fight another virus has evolved into the current approaches of viral vectored genetic vaccines. In recent years, key improvements to the vaccinia virus leading to a safer version (Modified Vaccinia Ankara, MVA) and the discovery that some viruses can be used as carriers of heterologous genes encoding for pathological antigens of other infectious agents (the concept of 'viral vectors') has spurred a new wave of clinical research potentially providing for a solution for the long sought after vaccines against major diseases such as HIV, TB, RSV and Malaria, or emerging infectious diseases including those caused by filoviruses and coronaviruses. The unique ability of some of these viral vectors to stimulate the cellular arm of the immune response and, most importantly, T lymphocytes with cell killing activity, has also reawakened the interest toward developing therapeutic vaccines against chronic infectious diseases and cancer. To this end, existing vectors such as those based on Adenoviruses have been improved in immunogenicity and efficacy. Along the same line, new vectors that exploit viruses such as Vesicular Stomatitis Virus (VSV), Measles Virus (MV), Lymphocytic choriomeningitis virus (LCMV), cytomegalovirus (CMV), and Herpes Simplex Virus (HSV), have emerged. Furthermore, technological progress toward modifying their genome to render some of these vectors incompetent for replication has increased confidence toward their use in infant and elderly populations. Lastly, their production process being the same for every product has made viral vectored vaccines the technology of choice for rapid development of vaccines against emerging diseases and for 'personalised' cancer vaccines where there is an absolute need to reduce time to the patient from months to weeks or days. Here we review the recent developments in viral vector technologies, focusing on novel vectors based on primate derived Adenoviruses and Poxviruses, Rhabdoviruses, Paramixoviruses, Arenaviruses and Herpesviruses. We describe the rationale for, immunologic mechanisms involved in, and design of viral vectored gene vaccines under development and discuss the potential utility of these novel genetic vaccine approaches in eliciting protection against infectious diseases and cancer.
Collapse
Affiliation(s)
- Emanuele Sasso
- Nouscom srl, Via di Castel Romano 100, 00128 Rome, Italy; Ceinge-Biotecnologie Avanzate S.C. A.R.L., via Gaetano Salvatore 486, 80145 Naples, Italy.
| | | | - Nicola Zambrano
- Ceinge-Biotecnologie Avanzate S.C. A.R.L., via Gaetano Salvatore 486, 80145 Naples, Italy; Department of Molecular Medicine and Medical Biotechnology, University Federico II, Via Pansini 5, 80131 Naples, Italy.
| | | | | | - Alfredo Nicosia
- Ceinge-Biotecnologie Avanzate S.C. A.R.L., via Gaetano Salvatore 486, 80145 Naples, Italy; Department of Molecular Medicine and Medical Biotechnology, University Federico II, Via Pansini 5, 80131 Naples, Italy.
| |
Collapse
|
18
|
Jordan I, Horn D, Thiele K, Haag L, Fiddeke K, Sandig V. A Deleted Deletion Site in a New Vector Strain and Exceptional Genomic Stability of Plaque-Purified Modified Vaccinia Ankara (MVA). Virol Sin 2019; 35:212-226. [PMID: 31833037 PMCID: PMC7198643 DOI: 10.1007/s12250-019-00176-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 09/18/2019] [Indexed: 12/29/2022] Open
Abstract
Vectored vaccines based on highly attenuated modified vaccinia Ankara (MVA) are reported to be immunogenic, tolerant to pre-existing immunity, and able to accommodate and stably maintain very large transgenes. MVA is usually produced on primary chicken embryo fibroblasts, but production processes based on continuous cell lines emerge as increasingly robust and cost-effective alternatives. An isolate of a hitherto undescribed genotype was recovered by passage of a non-plaque-purified preparation of MVA in a continuous anatine suspension cell line (CR.pIX) in chemically defined medium. The novel isolate (MVA-CR19) replicated to higher infectious titers in the extracellular volume of suspension cultures and induced fewer syncytia in adherent cultures. We now extend previous studies with the investigation of the point mutations in structural genes of MVA-CR19 and describe an additional point mutation in a regulatory gene. We furthermore map and discuss an extensive rearrangement of the left telomer of MVA-CR19 that appears to have occurred by duplication of the right telomer. This event caused deletions and duplications of genes that may modulate immunologic properties of MVA-CR19 as a vaccine vector. Our characterizations also highlight the exceptional genetic stability of plaque-purified MVA: although the phenotype of MVA-CR19 appears to be advantageous for replication, we found that all genetic markers that differentiate wildtype and MVA-CR19 are stably maintained in passages of recombinant viruses based on either wildtype or MVA-CR.
Collapse
Affiliation(s)
- Ingo Jordan
- ProBioGen AG, Herbert-Bayer-Straße 8, 13086, Berlin, Germany.
| | - Deborah Horn
- ProBioGen AG, Herbert-Bayer-Straße 8, 13086, Berlin, Germany
| | - Kristin Thiele
- ProBioGen AG, Herbert-Bayer-Straße 8, 13086, Berlin, Germany.,Sartorius Stedim Cellca GmbH, Erwin-Rentschler-Str 21, 88471, Laupheim, Germany
| | - Lars Haag
- Vironova AB, Gävlegatan 22, 113 30, Stockholm, Sweden.,Department of Laboratory Medicine, Karolinska Universitetsjukhuset i Huddinge, 14152, Huddinge, Sweden
| | | | - Volker Sandig
- ProBioGen AG, Herbert-Bayer-Straße 8, 13086, Berlin, Germany
| |
Collapse
|
19
|
Modified Vaccinia Virus Ankara Can Induce Optimal CD8 + T Cell Responses to Directly Primed Antigens Depending on Vaccine Design. J Virol 2019; 93:JVI.01154-19. [PMID: 31375596 PMCID: PMC6803277 DOI: 10.1128/jvi.01154-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 07/29/2019] [Indexed: 01/19/2023] Open
Abstract
A variety of strains of vaccinia virus (VACV) have been used as recombinant vaccine vectors with the aim of inducing robust CD8+ T cell immunity. While much of the pioneering work was done with virulent strains, such as Western Reserve (WR), attenuated strains such as modified vaccinia virus Ankara (MVA) are more realistic vectors for clinical use. To unify this literature, side-by-side comparisons of virus strains are required. Here, we compare the form of antigen that supports optimal CD8+ T cell responses for VACV strains WR and MVA using equivalent constructs. We found that for multiple antigens, minimal antigenic constructs (epitope minigenes) that prime CD8+ T cells via the direct presentation pathway elicited optimal responses from both vectors, which was surprising because this finding contradicts the prevailing view in the literature for MVA. We then went on to explore the discrepancy between current and published data for MVA, finding evidence that the expression locus and in some cases the presence of the viral thymidine kinase may influence the ability of this strain to prime optimal responses from antigens that require direct presentation. This extends our knowledge of the design parameters for VACV vectored vaccines, especially those based on MVA.IMPORTANCE Recombinant vaccines based on vaccinia virus and particularly attenuated strains such as MVA are in human clinical trials, but due to the complexity of these large vectors much remains to be understood about the design parameters that alter their immunogenicity. Previous work had found that MVA vectors should be designed to express stable protein in order to induce robust immunity by CD8+ (cytotoxic) T cells. Here, we found that the primacy of stable antigen is not generalizable to all designs of MVA and may depend where a foreign antigen is inserted into the MVA genome. This unexpected finding suggests that there is an interaction between genome location and the best form of antigen for optimal T cell priming in MVA and thus possibly other vaccine vectors. It also highlights that our understanding of antigen presentation by even the best studied of vaccine vectors remains incomplete.
Collapse
|
20
|
Liu R, Mendez-Rios JD, Peng C, Xiao W, Weisberg AS, Wyatt LS, Moss B. SPI-1 is a missing host-range factor required for replication of the attenuated modified vaccinia Ankara (MVA) vaccine vector in human cells. PLoS Pathog 2019; 15:e1007710. [PMID: 31145755 PMCID: PMC6542542 DOI: 10.1371/journal.ppat.1007710] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/15/2019] [Indexed: 02/07/2023] Open
Abstract
Modified vaccinia virus Ankara (MVA) is the leading poxvirus vector for development of vaccines against diverse infectious diseases. This distinction is based on high expression of proteins and good immunogenicity despite an inability to assemble infectious progeny in human cells, which together promote efficacy and safety. Nevertheless, the basis for the host-range restriction is unknown despite past systematic attempts to identify the relevant missing viral gene(s). The search for host-range factors is exacerbated by the large number of deletions, truncations and mutations that occurred during the long passage history of MVA in chicken embryo fibroblasts. By whole genome sequencing of a panel of recombinant host-range extended (HRE) MVAs generated by marker rescue with 40 kbp segments of vaccinia virus DNA, we identified serine protease inhibitor 1 (SPI-1) as one of several candidate host-range factors present in those viruses that gained the ability to replicate in human cells. Electron microscopy revealed that the interruption of morphogenesis in human cells infected with MVA occurred at a similar stage as that of a vaccinia virus strain WR SPI-1 deletion mutant. Moreover, the introduction of the SPI-1 gene into the MVA genome led to more than a 2-log enhancement of virus spread in human diploid MRC-5 cells, whereas deletion of the gene diminished the spread of HRE viruses by similar extents. Furthermore, MRC-5 cells stably expressing SPI-1 also enhanced replication of MVA. A role for additional host range genes was suggested by the restoration of MVA replication to a lower level relative to HRE viruses, particularly in other human cell lines. Although multiple sequence alignments revealed genetic changes in addition to SPI-1 common to the HRE MVAs, no evidence for their host-range function was found by analysis thus far. Our finding that SPI-1 is host range factor for MVA should simplify use of high throughput RNAi or CRISPR/Cas single gene methods to identify additional viral and human restriction elements. Poxvirus vectors have outstanding properties for development of vaccines against a myriad of infectious agents due to their ability to retain long segments of foreign DNA and high-level gene expression. Safety concerns led to a preference for attenuated poxviruses that lost the ability to produce infectious progeny in human cells. The most widely used poxvirus vector is modified vaccinia virus Ankara (MVA), which exhibits an extreme host-range restriction in most mammalian cells. MVA was attenuated by passaging more than 500 times in chicken embryo fibroblasts during which large deletions and numerous additional genetic changes occurred. Despite ongoing clinical testing of MVA-vectored vaccines, the basis for its host-range restriction remained unknown. Here we show that re-introduction of the SPI-1 gene into MVA or host cells increased virus spread by more than 100-fold in a human diploid cell line, providing an important insight into the mechanism responsible for the host-range restriction. This information could help design improved vectors and develop non-avian cell lines for propagation of candidate MVA vaccines.
Collapse
Affiliation(s)
- Ruikang Liu
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jorge D. Mendez-Rios
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Chen Peng
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Wei Xiao
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Andrea S. Weisberg
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Linda S. Wyatt
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Bernard Moss
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
21
|
Viral Replicative Capacity, Antigen Availability via Hematogenous Spread, and High T FH:T FR Ratios Drive Induction of Potent Neutralizing Antibody Responses. J Virol 2019; 93:JVI.01795-18. [PMID: 30626686 DOI: 10.1128/jvi.01795-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 12/19/2018] [Indexed: 01/10/2023] Open
Abstract
Live viral vaccines elicit protective, long-lived humoral immunity, but the underlying mechanisms through which this occurs are not fully elucidated. Generation of affinity matured, long-lived protective antibody responses involve close interactions between T follicular helper (TFH) cells, germinal center (GC) B cells, and T follicular regulatory (TFR) cells. We postulated that escalating concentrations of antigens from replicating viruses or live vaccines, spread through the hematogenous route, are essential for the induction and maintenance of long-lived protective antibody responses. Using replicating and poorly replicating or nonreplicating orthopox and influenza A viruses, we show that the magnitude of TFH cell, GC B cell, and neutralizing antibody responses is directly related to virus replicative capacity. Further, we have identified that both lymphoid and circulating TFH:TFR cell ratios during the peak GC response can be used as an early predictor of protective, long-lived antibody response induction. Finally, administration of poorly or nonreplicating viruses to allow hematogenous spread generates significantly stronger TFH:TFR ratios and robust TFH, GC B cell and neutralizing antibody responses.IMPORTANCE Neutralizing antibody response is the best-known correlate of long-term protective immunity for most of the currently licensed clinically effective viral vaccines. However, the host immune and viral factors that are critical for the induction of robust and durable antiviral humoral immune responses are not well understood. Our study provides insight into the dynamics of key cellular mediators of germinal center reaction during live virus infections and the influence of viral replicative capacity on the magnitude of antiviral antibody response and effector function. The significance of our study lies in two key findings. First, the systemic spread of even poorly replicating or nonreplicating viruses to mimic the spread of antigens from replicating viruses due to escalating antigen concentration is fundamental to the induction of durable antibody responses. Second, the TFH:TFR ratio may be used as an early predictor of protective antiviral humoral immune responses long before memory responses are generated.
Collapse
|
22
|
Calvo-Pinilla E, Gubbins S, Mertens P, Ortego J, Castillo-Olivares J. The immunogenicity of recombinant vaccines based on modified Vaccinia Ankara (MVA) viruses expressing African horse sickness virus VP2 antigens depends on the levels of expressed VP2 protein delivered to the host. Antiviral Res 2018; 154:132-139. [PMID: 29678552 PMCID: PMC5966619 DOI: 10.1016/j.antiviral.2018.04.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 04/13/2018] [Accepted: 04/17/2018] [Indexed: 12/17/2022]
Abstract
African horse sickness (AHS) is a lethal equine disease transmitted by Culicoides biting midges and caused by African horse sickness virus (AHSV). AHS is endemic to sub-Saharan Africa, but devastating outbreaks have been recorded periodically outside this region. The perceived risk of an AHS outbreak occurring in Europe has increased following the frequent epidemics caused in ruminants by bluetongue virus, closely related to AHSV. Attenuated vaccines for AHS are considered unsuitable for use in non-endemic countries due bio-safety concerns. Further, attenuated and inactivated vaccines are not compatible with DIVA (differentiate infected from vaccinated animals) strategies. All these factors stimulated the development of novel AHS vaccines that are safer, more efficacious and DIVA compatible. We showed previously that recombinant modified Vaccinia Ankara virus (MVA) vaccines encoding the outer capsid protein of AHSV (AHSV-VP2) induced virus neutralising antibodies (VNAb) and protection against AHSV in a mouse model and also in the horse. Passive immunisation studies demonstrated that immunity induced by MVA-VP2 was associated with pre-challenge VNAb titres in the vaccinates. Analyses of the inoculum of these MVA-VP2 experimental vaccines showed that they contained pre-formed AHSV-VP2. We continued studying the influence of pre-formed AHSV-VP2, present in the inoculum of MVA-VP2 vaccines, in the immunogenicity of MVA-VP2 vaccines. Thus, we compared correlates of immunity in challenged mice that were previously vaccinated with: a) MVA-VP2 (live); b) MVA-VP2 (live and sucrose gradient purified); c) MVA-VP2 (UV light inactivated); d) MVA-VP2 (UV light inactivated and diluted); e) MVA-VP2 (heat inactivated); f) MVA-VP2 (UV inactivated) + MVA-VP2 (purified); g) MVA-VP2 (heat inactivated) + MVA-VP2 (purified); and h) wild type-MVA (no insert). The results of these experiments showed that protection was maximal using MVA-VP2 (live) vaccine and that the protection conferred by all other vaccines correlated strongly with the levels of pre-formed AHSV-VP2 in the vaccine inoculum. MVA-VP2 vaccines (expressing African horse sickness virus VP2) induce protective immunity in mouse model and in horses. Experimental MVA-VP2 vaccines contain preformed AHSV-VP2 in the inoculum if they are not sucrose-gradient purified. MVA-VP2 vaccines express AHSV-VP2 in MVA-VP2 infected cells. Both pre-formed AHSV-VP2 and ‘de novo’ synthesised AHSV-VP2 in MVA-VP2 vaccinates contribute to MVA-VP2 immunogenicity.
Collapse
Affiliation(s)
- Eva Calvo-Pinilla
- The Pirbright Institute, Ash Road, Pirbright, Surrey, GU24 0NF, UK; INIA-CISA, 28130, Valdeolmos, Madrid, Spain
| | - Simon Gubbins
- The Pirbright Institute, Ash Road, Pirbright, Surrey, GU24 0NF, UK
| | - Peter Mertens
- The Pirbright Institute, Ash Road, Pirbright, Surrey, GU24 0NF, UK
| | | | | |
Collapse
|
23
|
Abstract
Safe and efficacious vaccines are arguably the most successful medical interventions of all time. Yet the ongoing discovery of new pathogens, along with emergence of antibiotic-resistant pathogens and a burgeoning population at risk of such infections, imposes unprecedented public health challenges. To meet these challenges, innovative strategies to discover and develop new or improved anti-infective vaccines are necessary. These approaches must intersect the most meaningful insights into protective immunity and advanced technologies with capabilities to deliver immunogens for optimal immune protection. This goal is considered through several recent advances in host-pathogen relationships, conceptual strides in vaccinology, and emerging technologies. Given a clear and growing risk of pandemic disease should the threat of infection go unmet, developing vaccines that optimize protective immunity against high-priority and antibiotic-resistant pathogens represents an urgent and unifying imperative.
Collapse
Affiliation(s)
- Michael R Yeaman
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California 90024.,Division of Molecular Medicine, Department of Medicine, Harbor-UCLA Medical Center, Torrance, California 90509; .,Division of Infectious Diseases, Department of Medicine, Harbor-UCLA Medical Center, Torrance, California 90509.,Los Angeles Biomedical Research Institute, Torrance, California 90502
| | | |
Collapse
|
24
|
Okeke MI, Okoli AS, Diaz D, Offor C, Oludotun TG, Tryland M, Bøhn T, Moens U. Hazard Characterization of Modified Vaccinia Virus Ankara Vector: What Are the Knowledge Gaps? Viruses 2017; 9:v9110318. [PMID: 29109380 PMCID: PMC5707525 DOI: 10.3390/v9110318] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 10/21/2017] [Accepted: 10/26/2017] [Indexed: 12/17/2022] Open
Abstract
Modified vaccinia virus Ankara (MVA) is the vector of choice for human and veterinary applications due to its strong safety profile and immunogenicity in vivo. The use of MVA and MVA-vectored vaccines against human and animal diseases must comply with regulatory requirements as they pertain to environmental risk assessment, particularly the characterization of potential adverse effects to humans, animals and the environment. MVA and recombinant MVA are widely believed to pose low or negligible risk to ecosystem health. However, key aspects of MVA biology require further research in order to provide data needed to evaluate the potential risks that may occur due to the use of MVA and MVA-vectored vaccines. The purpose of this paper is to identify knowledge gaps in the biology of MVA and recombinant MVA that are of relevance to its hazard characterization and discuss ongoing and future experiments aimed at providing data necessary to fill in the knowledge gaps. In addition, we presented arguments for the inclusion of uncertainty analysis and experimental investigation of verifiable worst-case scenarios in the environmental risk assessment of MVA and recombinant MVA. These will contribute to improved risk assessment of MVA and recombinant MVA vaccines.
Collapse
Affiliation(s)
- Malachy I Okeke
- Genome Editing Research Group, GenØk-Center for Biosafety, Siva Innovation Center, N-9294 Tromso, Norway.
| | - Arinze S Okoli
- Genome Editing Research Group, GenØk-Center for Biosafety, Siva Innovation Center, N-9294 Tromso, Norway.
| | - Diana Diaz
- Molecular Inflammation Research Group, Institute of Medical Biology, University i Tromsø (UiT)-The Arctic University of Norway, N-9037 Tromso, Norway.
| | - Collins Offor
- Department of Medical and Pharmaceutical Biotechnology, IMC University of Applied Sciences Piaristengasse 1, A-3500 Krems, Austria.
| | - Taiwo G Oludotun
- Department of Medical and Pharmaceutical Biotechnology, IMC University of Applied Sciences Piaristengasse 1, A-3500 Krems, Austria.
| | - Morten Tryland
- Genome Editing Research Group, GenØk-Center for Biosafety, Siva Innovation Center, N-9294 Tromso, Norway.
- Artic Infection Biology, Department of Artic and Marine Biology, UIT-The Artic University of Norway, N-9037 Tromso, Norway.
| | - Thomas Bøhn
- Genome Editing Research Group, GenØk-Center for Biosafety, Siva Innovation Center, N-9294 Tromso, Norway.
| | - Ugo Moens
- Molecular Inflammation Research Group, Institute of Medical Biology, University i Tromsø (UiT)-The Arctic University of Norway, N-9037 Tromso, Norway.
| |
Collapse
|
25
|
Dowall SD, Carroll MW, Hewson R. Development of vaccines against Crimean-Congo haemorrhagic fever virus. Vaccine 2017; 35:6015-6023. [PMID: 28687403 PMCID: PMC5637709 DOI: 10.1016/j.vaccine.2017.05.031] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/24/2017] [Accepted: 05/10/2017] [Indexed: 11/19/2022]
Abstract
Crimean-Congo haemorrhagic fever virus (CCHFV) is a deadly human pathogen of the utmost seriousness being highly lethal causing devastating disease symptoms that result in intense and prolonged suffering to those infected. During the past 40years, this virus has repeatedly caused sporadic outbreaks responsible for relatively low numbers of human casualties, but with an alarming fatality rate of up to 80% in clinically infected patients. CCHFV is transmitted to humans by Hyalomma ticks and contact with the blood of viremic livestock, additionally cases of human-to-human transmission are not uncommon in nosocomial settings. The incidence of CCHF closely matches the geographical range of permissive ticks, which are widespread throughout Africa, Asia, the Middle East and Europe. As such, CCHFV is the most widespread tick-borne virus on earth. It is a concern that recent data shows the geographic distribution of Hyalomma ticks is expanding. Migratory birds are also disseminating Hyalomma ticks into more northerly parts of Europe thus potentially exposing naïve human populations to CCHFV. The virus has been imported into the UK on two occasions in the last five years with the first fatal case being confirmed in 2012. A licensed vaccine to CCHF is not available. In this review, we discuss the background and complications surrounding this limitation and examine the current status and recent advances in the development of vaccines against CCHFV.
Collapse
Affiliation(s)
- Stuart D Dowall
- Public Health England, Porton Down, Salisbury, Wiltshire SP4 0JG, UK
| | - Miles W Carroll
- Public Health England, Porton Down, Salisbury, Wiltshire SP4 0JG, UK
| | - Roger Hewson
- Public Health England, Porton Down, Salisbury, Wiltshire SP4 0JG, UK.
| |
Collapse
|
26
|
Barbieri A, Panigada M, Soprana E, Di Mario G, Gubinelli F, Bernasconi V, Recagni M, Donatelli I, Castrucci MR, Siccardi AG. Strategies to obtain multiple recombinant modified vaccinia Ankara vectors. Applications to influenza vaccines. J Virol Methods 2017; 251:7-14. [PMID: 28987424 DOI: 10.1016/j.jviromet.2017.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 10/02/2017] [Accepted: 10/02/2017] [Indexed: 11/27/2022]
Abstract
As a vaccination vector, MVA has been widely investigated both in animal models and humans. The construction of recombinant MVA (rMVA) relies on homologous recombination between an acceptor virus and a donor plasmid in infected/transfected permissive cells. Our construction strategy "Red-to-Green gene swapping" - based on the exchange of two fluorescent markers within the flanking regions of MVA deletion ΔIII, coupled to fluorescence activated cell sorting - is here extended to a second insertion site, within the flanking regions of MVA deletion ΔVI. Exploiting this strategy, both double and triple rMVA were constructed, expressing as transgenes the influenza A proteins HA, NP, M1, and PB1. Upon validation of the harbored transgenes co-expression, double and triple recombinants rMVA(ΔIII)-NP-P2A-M1 and rMVA(ΔIII)-NP-P2A-M1-(ΔVI)-PB1 were assayed for in vivo immunogenicity and protection against lethal challenge. In vivo responses were identical to those obtained with the reported combinations of single recombinants, supporting the feasibility and reliability of the present improvement and the extension of Red-to-Green gene swapping to insertion sites other than ΔIII.
Collapse
Affiliation(s)
- Andrea Barbieri
- Molecular Immunology Unit, San Raffaele Research Institute, Via Olgettina 58, 20132, Milan, Italy; Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Vanvitelli, 32, 20129, Milan, Italy
| | - Maddalena Panigada
- Molecular Immunology Unit, San Raffaele Research Institute, Via Olgettina 58, 20132, Milan, Italy
| | - Elisa Soprana
- Molecular Immunology Unit, San Raffaele Research Institute, Via Olgettina 58, 20132, Milan, Italy
| | - Giuseppina Di Mario
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161, Rome, Italy
| | - Francesco Gubinelli
- Molecular Immunology Unit, San Raffaele Research Institute, Via Olgettina 58, 20132, Milan, Italy
| | - Valentina Bernasconi
- Molecular Immunology Unit, San Raffaele Research Institute, Via Olgettina 58, 20132, Milan, Italy
| | - Marta Recagni
- Molecular Immunology Unit, San Raffaele Research Institute, Via Olgettina 58, 20132, Milan, Italy
| | - Isabella Donatelli
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161, Rome, Italy
| | - Maria R Castrucci
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161, Rome, Italy
| | - Antonio G Siccardi
- Molecular Immunology Unit, San Raffaele Research Institute, Via Olgettina 58, 20132, Milan, Italy.
| |
Collapse
|
27
|
Link EK, Brandmüller C, Suezer Y, Ameres S, Volz A, Moosmann A, Sutter G, Lehmann MH. A synthetic human cytomegalovirus pp65-IE1 fusion antigen efficiently induces and expands virus specific T cells. Vaccine 2017; 35:5131-5139. [PMID: 28818566 DOI: 10.1016/j.vaccine.2017.08.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 05/05/2017] [Accepted: 08/07/2017] [Indexed: 11/16/2022]
Abstract
Infection with human cytomegalovirus (HCMV) can cause severe complications in newborns and immunocompromised patients, and a prophylactic or therapeutic vaccine against HCMV is not available. Here, we generated a HCMV vaccine candidate fulfilling the regulatory requirements for GMP-compliant production and clinical testing. A novel synthetic fusion gene consisting of the coding sequences of HCMV pp65 and IE1 having a deleted nuclear localization sequence and STAT2 binding domain was introduced into the genome of the attenuated vaccinia virus strain MVA. This recombinant MVA, MVA-syn65_IE1, allowed for the production of a stable ∼120kDa syn65_IE1 fusion protein upon tissue culture infection. MVA-syn65_IE1 infected CD40-activated B cells activated and expanded pp65- and IE1-specific T cells derived from HCMV-seropositive donors to at least equal levels as control recombinant MVA expressing single genes for pp65 or IE1. Additionally, we show that MVA-syn65_IE1 induced HCMV pp65- and IE1-epitope specific T cells in HLA-A2.1-/HLA-DR1-transgenic H-2 class I-/class II-knockout mice. Thus, MVA-syn65_IE1 represents a promising vaccine candidate against HCMV and constitutes a basis for the generation of a multivalent vaccine targeting relevant pathogens in immunocompromised patients.
Collapse
Affiliation(s)
- Ellen K Link
- Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-Universität München, Veterinärstr. 13, 80539 Munich, Germany; German Center for Infection Research (DZIF), Germany
| | - Christine Brandmüller
- Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-Universität München, Veterinärstr. 13, 80539 Munich, Germany; German Center for Infection Research (DZIF), Germany
| | - Yasemin Suezer
- Paul-Ehrlich-Institut, Federal Institute for Vaccines and Biomedicines, Paul-Ehrlich-Straße 51-59, 63225 Langen, Germany; German Center for Infection Research (DZIF), Germany
| | - Stefanie Ameres
- Helmholtz Zentrum München, Research Unit Gene Vectors, Marchioninistraße 25, 81377 Munich, Germany; German Center for Infection Research (DZIF), Germany
| | - Asisa Volz
- Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-Universität München, Veterinärstr. 13, 80539 Munich, Germany; German Center for Infection Research (DZIF), Germany
| | - Andreas Moosmann
- Helmholtz Zentrum München, Research Unit Gene Vectors, Marchioninistraße 25, 81377 Munich, Germany; German Center for Infection Research (DZIF), Germany
| | - Gerd Sutter
- Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-Universität München, Veterinärstr. 13, 80539 Munich, Germany; German Center for Infection Research (DZIF), Germany.
| | - Michael H Lehmann
- Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-Universität München, Veterinärstr. 13, 80539 Munich, Germany; German Center for Infection Research (DZIF), Germany.
| |
Collapse
|
28
|
Earl PL, Moss B, Wyatt LS. Generation of Recombinant Vaccinia Viruses. CURRENT PROTOCOLS IN PROTEIN SCIENCE 2017; 89:5.13.1-5.13.18. [PMID: 28762491 PMCID: PMC5765993 DOI: 10.1002/cpps.33] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
This unit describes how to infect cells with vaccinia virus and then transfect them with a plasmid-transfer vector or PCR fragment to generate a recombinant virus. Selection and screening methods used to isolate recombinant viruses and a method for the amplification of recombinant viruses are described. Finally, a method for live immunostaining that has been used primarily for detection of recombinant modified vaccinia virus Ankara (MVA) is presented. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Patricia L. Earl
- National Institutes of Health, National Institute of Allergy and Infectious Diseases, 33 North Drive, Bethesda, MD 20892-3210
| | - Bernard Moss
- National Institutes of Health, National Institute of Allergy and Infectious Diseases, 33 North Drive, Bethesda, MD 20892-3210
| | - Linda S. Wyatt
- National Institutes of Health, National Institute of Allergy and Infectious Diseases, 33 North Drive, Bethesda, MD 20892-3210
| |
Collapse
|
29
|
Choi J, Kim MG, Oh YK, Kim YB. Progress of Middle East respiratory syndrome coronavirus vaccines: a patent review. Expert Opin Ther Pat 2017; 27:721-731. [PMID: 28121202 DOI: 10.1080/13543776.2017.1281248] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Middle East respiratory syndrome coronavirus (MERS-CoV) has emerged as a new pathogen, causing severe complications and a high case fatality rate. No direct treatments are available as yet, highlighting the importance of prevention through suitable vaccination regimes. The viral spike (S) protein has been characterized as a key target antigen for vaccines. In particular, S protein domains have been utilized to produce high titers of neutralizing antibodies. Areas covered: Since the first report of MERS-CoV infection, a limited number of MERS-CoV-specific patents have been filed. Patents related to MERS-CoV are categorized into three areas: treatments, antibodies, and vaccines (receptor-related). This review mainly focuses on the types and efficacies of vaccines, briefly covering treatments and antibodies against the virus. MERS-CoV vaccine forms and delivery systems, together with comparable development strategies against SARS-CoV are additionally addressed. Expert opinion: Vaccines must be combined with delivery systems, administration routes, and adjuvants to maximize T-cell responses as well as neutralizing antibody production. High immune responses require further study in animal models, such as human receptor-expressing mice, non-human primates, and camels. Such a consideration of integrated actions should contribute to the rapid development of vaccines against MERS-CoV and related coronaviruses.
Collapse
Affiliation(s)
- Jiwon Choi
- a College of Animal Bioscience & Technology , Konkuk University , Seoul , Republic of Korea
| | - Mi-Gyeong Kim
- b College of Pharmacy , Seoul National University , Seoul , Republic of Korea
| | - Yu-Kyoung Oh
- b College of Pharmacy , Seoul National University , Seoul , Republic of Korea
| | - Young Bong Kim
- a College of Animal Bioscience & Technology , Konkuk University , Seoul , Republic of Korea
| |
Collapse
|
30
|
Wyatt LS, Earl PL, Moss B. Generation of Recombinant Vaccinia Viruses. ACTA ACUST UNITED AC 2017; 117:16.17.1-16.17.18. [PMID: 28060405 DOI: 10.1002/cpmb.32] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This unit describes how to infect cells with vaccinia virus and then transfect them with a plasmid-transfer vector or PCR fragment to generate a recombinant virus. Selection and screening methods used to isolate recombinant viruses and a method for the amplification of recombinant viruses are described. Finally, a method for live immunostaining that has been used primarily for detection of recombinant modified vaccinia virus Ankara (MVA) is presented. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Linda S Wyatt
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Patricia L Earl
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Bernard Moss
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
31
|
Increased Protein Degradation Improves Influenza Virus Nucleoprotein-Specific CD8+ T Cell Activation In Vitro but Not in C57BL/6 Mice. J Virol 2016; 90:10209-10219. [PMID: 27581985 DOI: 10.1128/jvi.01633-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 08/25/2016] [Indexed: 11/20/2022] Open
Abstract
Due to antigenic drift of influenza viruses, seasonal influenza vaccines need to be updated annually. These vaccines are based on predictions of strains likely to circulate in the next season. However, vaccine efficacy is greatly reduced in the case of a mismatch between circulating and vaccine strains. Furthermore, novel antigenically distinct influenza viruses are introduced into the human population from animal reservoirs occasionally and may cause pandemic outbreaks. To dampen the impact of seasonal and pandemic influenza, vaccines that induce broadly protective and long-lasting immunity are preferred. Because influenza virus-specific CD8+ T cells are directed mainly against relatively conserved internal proteins, like nucleoprotein (NP), they are highly cross-reactive and afford protection against infection with antigenically distinct influenza virus strains, so-called heterosubtypic immunity. Here, we used modified vaccinia virus Ankara (MVA) as a vaccine vector for the induction of influenza virus NP-specific CD8+ T cells. To optimize the induction of CD8+ T cell responses, we made several modifications to NP, aiming at retaining the protein in the cytosol or targeting it to the proteasome. We hypothesized that these strategies would increase antigen processing and presentation and thus improve the induction of CD8+ T cell responses. We showed that NP with increased degradation rates improved CD8+ T cell activation in vitro if the amount of antigen was limited or if CD8+ T cells were of low functional avidity. However, after immunization of C57BL/6 mice, no differences were detected between modified NP and wild-type NP (NPwt), since NPwt already induced optimal CD8+ T cell responses. IMPORTANCE Due to the continuous antigenic drift of seasonal influenza viruses and the threat of a novel pandemic, there is a great need for the development of novel influenza vaccines that offer broadly protective immunity against multiple subtypes. CD8+ T cells can provide immunity against multiple subtypes of influenza viruses by the recognition of relatively conserved internal antigens. In this study, we aimed at optimizing the CD8+ T cell response to influenza A virus by making modifications to influenza A virus nucleoprotein (NP) expressed from the modified vaccinia virus Ankara (MVA) vaccine vector. These modifications resulted in increased antigen degradation, thereby producing elevated levels of peptides that can be presented on major histocompatibility complex (MHC) class I molecules to CD8+ T cells. Although we were unable to increase the NP-specific immune response in the mouse strain used, this approach may have benefits for vaccine development using less-immunogenic proteins.
Collapse
|
32
|
Volz A, Sutter G. Modified Vaccinia Virus Ankara: History, Value in Basic Research, and Current Perspectives for Vaccine Development. Adv Virus Res 2016; 97:187-243. [PMID: 28057259 PMCID: PMC7112317 DOI: 10.1016/bs.aivir.2016.07.001] [Citation(s) in RCA: 205] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Safety tested Modified Vaccinia virus Ankara (MVA) is licensed as third-generation vaccine against smallpox and serves as a potent vector system for development of new candidate vaccines against infectious diseases and cancer. Historically, MVA was developed by serial tissue culture passage in primary chicken cells of vaccinia virus strain Ankara, and clinically used to avoid the undesirable side effects of conventional smallpox vaccination. Adapted to growth in avian cells MVA lost the ability to replicate in mammalian hosts and lacks many of the genes orthopoxviruses use to conquer their host (cell) environment. As a biologically well-characterized mutant virus, MVA facilitates fundamental research to elucidate the functions of poxvirus host-interaction factors. As extremely safe viral vectors MVA vaccines have been found immunogenic and protective in various preclinical infection models. Multiple recombinant MVA currently undergo clinical testing for vaccination against human immunodeficiency viruses, Mycobacterium tuberculosis or Plasmodium falciparum. The versatility of the MVA vector vaccine platform is readily demonstrated by the swift development of experimental vaccines for immunization against emerging infections such as the Middle East Respiratory Syndrome. Recent advances include promising results from the clinical testing of recombinant MVA-producing antigens of highly pathogenic avian influenza virus H5N1 or Ebola virus. This review summarizes our current knowledge about MVA as a unique strain of vaccinia virus, and discusses the prospects of exploiting this virus as research tool in poxvirus biology or as safe viral vector vaccine to challenge existing and future bottlenecks in vaccinology.
Collapse
Affiliation(s)
- A Volz
- German Center for Infection Research (DZIF), Institute for Infectious Diseases and Zoonoses, LMU University of Munich, Munich, Germany
| | - G Sutter
- German Center for Infection Research (DZIF), Institute for Infectious Diseases and Zoonoses, LMU University of Munich, Munich, Germany.
| |
Collapse
|
33
|
Abstract
Antigenic drift of seasonal influenza viruses and the occasional introduction of influenza viruses of novel subtypes into the human population complicate the timely production of effective vaccines that antigenically match the virus strains that cause epidemic or pandemic outbreaks. The development of game-changing vaccines that induce broadly protective immunity against a wide variety of influenza viruses is an unmet need, in which recombinant viral vectors may provide. Use of viral vectors allows the delivery of any influenza virus antigen, or derivative thereof, to the immune system, resulting in the optimal induction of virus-specific B- and T-cell responses against this antigen of choice. This systematic review discusses results obtained with vectored influenza virus vaccines and advantages and disadvantages of the currently available viral vectors.
Collapse
Affiliation(s)
- Rory D de Vries
- a Department of Viroscience , Erasmus MC , Rotterdam , The Netherlands
| | | |
Collapse
|
34
|
Marr L, Lülf AT, Freudenstein A, Sutter G, Volz A. Myristoylation increases the CD8+T-cell response to a GFP prototype antigen delivered by modified vaccinia virus Ankara. J Gen Virol 2016; 97:934-940. [PMID: 26864442 DOI: 10.1099/jgv.0.000425] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Activation of CD8(+)T-cells is an essential part of immune responses elicited by recombinant modified vaccinia virus Ankara (MVA). Strategies to enhance T-cell responses to antigens may be particularly necessary for broadly protective immunization against influenza A virus infections or for candidate vaccines targeting chronic infections and cancer. Here, we tested recombinant MVAs that targeted a model antigen, GFP, to different localizations in infected cells. In vitro characterization demonstrated that GFP accumulated in the nucleus (MVA-nls-GFP), associated with cellular membranes (MVA-myr-GFP) or was equally distributed throughout the cell (MVA-GFP). On vaccination, we found significantly higher levels of GFP-specific CD8(+)T-cells in MVA-myr-GFP-vaccinated BALB/c mice than in those immunized with MVA-GFP or MVA-nls-GFP. Thus, myristoyl modification may be a useful strategy to enhance CD8(+)T-cell responses to MVA-delivered target antigens.
Collapse
Affiliation(s)
- Lisa Marr
- German Centre for Infection Research (DZIF), Institute for Infectious Diseases and Zoonoses, LMU University of Munich, Veterinaerstrasse 13, D-80539, Munich, Germany
| | - Anna-Theresa Lülf
- German Centre for Infection Research (DZIF), Institute for Infectious Diseases and Zoonoses, LMU University of Munich, Veterinaerstrasse 13, D-80539, Munich, Germany
| | - Astrid Freudenstein
- German Centre for Infection Research (DZIF), Institute for Infectious Diseases and Zoonoses, LMU University of Munich, Veterinaerstrasse 13, D-80539, Munich, Germany
| | - Gerd Sutter
- German Centre for Infection Research (DZIF), Institute for Infectious Diseases and Zoonoses, LMU University of Munich, Veterinaerstrasse 13, D-80539, Munich, Germany
| | - Asisa Volz
- German Centre for Infection Research (DZIF), Institute for Infectious Diseases and Zoonoses, LMU University of Munich, Veterinaerstrasse 13, D-80539, Munich, Germany
| |
Collapse
|
35
|
Wyatt LS, Earl PL, Moss B. Generation of Recombinant Vaccinia Viruses. CURRENT PROTOCOLS IN MICROBIOLOGY 2015; 39:14A.4.1-14A.4.18. [PMID: 26528782 PMCID: PMC5123791 DOI: 10.1002/9780471729259.mc14a04s39] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This unit describes how to infect cells with vaccinia virus and then transfect them with a plasmid-transfer vector or PCR fragment to generate a recombinant virus. Selection and screening methods used to isolate recombinant viruses and a method for the amplification of recombinant viruses are described. Finally, a method for live immunostaining that has been used primarily for detection of recombinant modified vaccinia virus Ankara (MVA) is presented.
Collapse
Affiliation(s)
- Linda S Wyatt
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Patricia L Earl
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Bernard Moss
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
36
|
Ramezanpour B, Pronker ES, Kreijtz JHCM, Osterhaus ADME, Claassen E. Market implementation of the MVA platform for pre-pandemic and pandemic influenza vaccines: A quantitative key opinion leader analysis. Vaccine 2015; 33:4349-58. [PMID: 26048779 PMCID: PMC4550479 DOI: 10.1016/j.vaccine.2015.04.086] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Revised: 04/14/2015] [Accepted: 04/21/2015] [Indexed: 11/25/2022]
Abstract
A quantitative method is presented to rank strengths, weaknesses, opportunities, and threats (SWOT) of modified vaccinia virus Ankara (MVA) as a platform for pre-pandemic and pandemic influenza vaccines. Analytic hierarchy process (AHP) was applied to achieve pairwise comparisons among SWOT factors in order to prioritize them. Key opinion leaders (KOLs) in the influenza vaccine field were interviewed to collect a unique dataset to evaluate the market potential of this platform. The purpose of this study, to evaluate commercial potential of the MVA platform for the development of novel generation pandemic influenza vaccines, is accomplished by using a SWOT and AHP combined analytic method. Application of the SWOT–AHP model indicates that its strengths are considered more important by KOLs than its weaknesses, opportunities, and threats. Particularly, the inherent immunogenicity capability of MVA without the requirement of an adjuvant is the most important factor to increase commercial attractiveness of this platform. Concerns regarding vector vaccines and anti-vector immunity are considered its most important weakness, which might lower public health value of this platform. Furthermore, evaluation of the results of this study emphasizes equally important role that threats and opportunities of this platform play. This study further highlights unmet needs in the influenza vaccine market, which could be addressed by the implementation of the MVA platform. Broad use of MVA in clinical trials shows great promise for this vector as vaccine platform for pre-pandemic and pandemic influenza and threats by other respiratory viruses. Moreover, from the results of the clinical trials seem that MVA is particularly attractive for development of vaccines against pathogens for which no, or only insufficiently effective vaccines, are available.
Collapse
Affiliation(s)
- Bahar Ramezanpour
- Erasmus Medical Centre Rotterdam, Viroscience Lab, (')s Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands; Vrije Universiteit Amsterdam, Athena Institute, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.
| | - Esther S Pronker
- Viroclinics Biosciences BV., Rotterdam Science Tower, Marconistraat 16, 3029 AK Rotterdam, The Netherlands.
| | - Joost H C M Kreijtz
- Erasmus Medical Centre Rotterdam, Viroscience Lab, (')s Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands.
| | - Albert D M E Osterhaus
- Erasmus Medical Centre Rotterdam, Viroscience Lab, (')s Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands; Artemis One Health Research Foundation, Androclus Building, Uithof Yalelaan 1, 3584 CL Utrecht, The Netherlands.
| | - E Claassen
- Erasmus Medical Centre Rotterdam, Viroscience Lab, (')s Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands; Vrije Universiteit Amsterdam, Athena Institute, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands; Artemis One Health Research Foundation, Androclus Building, Uithof Yalelaan 1, 3584 CL Utrecht, The Netherlands.
| |
Collapse
|
37
|
Altenburg AF, Rimmelzwaan GF, de Vries RD. Virus-specific T cells as correlate of (cross-)protective immunity against influenza. Vaccine 2015; 33:500-6. [DOI: 10.1016/j.vaccine.2014.11.054] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 10/30/2014] [Accepted: 11/28/2014] [Indexed: 12/12/2022]
|
38
|
Kreijtz JHCM, Wiersma LCM, De Gruyter HLM, Vogelzang-van Trierum SE, van Amerongen G, Stittelaar KJ, Fouchier RAM, Osterhaus ADME, Sutter G, Rimmelzwaan GF. A single immunization with modified vaccinia virus Ankara-based influenza virus H7 vaccine affords protection in the influenza A(H7N9) pneumonia ferret model. J Infect Dis 2014; 211:791-800. [PMID: 25246535 DOI: 10.1093/infdis/jiu528] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Since the first reports in early 2013, >440 human cases of infection with avian influenza A(H7N9) have been reported including 122 fatalities. After the isolation of the first A(H7N9) viruses, the nucleotide sequences became publically available. Based on the coding sequence of the influenza virus A/Shanghai/2/2013 hemagglutinin gene, a codon-optimized gene was synthesized and cloned into a recombinant modified vaccinia virus Ankara (MVA). This MVA-H7-Sh2 viral vector was used to immunize ferrets and proved to be immunogenic, even after a single immunization. Subsequently, ferrets were challenged with influenza virus A/Anhui/1/2013 via the intratracheal route. Unprotected animals that were mock vaccinated or received empty vector developed interstitial pneumonia characterized by a marked alveolitis, accompanied by loss of appetite, weight loss, and heavy breathing. In contrast, animals vaccinated with MVA-H7-Sh2 were protected from severe disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ron A M Fouchier
- Department of Viroscience, Erasmus Medical Center Viroclinics Biosciences, Rotterdam, the Netherlands Institute for Infectious Diseases and Zoonoses, LMU University of Munich German Center for Infection Research, Braunschweig, Germany
| | | | - Gerd Sutter
- Institute for Infectious Diseases and Zoonoses, LMU University of Munich German Center for Infection Research, Braunschweig, Germany
| | | |
Collapse
|
39
|
Modified vaccinia virus Ankara encoding influenza virus hemagglutinin induces heterosubtypic immunity in macaques. J Virol 2014; 88:13418-28. [PMID: 25210172 DOI: 10.1128/jvi.01219-14] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Current influenza virus vaccines primarily aim to induce neutralizing antibodies (NAbs). Modified vaccinia virus Ankara (MVA) is a safe and well-characterized vector for inducing both antibody and cellular immunity. We evaluated the immunogenicity and protective efficacy of MVA encoding influenza virus hemagglutinin (HA) and/or nucleoprotein (NP) in cynomolgus macaques. Animals were given 2 doses of MVA-based vaccines 4 weeks apart and were challenged with a 2009 pandemic H1N1 isolate (H1N1pdm) 8 weeks after the last vaccination. MVA-based vaccines encoding HA induced potent serum antibody responses against homologous H1 or H5 HAs but did not stimulate strong T cell responses prior to challenge. However, animals that received MVA encoding influenza virus HA and/or NP had high frequencies of virus-specific CD4(+) and CD8(+) T cell responses within the first 7 days of H1N1pdm infection, while animals vaccinated with MVA encoding irrelevant antigens did not. We detected little or no H1N1pdm replication in animals that received vaccines encoding H1 (homologous) HA, while a vaccine encoding NP from an H5N1 isolate afforded no protection. Surprisingly, H1N1pdm viral shedding was reduced in animals vaccinated with MVA encoding HA and NP from an H5N1 isolate. This reduced shedding was associated with cross-reactive antibodies capable of mediating antibody-dependent cellular cytotoxicity (ADCC) effector functions. Our results suggest that ADCC plays a role in cross-protective immunity against influenza. Vaccines optimized to stimulate cross-reactive antibodies with ADCC function may provide an important measure of protection against emerging influenza viruses when NAbs are ineffective. IMPORTANCE Current influenza vaccines are designed to elicit neutralizing antibodies (NAbs). Vaccine-induced NAbs typically are effective but highly specific for particular virus strains. Consequently, current vaccines are poorly suited for preventing the spread of newly emerging pandemic viruses. Therefore, we evaluated a vaccine strategy designed to induce both antibody and T cell responses, which may provide more broadly cross-protective immunity against influenza. Here, we show in a translational primate model that vaccination with a modified vaccinia virus Ankara encoding hemagglutinin from a heterosubtypic H5N1 virus was associated with reduced shedding of a pandemic H1N1 virus challenge, while vaccination with MVA encoding nucleoprotein, an internal viral protein, was not. Unexpectedly, this reduced shedding was associated with nonneutralizing antibodies that bound H1 hemagglutinin and activated natural killer cells. Therefore, antibody-dependent cellular cytotoxicity (ADCC) may play a role in cross-protective immunity to influenza virus. Vaccines that stimulate ADCC antibodies may enhance protection against pandemic influenza virus.
Collapse
|
40
|
van den Doel P, Volz A, Roose JM, Sewbalaksing VD, Pijlman GP, van Middelkoop I, Duiverman V, van de Wetering E, Sutter G, Osterhaus ADME, Martina BEE. Recombinant modified vaccinia virus Ankara expressing glycoprotein E2 of Chikungunya virus protects AG129 mice against lethal challenge. PLoS Negl Trop Dis 2014; 8:e3101. [PMID: 25188230 PMCID: PMC4154657 DOI: 10.1371/journal.pntd.0003101] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 07/07/2014] [Indexed: 01/04/2023] Open
Abstract
Chikungunya virus (CHIKV) infection is characterized by rash, acute high fever, chills, headache, nausea, photophobia, vomiting, and severe polyarthralgia. There is evidence that arthralgia can persist for years and result in long-term discomfort. Neurologic disease with fatal outcome has been documented, although at low incidences. The CHIKV RNA genome encodes five structural proteins (C, E1, E2, E3 and 6K). The E1 spike protein drives the fusion process within the cytoplasm, while the E2 protein is believed to interact with cellular receptors and therefore most probably constitutes the target of neutralizing antibodies. We have constructed recombinant Modified Vaccinia Ankara (MVA) expressing E3E2, 6KE1, or the entire CHIKV envelope polyprotein cassette E3E26KE1. MVA is an appropriate platform because of its demonstrated clinical safety and its suitability for expression of various heterologous proteins. After completing the immunization scheme, animals were challenged with CHIV-S27. Immunization of AG129 mice with MVAs expressing E2 or E3E26KE1 elicited neutralizing antibodies in all animals and provided 100% protection against lethal disease. In contrast, 75% of the animals immunized with 6KE1 were protected against lethal infection. In conclusion, MVA expressing the glycoprotein E2 of CHIKV represents as an immunogenic and effective candidate vaccine against CHIKV infections.
Collapse
Affiliation(s)
- Petra van den Doel
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Asisa Volz
- Institute for Infectious Diseases and Zoonoses, University of Munich LMU, Munich, Germany
| | - Jouke M. Roose
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Gorben P. Pijlman
- Laboratory of Virology, Wageningen University, Wageningen, The Netherlands
| | | | - Vincent Duiverman
- Erasmus Medical Center Laboratory Animal Science Center (EDC), Rotterdam, The Netherlands
| | - Eva van de Wetering
- Erasmus Medical Center Laboratory Animal Science Center (EDC), Rotterdam, The Netherlands
| | - Gerd Sutter
- Institute for Infectious Diseases and Zoonoses, University of Munich LMU, Munich, Germany
| | - Albert D. M. E. Osterhaus
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
- Artemis One Health, Utrecht, The Netherlands
| | - Byron E. E. Martina
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
- Artemis One Health, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
41
|
Virus-vectored influenza virus vaccines. Viruses 2014; 6:3055-79. [PMID: 25105278 PMCID: PMC4147686 DOI: 10.3390/v6083055] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 07/28/2014] [Accepted: 07/29/2014] [Indexed: 12/16/2022] Open
Abstract
Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines.
Collapse
|
42
|
Weger-Lucarelli J, Chu H, Aliota MT, Partidos CD, Osorio JE. A novel MVA vectored Chikungunya virus vaccine elicits protective immunity in mice. PLoS Negl Trop Dis 2014; 8:e2970. [PMID: 25058320 PMCID: PMC4109897 DOI: 10.1371/journal.pntd.0002970] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 05/13/2014] [Indexed: 12/20/2022] Open
Abstract
Background Chikungunya virus (CHIKV) is a re-emerging arbovirus associated with febrile illness often accompanied by rash and arthralgia that may persist for several years. Outbreaks are associated with high morbidity and create a public health challenge for countries affected. Recent outbreaks have occurred in both Europe and the Americas, suggesting CHIKV may continue to spread. Despite the sustained threat of the virus, there is no approved vaccine or antiviral therapy against CHIKV. Therefore, it is critical to develop a vaccine that is both well tolerated and highly protective. Methodology/Principal Findings In this study, we describe the construction and characterization of a modified Vaccinia virus Ankara (MVA) virus expressing CHIKV E3 and E2 proteins (MVA-CHIK) that protected several mouse models from challenge with CHIKV. In particular, BALB/c mice were completely protected against viremia upon challenge with CHIKV after two doses of MVA-CHIK. Additionally, A129 mice (deficient in IFNα/β) were protected from viremia, footpad swelling, and mortality. While high anti-virus antibodies were elicited, low or undetectable levels of neutralizing antibodies were produced in both mouse models. However, passive transfer of MVA-CHIK immune serum to naïve mice did not protect against mortality, suggesting that antibodies may not be the main effectors of protection afforded by MVA-CHIK. Furthermore, depletion of CD4+, but not CD8+ T-cells from vaccinated mice resulted in 100% mortality, implicating the indispensable role of CD4+ T-cells in the protection afforded by MVA-CHIK. Conclusions/Significance The results presented herein demonstrate the potential of MVA to effectively express CHIKV E3-E2 proteins and generate protective immune responses. Our findings challenge the assumption that only neutralizing antibodies are effective in providing protection against CHIKV, and provides a framework for the development of novel, more effective vaccine strategies to combat CHIKV. Chikungunya virus (CHIKV) has recently re-emerged from Africa to cause disease outbreaks in Asia, Europe, and more recently the Caribbean. The virus is transmitted by Aedes mosquitoes and causes a disease that is characterized by high fever and incapacitating joint pain that can cause great personal and economic loss. At present, no approved vaccine or antivirals are approved against CHIKV. In this study, we developed a novel CHIKV vaccine that is vectored by Modified Vaccinia virus Ankara (MVA), an attenuated vaccine vector which has been shown to be safe in humans and induce a strong immune response. The vaccine expresses the E3 and E2 proteins of CHIKV, the latter of which is thought to be the main mediator of protection. The vaccine was effective in two mouse models and protected against all markers of disease tested despite the absence of high levels of neutralizing antibodies, the gold standard of protection. Depletion of CD4+ T cells from vaccinated mice resulted in loss of protection, implicating these cells in the protection induced by the vaccine.
Collapse
Affiliation(s)
- James Weger-Lucarelli
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| | - Haiyan Chu
- Takeda, Inc., Madison, Wisconsin, United States of America
| | - Matthew T. Aliota
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | | | - Jorge E. Osorio
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
43
|
Altenburg AF, Kreijtz JHCM, de Vries RD, Song F, Fux R, Rimmelzwaan GF, Sutter G, Volz A. Modified vaccinia virus ankara (MVA) as production platform for vaccines against influenza and other viral respiratory diseases. Viruses 2014; 6:2735-61. [PMID: 25036462 PMCID: PMC4113791 DOI: 10.3390/v6072735] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 06/25/2014] [Accepted: 06/25/2014] [Indexed: 12/13/2022] Open
Abstract
Respiratory viruses infections caused by influenza viruses, human parainfluenza virus (hPIV), respiratory syncytial virus (RSV) and coronaviruses are an eminent threat for public health. Currently, there are no licensed vaccines available for hPIV, RSV and coronaviruses, and the available seasonal influenza vaccines have considerable limitations. With regard to pandemic preparedness, it is important that procedures are in place to respond rapidly and produce tailor made vaccines against these respiratory viruses on short notice. Moreover, especially for influenza there is great need for the development of a universal vaccine that induces broad protective immunity against influenza viruses of various subtypes. Modified Vaccinia Virus Ankara (MVA) is a replication-deficient viral vector that holds great promise as a vaccine platform. MVA can encode one or more foreign antigens and thus functions as a multivalent vaccine. The vector can be used at biosafety level 1, has intrinsic adjuvant capacities and induces humoral and cellular immune responses. However, there are some practical and regulatory issues that need to be addressed in order to develop MVA-based vaccines on short notice at the verge of a pandemic. In this review, we discuss promising novel influenza virus vaccine targets and the use of MVA for vaccine development against various respiratory viruses.
Collapse
Affiliation(s)
- Arwen F Altenburg
- Department of Viroscience, Erasmus Medical Center (EMC), P.O. Box 2040, 3000 CA Rotterdam, The Netherlands.
| | - Joost H C M Kreijtz
- Department of Viroscience, Erasmus Medical Center (EMC), P.O. Box 2040, 3000 CA Rotterdam, The Netherlands.
| | - Rory D de Vries
- Department of Viroscience, Erasmus Medical Center (EMC), P.O. Box 2040, 3000 CA Rotterdam, The Netherlands.
| | - Fei Song
- Institute for Infectious Diseases and Zoonoses, LMU, University of Munich, 80539, Munich, Germany.
| | - Robert Fux
- Institute for Infectious Diseases and Zoonoses, LMU, University of Munich, 80539, Munich, Germany.
| | - Guus F Rimmelzwaan
- Department of Viroscience, Erasmus Medical Center (EMC), P.O. Box 2040, 3000 CA Rotterdam, The Netherlands.
| | - Gerd Sutter
- Institute for Infectious Diseases and Zoonoses, LMU, University of Munich, 80539, Munich, Germany.
| | - Asisa Volz
- Institute for Infectious Diseases and Zoonoses, LMU, University of Munich, 80539, Munich, Germany.
| |
Collapse
|
44
|
Rapid expansion of CD8+ T cells in wild-type and type I interferon receptor-deficient mice correlates with protection after low-dose emergency immunization with modified vaccinia virus Ankara. J Virol 2014; 88:10946-57. [PMID: 25008931 DOI: 10.1128/jvi.00945-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
UNLABELLED Immunization with modified vaccinia virus Ankara (MVA) can rapidly protect mice against lethal ectromelia virus (ECTV) infection, serving as an experimental model for severe systemic infections. Importantly, this early protective capacity of MVA vaccination completely depends on virus-specific cytotoxic CD8(+) T cell responses. We used MVA vaccination in the mousepox challenge model using ECTV infection to investigate the previously unknown factors required to elicit rapid protective T cell immunity in normal C57BL/6 mice and in mice lacking the interferon alpha/beta receptor (IFNAR(-/-)). We found a minimal dose of 10(5) PFU of MVA vaccine fully sufficient to allow robust protection against lethal mousepox, as assessed by the absence of disease symptoms and failure to detect ECTV in organs from vaccinated animals. Moreover, MVA immunization at low dosage also protected IFNAR(-/-) mice, indicating efficient activation of cellular immunity even in the absence of type I interferon signaling. When monitoring for virus-specific CD8(+) T cell responses in mice vaccinated with the minimal protective dose of MVA, we found significantly enhanced levels of antigen-specific T cells in animals that were MVA vaccinated and ECTV challenged compared to mice that were only vaccinated. The initial priming of naive CD8(+) T cells by MVA immunization appears to be highly efficient and, even at low doses, mediates a rapid in vivo burst of pathogen-specific T cells upon challenge. Our findings define striking requirements for protective emergency immunization against severe systemic infections with orthopoxviruses. IMPORTANCE We demonstrate that single-shot low-dose immunizations with vaccinia virus MVA can rapidly induce T cell-mediated protective immunity against lethal orthopoxvirus infections. Our data provide new evidence for an efficient protective capacity of vaccination with replication-deficient MVA. These data are of important practical relevance for public health, as the effectiveness of a safety-tested, next-generation smallpox vaccine based on MVA is still debated. Furthermore, producing sufficient amounts of vaccine is expected to be a major challenge should an outbreak occur. Moreover, prevention of other infections may require rapidly protective immunization; hence, MVA could be an extremely useful vaccine for delivering heterologous T cell antigens, particularly for infectious diseases that fit a scenario of emergency vaccination.
Collapse
|
45
|
Matrix and backstage: cellular substrates for viral vaccines. Viruses 2014; 6:1672-700. [PMID: 24732259 PMCID: PMC4014716 DOI: 10.3390/v6041672] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 03/28/2014] [Accepted: 04/02/2014] [Indexed: 01/04/2023] Open
Abstract
Vaccines are complex products that are manufactured in highly dynamic processes. Cellular substrates are one critical component that can have an enormous impact on reactogenicity of the final preparation, level of attenuation of a live virus, yield of infectious units or antigens, and cost per vaccine dose. Such parameters contribute to feasibility and affordability of vaccine programs both in industrialized countries and developing regions. This review summarizes the diversity of cellular substrates for propagation of viral vaccines from primary tissue explants and embryonated chicken eggs to designed continuous cell lines of human and avian origin.
Collapse
|
46
|
MVA vectors expressing conserved influenza proteins protect mice against lethal challenge with H5N1, H9N2 and H7N1 viruses. PLoS One 2014; 9:e88340. [PMID: 24523886 PMCID: PMC3921149 DOI: 10.1371/journal.pone.0088340] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 01/12/2014] [Indexed: 01/15/2023] Open
Abstract
Background The availability of a universal influenza vaccine able to induce broad cross-reactive immune responses against diverse influenza viruses would provide an alternative to currently available strain-specific vaccines. We evaluated the ability of vectors based on modified vaccinia virus Ankara (MVA) expressing conserved influenza proteins to protect mice against lethal challenge with multiple influenza subtypes. Methods Mice were immunized with MVA vectors expressing H5N1-derived nucleoprotein (NP), the stem region of hemagglutinin (HA), matrix proteins 1 and 2 (M1 and M2), the viral polymerase basic protein 1 (PB1), or the HA stem fused to a quadrivalent matrix protein 2 extracellular domain (M2e). Immunized mice were challenged with lethal doses of H5N1, H7N1 or H9N2 virus and monitored for disease symptoms and weight loss. To investigate the influence of previous exposure to influenza virus on protective immune responses induced by conserved influenza proteins, mice were infected with pandemic H1N1 virus (H1N1pdm09) prior to immunization and subsequently challenged with H5N1 virus. Antibody and T cell responses were assessed by ELISA and flow cytometry, respectively. Results MVA vectors expressing NP alone, or co-expressed with other conserved influenza proteins, protected mice against lethal challenge with H5N1, H7N1 or H9N2 virus. Pre-exposure to H1N1pdm09 increased protective efficacy against lethal H5N1 challenge. None of the other conserved influenza proteins provided significant levels of protection against lethal challenge. NP-expressing vectors induced high numbers of influenza-specific CD4+ and CD8+ T cells and high titer influenza-specific antibody responses. Higher influenza-specific CD4+ T cell responses and NP-specific CD8+ T cell responses were associated with increased protective efficacy. Conclusions MVA vectors expressing influenza NP protect mice against lethal challenge with H5N1, H7N1 and H9N2 viruses by a mechanism involving influenza-specific CD4+ and CD8+ T cell responses.
Collapse
|
47
|
de Cassan SC, Draper SJ. Recent advances in antibody-inducing poxviral and adenoviral vectored vaccine delivery platforms for difficult disease targets. Expert Rev Vaccines 2014; 12:365-78. [DOI: 10.1586/erv.13.11] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
48
|
Xiao H, Liu L, Zhu Q, Tan Z, Yu W, Tang X, Zhan D, Du Y, Wang H, Liu D, Li Z, Yuen KY, Ho DD, Gao GF, Chen Z. A replicating modified vaccinia tiantan strain expressing an avian-derived influenza H5N1 hemagglutinin induce broadly neutralizing antibodies and cross-clade protective immunity in mice. PLoS One 2013; 8:e83274. [PMID: 24358269 PMCID: PMC3866202 DOI: 10.1371/journal.pone.0083274] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 11/11/2013] [Indexed: 11/25/2022] Open
Abstract
To combat the possibility of a zoonotic H5N1 pandemic in a timely fashion, it is necessary to develop a vaccine that would confer protection against homologous and heterologous human H5N1 influenza viruses. Using a replicating modified vaccinia virus Tian Tan strain (MVTT) as a vaccine vector, we constructed MVTTHA-QH and MVTTHA-AH, which expresses the H5 gene of a goose-derived Qinghai strain A/Bar-headed Goose/Qinghai/1/2005 or human-derived Anhui Strain A/Anhui/1/2005. The immunogenicity profiles of both vaccine candidates were evaluated. Vaccination with MVTTHA-QH induced a significant level of neutralizing antibodies (Nabs) against a homologous strain and a wide range of H5N1 pseudoviruses (clades 1, 2.1, 2.2, 2.3.2, and 2.3.4). Neutralization tests (NT) and Haemagglutination inhibition (HI) antibodies inhibit the live autologous virus as well as a homologous A/Xingjiang/1/2006 and a heterologous A/Vietnam/1194/2004, representing two human isolates from clade 2.2 and clade 1, respectively. Importantly, mice vaccinated with intranasal MVTTHA-QH were completely protected from challenge with lethal dosages of A/Bar-headed Goose/Qinghai/1/2005 and the A/Viet Nam/1194/2004, respectively, but not control mice that received a mock MVTTS vaccine. However, MVTTHA-AH induced much lower levels of NT against its autologous strain. Our results suggest that it is feasible to use the H5 gene from A/Bar-headed Goose/Qinghai/1/2005 to construct an effective vaccine, when using MVTT as a vector, to prevent infections against homologous and genetically divergent human H5N1 influenza viruses.
Collapse
Affiliation(s)
- Haixia Xiao
- Laboratory of Protein Engineering and Vaccines, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Li Liu
- AIDS Institute, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Department of Microbiology and Research Center of Infection and Immunology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Qingyu Zhu
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Zhiwu Tan
- AIDS Institute, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Wenbo Yu
- AIDS Institute, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Xian Tang
- AIDS Institute, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Dawei Zhan
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Yanhua Du
- AIDS Institute, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Haibo Wang
- AIDS Institute, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Di Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zhixin Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Kwok-Yung Yuen
- Department of Microbiology and Research Center of Infection and Immunology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - David D. Ho
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- The Aaron Diamond AIDS Research Center, The Rockefeller University, New York, New York, United States of America, and the The University of Hong Kong, Hong Kong SAR, China
| | - George F. Gao
- Laboratory of Protein Engineering and Vaccines, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- * E-mail: (GFG); (ZC)
| | - Zhiwei Chen
- AIDS Institute, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Department of Microbiology and Research Center of Infection and Immunology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- * E-mail: (GFG); (ZC)
| |
Collapse
|
49
|
Jordan I, Lohr V, Genzel Y, Reichl U, Sandig V. Elements in the Development of a Production Process for Modified Vaccinia Virus Ankara. Microorganisms 2013; 1:100-121. [PMID: 27694766 PMCID: PMC5029493 DOI: 10.3390/microorganisms1010100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 10/18/2013] [Accepted: 10/24/2013] [Indexed: 11/16/2022] Open
Abstract
The production of several viral vaccines depends on chicken embryo fibroblasts or embryonated chicken eggs. To replace this logistically demanding substrate, we created continuous anatine suspension cell lines (CR and CR.pIX), developed chemically-defined media, and established production processes for different vaccine viruses. One of the processes investigated in greater detail was developed for modified vaccinia virus Ankara (MVA). MVA is highly attenuated for human recipients and an efficient vector for reactogenic expression of foreign genes. Because direct cell-to-cell spread is one important mechanism for vaccinia virus replication, cultivation of MVA in bioreactors is facilitated if cell aggregates are induced after infection. This dependency may be the mechanism behind our observation that a novel viral genotype (MVA-CR) accumulates with serial passage in suspension cultures. Sequencing of a major part of the genomic DNA of the new strain revealed point mutations in three genes. We hypothesize that these changes confer an advantage because they may allow a greater fraction of MVA-CR viruses to escape the host cells for infection of distant targets. Production and purification of MVA-based vaccines may be simplified by this combination of designed avian cell line, chemically defined media and the novel virus strain.
Collapse
Affiliation(s)
- Ingo Jordan
- ProBioGen AG, Goethestr. 54, 13086 Berlin, Germany.
| | - Verena Lohr
- ProBioGen AG, Goethestr. 54, 13086 Berlin, Germany.
| | - Yvonne Genzel
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106 Magdeburg, Germany.
| | - Udo Reichl
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106 Magdeburg, Germany.
| | | |
Collapse
|
50
|
Melamed S, Wyatt LS, Kastenmayer RJ, Moss B. Attenuation and immunogenicity of host-range extended modified vaccinia virus Ankara recombinants. Vaccine 2013; 31:4569-77. [PMID: 23928462 DOI: 10.1016/j.vaccine.2013.07.057] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 06/17/2013] [Accepted: 07/25/2013] [Indexed: 10/26/2022]
Abstract
Modified vaccinia virus Ankara (MVA) is being widely investigated as a safe smallpox vaccine and as an expression vector to produce vaccines against other infectious diseases and cancer. MVA was isolated following more than 500 passages in chick embryo fibroblasts and suffered several major deletions and numerous small mutations resulting in replication defects in human and most other mammalian cells as well as severe attenuation of pathogenicity. Due to the host range restriction, primary chick embryo fibroblasts are routinely used for production of MVA-based vaccines. While a replication defect undoubtedly contributes to safety of MVA, it is worth considering whether host range and attenuation are partially separable properties. Marker rescue transfection experiments resulted in the creation of recombinant MVAs with extended mammalian cell host range. Here, we characterize two host-range extended rMVAs and show that they (i) have acquired the ability to stably replicate in Vero cells, which are frequently used as a cell substrate for vaccine manufacture, (ii) are severely attenuated in immunocompetent and immunodeficient mouse strains following intranasal infection, (iii) are more pathogenic than MVA but less pathogenic than the ACAM2000 vaccine strain at high intracranial doses, (iv) do not form lesions upon tail scratch in mice in contrast to ACAM2000 and (v) induce protective humoral and cell-mediated immune responses similar to MVA. The extended host range of rMVAs may be useful for vaccine production.
Collapse
Affiliation(s)
- Sharon Melamed
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | | | | | | |
Collapse
|