1
|
Slepenkin A, Pal S, Rasley A, Coleman MA, de la Maza LM. Safety and efficacy of C. muridarum vaccines adjuvanted with CpG-1826 and four concentrations of Montanide-ISA-720-VG. NPJ Vaccines 2024; 9:104. [PMID: 38858418 PMCID: PMC11164897 DOI: 10.1038/s41541-024-00880-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/19/2024] [Indexed: 06/12/2024] Open
Abstract
It is recommended that the adjuvant Montanide ISA 720 VG be used at a concentration of 70% v/v. At this concentration, Montanide causes at the site of immunization a local granuloma that can last for several weeks. To determine the safety and protective efficacy of a Chlamydia muridarum MOMP vaccine, formulated with CpG-1826 and four different concentrations of Montanide (70%, 50%, 30% and 10%), BALB/c (H-2d) female mice were immunized twice intramuscularly. Local reactogenicity was significant for vaccines formulated with 70% or 50% Montanide but not for those inoculated with 30% or 10% Montanide. Robust humoral and cell mediated memory immune responses were elicited by the 70%, 50% and 30% Montanide formulations. Mice were challenged intranasally with 104 C. muridarum inclusion forming units (IFU). Based on changes in body weight, lungs's weight and number of IFU recovered, mice vaccinated with the 70%, 50% and 30% Montanide formulations were significantly protected, but not mice receiving 10% Montanide. To conclude, we recommend the 30% Montanide concentration to be tested in humans and animal models to determine its safety and efficacy, in comparison to the 70% Montanide concentration currently used. The 30% Montanide formulation could significantly facilitate licensing of this adjuvant for human use.
Collapse
Affiliation(s)
- Anatoli Slepenkin
- Department of Pathology and Laboratory Medicine, Medical Sciences I, Room D440, University of California, Irvine, Irvine, CA, 92697-4800, USA
| | - Sukumar Pal
- Department of Pathology and Laboratory Medicine, Medical Sciences I, Room D440, University of California, Irvine, Irvine, CA, 92697-4800, USA
| | - Amy Rasley
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550-9234, USA
| | - Matthew A Coleman
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550-9234, USA
- University of California Davis, School of Medicine, Department of Radiation Oncology, Sacramento, CA, 95616, USA
| | - Luis M de la Maza
- Department of Pathology and Laboratory Medicine, Medical Sciences I, Room D440, University of California, Irvine, Irvine, CA, 92697-4800, USA.
| |
Collapse
|
2
|
Poston TB. Advances in vaccine development for Chlamydia trachomatis. Pathog Dis 2024; 82:ftae017. [PMID: 39043447 PMCID: PMC11338180 DOI: 10.1093/femspd/ftae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/18/2024] [Accepted: 07/25/2024] [Indexed: 07/25/2024] Open
Abstract
Chlamydia trachomatis is the most prevalent bacterial sexually transmitted infection globally. Antibiotic treatment is highly effective, but infection is often asymptomatic resulting in most individuals going undetected and untreated. This untreated infection can ascend to the upper female genital tract to cause pelvic inflammatory disease, tubal factor infertility, and ectopic pregnancy. Chlamydia screening and treatment programs have failed to control this epidemic and demonstrate the need for an efficacious vaccine to prevent transmission and disease. Animal models and human epidemiological data reveal that natural immunity can provide partial or short-lived sterilizing immunity. These data further demonstrate the importance of eliciting interferon gamma (IFNγ)-producing cluster of differentiation 4 (CD4) T cells (Th1 and Th1/17 cells) that can likely synergize with antibody-mediated opsonophagocytosis to provide optimal protection. These studies have guided preclinical rational vaccine design for decades and the first Phase 1 clinical trials have recently been completed. Recent advances have led to improvements in vaccine platforms and clinically safe adjuvants that help provide a path forward. This review describes vaccine models, correlates of immunity, antigen and adjuvant selection, and future clinical testing for Chlamydia vaccine development.
Collapse
Affiliation(s)
- Taylor B Poston
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| |
Collapse
|
3
|
de la Maza L, Slepenkin A, Pal S, Rasley A, Coleman M. Determination of the safety and efficacy of recombinant Chlamydia muridarum MOMP vaccines, formulated with CpG-1826 and 70%, 50%, 30% or 10% concentrations of Montanide ISA-720 VG, to elicit protective immune responses against a C. muridarum respiratory challenge. RESEARCH SQUARE 2023:rs.3.rs-3688658. [PMID: 38168233 PMCID: PMC10760204 DOI: 10.21203/rs.3.rs-3688658/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
To determine the safety and protective efficacy of a C. muridarum MOMP vaccine, formulated with CpG-1826 and four different concentrations of Montanide ISA 720 VG (70%, 50%, 30% and 10%), BALB/c mice were immunized twice intramuscularly. Local reactogenicity was significant for vaccines formulated with 70% and 50% Montanide but not in mice receiving 30% and 10% Montanide. Robust humoral and cell mediated memory immune responses were elicited by the 70%, 50% and 30% Montanide formulations. Mice were challenged intranasally with C. muridarum and, at day 10 post-challenge, mice were euthanized. Based on changes in body weight, lung's weight and number of IFU recovered, mice vaccinated with the 70%, 50% and 30% Montanide formulations were significantly protected, but not mice receiving 10% Montanide. To conclude, we recommend the 30% Montanide concentration to be tested in humans and animal models to determine its safety and efficacy, in comparison to the 70% Montanide concentration currently used. The 30% Montanide formulation will significantly facilitate licensing for human use.
Collapse
|
4
|
Tifrea DF, He W, Pal S, Evans AC, Gilmore SF, Fischer NO, Rasley A, Coleman MA, de la Maza LM. Induction of Protection in Mice against a Chlamydia muridarum Respiratory Challenge by a Vaccine Formulated with the Major Outer Membrane Protein in Nanolipoprotein Particles. Vaccines (Basel) 2021; 9:755. [PMID: 34358171 PMCID: PMC8310061 DOI: 10.3390/vaccines9070755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 12/27/2022] Open
Abstract
Chlamydia trachomatis is a sexually transmitted bacterium that infects over 130 million individuals worldwide annually. To implement a vaccine, we developed a cell-free co-translational system to express the Chlamydia muridarum major outer membrane protein (MOMP). This approach uses a nanolipoprotein particles (tNLP) made from ApoA1 protein, amphiphilic telodendrimer and lipids that self-assemble to form 10-25 nm discs. These tNLP provide a protein-encapsulated lipid support to solubilize and fold membrane proteins. The cell-free system co-translated MOMP and ApoA1 in the presence of telodendrimer mixed with lipids. The MOMP-tNLP complex was amenable to CpG and FSL-1 adjuvant addition. To investigate the ability of MOMP-tNLP+CpG+FSL-1 to induce protection against an intranasal (i.n.) C. muridarum challenge, female mice were vaccinated intramuscularly (i.m.) or i.n. and i.m. simultaneously 4 weeks apart. Following vaccination with MOMP-tNLP+CpG+FSL-1, mice mounted significant humoral and cell-mediated immune responses. Following the i.n. challenge, mice vaccinated with MOMP-tNLP+CpG+FSL-1 i.n. + i.m. group were protected as determined by the percentage change in body weight and by the number of C. muridarum inclusion forming units (IFU) recovered from the lungs. To our knowledge, this is the first time a MOMP-based vaccine formulated in tNLP has been shown to protect against C. muridarum.
Collapse
Affiliation(s)
- Delia F. Tifrea
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92697, USA; (D.F.T.); (S.P.)
| | - Wei He
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA; (W.H.); (A.C.E.); (S.F.G.); (N.O.F.); (A.R.); (M.A.C.)
| | - Sukumar Pal
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92697, USA; (D.F.T.); (S.P.)
| | - Angela C. Evans
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA; (W.H.); (A.C.E.); (S.F.G.); (N.O.F.); (A.R.); (M.A.C.)
| | - Sean F. Gilmore
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA; (W.H.); (A.C.E.); (S.F.G.); (N.O.F.); (A.R.); (M.A.C.)
| | - Nicholas O. Fischer
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA; (W.H.); (A.C.E.); (S.F.G.); (N.O.F.); (A.R.); (M.A.C.)
| | - Amy Rasley
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA; (W.H.); (A.C.E.); (S.F.G.); (N.O.F.); (A.R.); (M.A.C.)
| | - Matthew A. Coleman
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA; (W.H.); (A.C.E.); (S.F.G.); (N.O.F.); (A.R.); (M.A.C.)
- School of Medicine, Radiation Oncology, University of California Davis, Sacramento, CA 95616, USA
| | - Luis M. de la Maza
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92697, USA; (D.F.T.); (S.P.)
| |
Collapse
|
5
|
de la Maza LM, Darville TL, Pal S. Chlamydia trachomatis vaccines for genital infections: where are we and how far is there to go? Expert Rev Vaccines 2021; 20:421-435. [PMID: 33682583 DOI: 10.1080/14760584.2021.1899817] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Chlamydia trachomatis is the most common sexually transmitted bacterial pathogen in the world. Antibiotic treatment does not prevent against reinfection and a vaccine is not yet available. AREAS COVERED We focus the review on the progress made of our understanding of the immunological responses required for a vaccine to elicit protection, and on the antigens, adjuvants, routes of immunization and delivery systems that have been tested in animal models. PubMed and Google Scholar were used to search publication on these topics for the last 5 years and recent Reviews were examined. EXPERT OPINION The first Phase 1 clinical trial of a C. trachomatis vaccine to protect against genital infections was successfully completed. We expect that, in the next five years, additional vaccine clinical trials will be implemented.
Collapse
Affiliation(s)
- Luis M de la Maza
- Department of Pathology and Laboratory Medicine Medical Sciences, I, Room D440 University of California, Irvine, California, USA
| | - Toni L Darville
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sukumar Pal
- Department of Pathology and Laboratory Medicine Medical Sciences, I, Room D440 University of California, Irvine, California, USA
| |
Collapse
|
6
|
A primary Chlamydia trachomatis genital infection of rhesus macaques identifies new immunodominant B-cell antigens. PLoS One 2021; 16:e0250317. [PMID: 33886668 PMCID: PMC8061917 DOI: 10.1371/journal.pone.0250317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/05/2021] [Indexed: 01/09/2023] Open
Abstract
To identify immunodominant antigens that elicit a humoral immune response following a primary and a secondary genital infection, rhesus monkeys were inoculated cervically with Chlamydia trachomatis serovar D. Serum samples were collected and probed with a protein microarray expressing 864/894 (96.4%) of the open reading frames of the C. trachomatis serovar D genome. The antibody response to the primary infection was analyzed in 72 serum samples from 12 inoculated monkeys. The following criteria were utilized to identify immunodominant antigens: proteins found to be recognized by at least 75% (9/12) of the infected monkeys with at least 15% elevations in signal intensity from week 0 to week 8 post infection. All infected monkeys developed Chlamydia specific serum antibodies. Eight proteins satisfied the selection criteria for immunodominant antigens: CT242 (OmpH-like protein), CT541 (mip), CT681 (ompA), CT381 (artJ), CT443 (omcB), CT119 (incA), CT486 (fliY), and CT110 (groEL). Of these, three antigens, CT119, CT486 and CT381, were not previously identified as immunodominant antigens using non-human primate sera. Following the secondary infection, the antibody responses to the eight immunodominant antigens were analyzed and found to be quite different in intensity and duration to the primary infection. In conclusion, these eight immunodominant antigens can now be tested for their ability to identify individuals with a primary C. trachomatis genital infection and to design vaccine strategies to protect against a primary infection with this pathogen.
Collapse
|
7
|
Pal S, Cruz-Fisher MI, Cheng C, Carmichael JR, Tifrea DF, Tatarenkova O, de la Maza LM. Vaccination with the recombinant major outer membrane protein elicits long-term protection in mice against vaginal shedding and infertility following a Chlamydia muridarum genital challenge. NPJ Vaccines 2020; 5:90. [PMID: 33083025 PMCID: PMC7530680 DOI: 10.1038/s41541-020-00239-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/20/2020] [Indexed: 02/08/2023] Open
Abstract
Implementation of a vaccine is likely the best approach to curtail Chlamydia trachomatis infections. The aim of this study was to determine the ability of a vaccine formulated with the recombinant major outer membrane protein (MOMP) and Th1 and Th2 adjuvants, delivered by combinations of systemic and mucosal routes, to elicit long-term protection in mice against a genital challenge with Chlamydia muridarum. As a negative control, mice were vaccinated with the recombinant Neisseria gonorrhoeae porinB, and the positive control group was immunized with C. muridarum live elementary bodies (EB). The four vaccines formulated with MOMP, as determined by the titers of IgG and neutralizing antibodies in serum, proliferative responses of T-cells stimulated with EB and levels of IFN-γ in the supernatants, elicited robust humoral and cellular immune responses over a 6-month period. Groups of mice were challenged genitally at 60, 120, or 180 days postimmunization. Based on the number of mice with positive vaginal cultures, number of positive cultures, length of time of shedding, and number of inclusion forming units recovered, MOMP vaccinated groups were significantly protected. To assess fertility, when the vaginal cultures became negative, female mice were caged with male mice and the outcome of the pregnancy evaluated. As determined by the number of pregnant mice and the number of embryos, two of the vaccine formulations protected mice up to 180 days postimmunization. To our knowledge this is the first subunit of Chlamydia vaccine that has elicited in mice significant long-term protection against a genital challenge.
Collapse
Affiliation(s)
- Sukumar Pal
- Department of Pathology and Laboratory Medicine, Medical Sciences I, Room D440, University of California, Irvine, Irvine, CA 92697-4800 USA
| | - Maria I. Cruz-Fisher
- Department of Pathology and Laboratory Medicine, Medical Sciences I, Room D440, University of California, Irvine, Irvine, CA 92697-4800 USA
| | - Chunmei Cheng
- Department of Pathology and Laboratory Medicine, Medical Sciences I, Room D440, University of California, Irvine, Irvine, CA 92697-4800 USA
| | - Jennifer R. Carmichael
- Department of Pathology and Laboratory Medicine, Medical Sciences I, Room D440, University of California, Irvine, Irvine, CA 92697-4800 USA
| | - Delia F. Tifrea
- Department of Pathology and Laboratory Medicine, Medical Sciences I, Room D440, University of California, Irvine, Irvine, CA 92697-4800 USA
| | - Olga Tatarenkova
- Department of Pathology and Laboratory Medicine, Medical Sciences I, Room D440, University of California, Irvine, Irvine, CA 92697-4800 USA
| | - Luis M. de la Maza
- Department of Pathology and Laboratory Medicine, Medical Sciences I, Room D440, University of California, Irvine, Irvine, CA 92697-4800 USA
| |
Collapse
|
8
|
Pal S, Mirzakhanyan Y, Gershon P, Tifrea DF, de la Maza LM. Induction of protection in mice against a respiratory challenge by a vaccine formulated with exosomes isolated from Chlamydia muridarum infected cells. NPJ Vaccines 2020; 5:87. [PMID: 33014435 PMCID: PMC7501220 DOI: 10.1038/s41541-020-00235-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 08/14/2020] [Indexed: 12/21/2022] Open
Abstract
The goal of this study was to determine if exosomes, isolated from Chlamydia muridarum infected HeLa cells (C. muridarum-exosomes), induce protective immune responses in mice following vaccination using CpG plus Montanide as adjuvants. Exosomes, collected from uninfected HeLa cells and PBS, formulated with the same adjuvants, were used as negative controls. Mass spectrometry analyses identified 113 C. muridarum proteins in the C. muridarum-exosome preparation including the major outer membrane protein and the polymorphic membrane proteins. Vaccination with C. muridarum-exosomes elicited robust humoral and cell-mediated immune responses to C. muridarum elementary bodies. Following vaccination, mice were challenged intranasally with C. muridarum. Compared to the negative controls, mice immunized with C. muridarum-exosomes were significantly protected as measured by changes in body weight, lungs' weight, and number of inclusion forming units recovered from lungs. This is the first report, of a vaccine formulated with Chlamydia exosomes, shown to elicit protection against a challenge.
Collapse
Affiliation(s)
- Sukumar Pal
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA USA
| | - Yeva Mirzakhanyan
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA USA
| | - Paul Gershon
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA USA
| | - Delia F. Tifrea
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA USA
| | - Luis M. de la Maza
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA USA
| |
Collapse
|
9
|
Tifrea DF, Pal S, Fairman J, Massari P, de la Maza LM. Protection against a chlamydial respiratory challenge by a chimeric vaccine formulated with the Chlamydia muridarum major outer membrane protein variable domains using the Neisseria lactamica porin B as a scaffold. NPJ Vaccines 2020; 5:37. [PMID: 32411400 PMCID: PMC7210953 DOI: 10.1038/s41541-020-0182-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/27/2020] [Indexed: 11/26/2022] Open
Abstract
Chlamydia trachomatis is the most frequently detected sexually transmitted bacterial pathogen in the world. Attempts to control these infections with screening programs and antibiotics have failed and, therefore, a vaccine is the best approach to control this epidemic. The Chlamydia major outer membrane protein (MOMP) is the most protective subunit vaccine so far tested. Protection induced by MOMP is, in part, dependent on its tertiary structure. We have previously described new recombinant antigens composed of the Neisseria lactamica PorB engineered to express the variable domains (VD) from Chlamydia muridarum MOMP. Here we tested antigens containing each individual MOMP VD and different VD combinations. Following immunization, mice were challenged intranasally with C. muridarum. Our results show that three constructs, PorB/VD1-3, PorB/VD1-4, and PorB/VD1-2-4, elicited high serum IgG titers in vivo, significant IFN-γ levels upon T cells re-stimulation in vitro, and evidence of protective immunity in vivo. PorB/VD1-3, PorB/VD1-4, and PorB/VD1-2-4 immunized mice lost less body weight, had lighter lungs, and decreased numbers of inclusion forming units (IFUs) in lungs than other PorB/VD construct tested and mock PBS-immunized mice. These results suggest that this approach may be a promising alternative to the use of MOMP in a Chlamydia vaccine.
Collapse
Affiliation(s)
- Delia F. Tifrea
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Medical Sciences I, Room D440, Irvine, California 92697-4800 USA
| | - Sukumar Pal
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Medical Sciences I, Room D440, Irvine, California 92697-4800 USA
| | - Jeff Fairman
- Sutrovax, Inc., 400 E Jamie Court, Suite 205, South San Francisco, California 94080 USA
| | - Paola Massari
- Department of Immunology, Tufts University School of Medicine, Jaharis, 512C 150 Harrison Avenue, Boston, Massachusetts 02111 USA
| | - Luis M. de la Maza
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Medical Sciences I, Room D440, Irvine, California 92697-4800 USA
| |
Collapse
|
10
|
Mathematical modelling of the role of mucosal vaccine on the within-host dynamics of Chlamydia trachomatis. J Theor Biol 2020; 497:110291. [PMID: 32315672 DOI: 10.1016/j.jtbi.2020.110291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 11/23/2022]
Abstract
A mathematical model of the within-host replicative dynamics of C. trachomatis infection and its interactions with the immune system, in the presence of a mucosal vaccine, is presented. Our aim is to estimate the requisite efficacy of an efficacious mucosal vaccine that could promote a stable disease-free state in vivo. Sensitivity analysis was used to quantify how variability in the model parameters influence the value of the disease threshold R0. This shows that the two most important factors to be considered for achieving a disease-free state state in vivo, based on their influence on R0, are the efficacy of the Chlamydia vaccine, and the rate at which the humoral immune response protects healthy epithelial cells from infection. Numerical simulations of the model show that a vaccine with a minimum efficacy of 86% may be required for the in vivo control of Chlamydia burden. Such effective but imperfect Chlamydia vaccine could confer long-term protective immunity to genital Chlamydia infections. Conditions under which lower vaccine efficacies may suffice are also explored.
Collapse
|
11
|
Pal S, Ausar SF, Tifrea DF, Cheng C, Gallichan S, Sanchez V, de la Maza LM, Visan L. Protection of outbred mice against a vaginal challenge by a Chlamydia trachomatis serovar E recombinant major outer membrane protein vaccine is dependent on phosphate substitution in the adjuvant. Hum Vaccin Immunother 2020; 16:2537-2547. [PMID: 32118511 PMCID: PMC7644203 DOI: 10.1080/21645515.2020.1717183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2022] Open
Abstract
Chlamydia trachomatis is the most common bacterial sexually-transmitted pathogen for which there is no vaccine. We previously demonstrated that the degree of phosphate substitution in an aluminum hydroxide adjuvant in a TLR-4-based C. trachomatis serovar E (Ser E) recombinant major outer membrane protein (rMOMP) formulation had an impact on the induced antibody titers and IFN-γ levels. Here, we have extended these observations using outbreed CD-1 mice immunized with C. trachomatis Ser E rMOMP formulations to evaluate the impact on bacterial challenge. The results confirmed that the rMOMP vaccine containing the adjuvant with the highest phosphate substitution induced the highest neutralizing antibody titers while the formulation with the lowest phosphate substitution induced the highest IFN-γ production. The most robust protection was observed in mice vaccinated with the formulation containing the adjuvant with the lowest phosphate substitution, as shown by the number of mice with positive vaginal cultures, number of positive cultures and number of C. trachomatis inclusion forming units recovered. This is the first report showing that vaccination of an outbred strain of mice with rMOMP induces protection against a vaginal challenge with C. trachomatis.
Collapse
Affiliation(s)
- Sukumar Pal
- Department of Pathology and Laboratory Medicine, University of California , Irvine, CA, USA
| | | | - Delia F Tifrea
- Department of Pathology and Laboratory Medicine, University of California , Irvine, CA, USA
| | - Chunmei Cheng
- Department of Pathology and Laboratory Medicine, University of California , Irvine, CA, USA
| | - Scott Gallichan
- Analytical Research and Development Department, Sanofi Pasteur , Toronto, Ontario, Canada
| | - Violette Sanchez
- Research & Non Clinical Safety Department, Sanofi Pasteur , Marcy l'Etoile, France
| | - Luis M de la Maza
- Department of Pathology and Laboratory Medicine, University of California , Irvine, CA, USA
| | - Lucian Visan
- Research & Non Clinical Safety Department, Sanofi Pasteur , Marcy l'Etoile, France
| |
Collapse
|
12
|
Tifrea DF, Pal S, Le Bon C, Giusti F, Popot JL, Cocco MJ, Zoonens M, de la Maza LM. Co-delivery of amphipol-conjugated adjuvant with antigen, and adjuvant combinations, enhance immune protection elicited by a membrane protein-based vaccine against a mucosal challenge with Chlamydia. Vaccine 2018; 36:6640-6649. [PMID: 30293763 DOI: 10.1016/j.vaccine.2018.09.055] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/28/2018] [Accepted: 09/23/2018] [Indexed: 01/24/2023]
Abstract
INTRODUCTION Chlamydial infections are spread worldwide and a vaccine is needed to control this pathogen. The goals of this study were to determine if the delivery of an adjuvant associated to the antigen, via a derivatized amphipol, and adjuvant combinations improve vaccine protection. METHODS A novel approach, trapping the Chlamydia muridarum (Cm) native MOMP (nMOMP) with amphipols (A8-35), bearing a covalently conjugated peptide (EP67), was used. Adjuvants incorporated were: EP67 either conjugated to A8-35, which was used to trap nMOMP (nMOMP/EP67-A8-35), or free as a control, added to nMOMP/A8-35 complexes (nMOMP/A8-35+EP67); Montanide ISA 720 to enhance humoral responses, and CpG-1826 to elicit robust cell-mediated immunity (CMI). BALB/c mice were immunized by mucosal and systemic routes. Intranasal immunization with live Cm was used as positive control and three negative controls were included. Mice were challenged intranasally with Cm and changes in body weight, lungs weight and number of Cm-inclusion forming units (IFU) recovered from the lungs were evaluated to establish protection. To assess local responses levels of IFN- γ and Cm-specific IgA were determined in lungs' supernatants. RESULTS Structural assays demonstrated that nMOMP secondary structure and thermal stability were maintained when A8-35 was covalently modified. Mice vaccinated with nMOMP/EP67-A8-35 were better protected than animals immunized with nMOMP/A8-35+EP67. Addition of Montanide enhanced Th2 responses and improved protection. Including CpG-1826 further broadened, intensified and switched to Th1-biased immune responses. With delivery of nMOMP and the three adjuvants, as determined by changes in body weight, lungs weight and number of IFU recovered from lungs, protection at 10 days post-challenge was equivalent to that induced by immunization with live Cm. CONCLUSIONS Covalent association of EP67 to A8-35, used to keep nMOMP water-soluble, improves protection over that conferred by free EP67. Adjuvant combinations including EP67+Montanide+CpG-1826, by broadening and intensifying cellular and humoral immune responses, further enhanced protection.
Collapse
Affiliation(s)
- Delia F Tifrea
- Department of Pathology and Laboratory Medicine, Medical Sciences I, Room D440, University of California, Irvine, Irvine, CA 92697-4800, USA
| | - Sukumar Pal
- Department of Pathology and Laboratory Medicine, Medical Sciences I, Room D440, University of California, Irvine, Irvine, CA 92697-4800, USA
| | - Christel Le Bon
- C.N.R.S./Université Paris-7 UMR 7099, Institut de Biologie Physico-Chimique, 13, rue Pierre-et-Marie-Curie, F-75005 Paris, France
| | - Fabrice Giusti
- C.N.R.S./Université Paris-7 UMR 7099, Institut de Biologie Physico-Chimique, 13, rue Pierre-et-Marie-Curie, F-75005 Paris, France
| | - Jean-Luc Popot
- C.N.R.S./Université Paris-7 UMR 7099, Institut de Biologie Physico-Chimique, 13, rue Pierre-et-Marie-Curie, F-75005 Paris, France
| | - Melanie J Cocco
- Department of Molecular Biology and Biochemistry, Department of Pharmaceutical Sciences, 1218 Natural Sciences, University of California, Irvine, Irvine, CA 92697-3900, USA
| | - Manuela Zoonens
- C.N.R.S./Université Paris-7 UMR 7099, Institut de Biologie Physico-Chimique, 13, rue Pierre-et-Marie-Curie, F-75005 Paris, France.
| | - Luis M de la Maza
- Department of Pathology and Laboratory Medicine, Medical Sciences I, Room D440, University of California, Irvine, Irvine, CA 92697-4800, USA.
| |
Collapse
|
13
|
Sahu R, Verma R, Dixit S, Igietseme JU, Black CM, Duncan S, Singh SR, Dennis VA. Future of human Chlamydia vaccine: potential of self-adjuvanting biodegradable nanoparticles as safe vaccine delivery vehicles. Expert Rev Vaccines 2018; 17:217-227. [PMID: 29382248 PMCID: PMC6330895 DOI: 10.1080/14760584.2018.1435279] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 01/29/2018] [Indexed: 01/12/2023]
Abstract
INTRODUCTION There is a persisting global burden and considerable public health challenge by the plethora of ocular, genital and respiratory diseases caused by members of the Gram-negative bacteria of the genus Chlamydia. The major diseases are conjunctivitis and blinding trachoma, non-gonococcal urethritis, cervicitis, pelvic inflammatory disease, ectopic pregnancy, tubal factor infertility, and interstitial pneumonia. The failures in screening and other prevention programs led to the current medical opinion that an efficacious prophylactic vaccine is the best approach to protect humans from chlamydial infections. Unfortunately, there is no human Chlamydia vaccine despite successful veterinary vaccines. A major challenge has been the effective delivery of vaccine antigens to induce safe and effective immune effectors to confer long-term protective immunity. The dawn of the era of biodegradable polymeric nanoparticles and the adjuvanted derivatives may accelerate the realization of the dream of human vaccine in the foreseeable future. AREAS COVERED This review focuses on the current status of human chlamydial vaccine research, specifically the potential of biodegradable polymeric nanovaccines to provide efficacious Chlamydia vaccines in the near future. EXPERT COMMENTARY The safety of biodegradable polymeric nanoparticles-based experimental vaccines with or without adjuvants and the array of available chlamydial vaccine candidates would suggest that clinical trials in humans may be imminent. Also, the promising results from vaccine testing in animal models could lead to human vaccines against trachoma and reproductive diseases simultaneously.
Collapse
Affiliation(s)
- Rajnish Sahu
- Department of Biological Sciences, Alabama State University, Montgomery, AL, USA
| | - Richa Verma
- Department of Biological Sciences, Alabama State University, Montgomery, AL, USA
| | - Saurabh Dixit
- Department of Biological Sciences, Alabama State University, Montgomery, AL, USA
| | - Joseph U. Igietseme
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control & Prevention (CDC), Atlanta, GA, USA
| | - Carolyn M Black
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control & Prevention (CDC), Atlanta, GA, USA
| | - Skyla Duncan
- Department of Biological Sciences, Alabama State University, Montgomery, AL, USA
| | - Shree R Singh
- Department of Biological Sciences, Alabama State University, Montgomery, AL, USA
| | - Vida A Dennis
- Department of Biological Sciences, Alabama State University, Montgomery, AL, USA
| |
Collapse
|
14
|
Update on Chlamydia trachomatis Vaccinology. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:CVI.00543-16. [PMID: 28228394 DOI: 10.1128/cvi.00543-16] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Attempts to produce a vaccine to protect against Chlamydia trachomatis-induced trachoma were initiated more than 100 years ago and continued for several decades. Using whole organisms, protective responses were obtained. However, upon exposure to C. trachomatis, disease exacerbation developed in some immunized individuals, precluding the implementation of the vaccine. Evidence of the role of C. trachomatis as a sexually transmitted pathogen started to emerge in the 1960s, and it soon became evident that it can cause acute infections and long-term sequelae in women, men, and newborns. The main focus of this minireview is to summarize recent findings and discuss formulations, including antigens, adjuvants, routes, and delivery systems for immunization, primarily explored in the female mouse model, with the goal of implementing a vaccine against C. trachomatis genital infections.
Collapse
|
15
|
The Predominant CD4 + Th1 Cytokine Elicited to Chlamydia trachomatis Infection in Women Is Tumor Necrosis Factor Alpha and Not Interferon Gamma. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:CVI.00010-17. [PMID: 28100498 DOI: 10.1128/cvi.00010-17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 01/16/2017] [Indexed: 01/17/2023]
Abstract
Chlamydia trachomatis infection is the most prevalent bacterial sexually transmitted infection and can cause significant reproductive morbidity in women. There is insufficient knowledge of C. trachomatis-specific immune responses in humans, which could be important in guiding vaccine development efforts. In contrast, murine models have clearly demonstrated the essential role of T helper type 1 (Th1) cells, especially interferon gamma (IFN-γ)-producing CD4+ T cells, in protective immunity to chlamydia. To determine the frequency and magnitude of Th1 cytokine responses elicited to C. trachomatis infection in humans, we stimulated peripheral blood mononuclear cells from 90 chlamydia-infected women with C. trachomatis elementary bodies, Pgp3, and major outer membrane protein and measured IFN-γ-, tumor necrosis factor alpha (TNF-α)-, and interleukin-2 (IL-2)-producing CD4+ and CD8+ T-cell responses using intracellular cytokine staining. The majority of chlamydia-infected women elicited CD4+ TNF-α responses, with frequency and magnitude varying significantly depending on the C. trachomatis antigen used. CD4+ IFN-γ and IL-2 responses occurred infrequently, as did production of any of the three cytokines by CD8+ T cells. About one-third of TNF-α-producing CD4+ T cells coproduced IFN-γ or IL-2. In summary, the predominant Th1 cytokine response elicited to C. trachomatis infection in women was a CD4+ TNF-α response, not CD4+ IFN-γ, and a subset of the CD4+ TNF-α-positive cells produced a second Th1 cytokine.
Collapse
|
16
|
Pal S, Favaroni A, Tifrea DF, Hanisch PT, Luczak SET, Hegemann JH, de la Maza LM. Comparison of the nine polymorphic membrane proteins of Chlamydia trachomatis for their ability to induce protective immune responses in mice against a C. muridarum challenge. Vaccine 2017; 35:2543-2549. [PMID: 28385608 DOI: 10.1016/j.vaccine.2017.03.070] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 03/06/2017] [Accepted: 03/22/2017] [Indexed: 01/24/2023]
Abstract
OBJECTIVES To test vaccines, formulated with novel antigens, to protect mice against Chlamydia infections. METHODS To determine the ability of polymorphic membrane proteins (Pmps) to induce cross-species protective immune responses, recombinant fragments from all nine C. trachomatis serovar E Pmps were used to vaccinate BALB/c mice utilizing CpG-1826 and Montanide ISA 720 as adjuvants. C. muridarum recombinant MOMP and PBS, formulated with the same adjuvants, were used as positive and negative controls, respectively. Mice were challenged intranasally with 104 inclusion-forming units (IFU) of C. muridarum. Animals were weighed daily and at 10days post-challenge, they were euthanized, their lungs harvested, weighed and the number of chlamydial IFU counted. RESULTS Following vaccination the nine Pmps elicited immune responses. Based on body weight changes, or number of IFU recovered from lungs, mice vaccinated with Pmp C, G or H were the best protected. For example, over the 10-day period, the negative control group vaccinated with PBS lost significantly more body weight than mice immunized with PmpC or G (P<0.05). C. muridarum MOMP vaccinated mice were better protected against body weight losses than any group immunized with Pmps. Also, the median number of IFU recovered from the lungs of mice vaccinated with PmpC (72×106) or PmpH (61×106) was significantly less than from mice immunized with PBS (620×106; P<0.05). As determined by the number of IFU, all Pmps elicited less protection than C. muridarum MOMP (0.078×106 IFU; P<0.05). CONCLUSIONS This is the first time PmpC has been shown to elicit cross-species protection against a respiratory challenge. Additional work with Pmps C, G and H is recommended to determine their ability to protect animal models against genital and ocular challenges.
Collapse
Affiliation(s)
- Sukumar Pal
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, USA
| | - Alison Favaroni
- Institut für Funktionelle Genomforschung der Mikroorganismen, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Delia F Tifrea
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, USA
| | - Philipp T Hanisch
- Institut für Funktionelle Genomforschung der Mikroorganismen, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Sören E T Luczak
- Institut für Funktionelle Genomforschung der Mikroorganismen, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Johannes H Hegemann
- Institut für Funktionelle Genomforschung der Mikroorganismen, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Luis M de la Maza
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
17
|
Pal S, Tifrea DF, Follmann F, Andersen P, de la Maza LM. The cationic liposomal adjuvants CAF01 and CAF09 formulated with the major outer membrane protein elicit robust protection in mice against a Chlamydia muridarum respiratory challenge. Vaccine 2017; 35:1705-1711. [PMID: 28238632 DOI: 10.1016/j.vaccine.2017.02.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 01/20/2017] [Accepted: 02/09/2017] [Indexed: 12/31/2022]
Abstract
Two cationic liposomal adjuvants CAF01 and CAF09 were formulated with the native or the recombinant Chlamydia muridarum major outer membrane protein (nMOMP and rMOMP). BALB/c mice were immunized with the four vaccine formulations using the subcutaneous followed by the intranasal (i.n.) routes. As positive controls mice were inoculated i.n. with live C. muridarum and negative controls received i.n. minimal essential medium (MEM). Four weeks after the last immunization mice were challenged i.n. with 104 inclusion forming units (IFU) of C. muridarum. Following the challenge the mice were weighed daily. At 10days post-challenge the mice were euthanized, their lungs weighed and the number of C. muridarum IFU determined. Serum collected the day before the challenge showed that all four groups of mice immunized with CAF01, or CAF09 and MOMP had significant C. muridarum-specific antibody titers. As determined by a T-cell lymphoproliferative assay, these four groups of mice also mounted robust cell mediated immune responses with high production of IFN-γ and IL17 and low levels of IL-4. Following the challenge the four groups of mice lost significantly less body weight than the MEM-immunized group. Lungs of mice vaccinated with CAF01, or CAF09, and nMOMP were significantly lighter than those from mice immunized using rMOMP. The number of IFU recovered from the lungs of mice vaccinated with CAF01, or CAF09, and nMOMP was similar to the number of IFU recovered from mice immunized with live EB. Mice that received rMOMP had significantly higher numbers of IFU than other groups. In conclusion, CAF01 and CAF09 elicited very robust protective humoral and cellular immune responses and were equally effective at adjuntavizing the C. muridarum MOMP. Mice vaccinated with nMOMP were significantly better protected than those immunized with rMOMP, indicative of the importance of the structural conformation of this antigen in protection.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Administration, Intranasal
- Animals
- Antibodies, Bacterial/blood
- Bacterial Outer Membrane Proteins/immunology
- Bacterial Vaccines/administration & dosage
- Bacterial Vaccines/immunology
- Body Weight
- Cell Proliferation
- Chlamydia Infections/pathology
- Chlamydia Infections/prevention & control
- Chlamydia muridarum/immunology
- Cytokines/metabolism
- Disease Models, Animal
- Injections, Subcutaneous
- Liposomes/administration & dosage
- Lung/pathology
- Mice, Inbred BALB C
- Pneumonia, Bacterial/pathology
- Pneumonia, Bacterial/prevention & control
- T-Lymphocytes/immunology
- Treatment Outcome
- Vaccines, Subunit/administration & dosage
- Vaccines, Subunit/immunology
Collapse
Affiliation(s)
- Sukumar Pal
- Department of Pathology and Laboratory Medicine, Medical Sciences I, Room D440, University of California, Irvine, Irvine, CA 92697-4800, USA
| | - Delia F Tifrea
- Department of Pathology and Laboratory Medicine, Medical Sciences I, Room D440, University of California, Irvine, Irvine, CA 92697-4800, USA
| | - Frank Follmann
- Department of Infectious Disease Immunology, Adjuvant Research, Staten Serum Institute, Copenhagen, Denmark
| | - Peter Andersen
- Department of Infectious Disease Immunology, Adjuvant Research, Staten Serum Institute, Copenhagen, Denmark
| | - Luis M de la Maza
- Department of Pathology and Laboratory Medicine, Medical Sciences I, Room D440, University of California, Irvine, Irvine, CA 92697-4800, USA.
| |
Collapse
|
18
|
Bhandari P, Prabha V. Evaluation of profertility effect of probiotic Lactobacillus plantarum 2621 in a murine model. Indian J Med Res 2016; 142:79-84. [PMID: 26261170 PMCID: PMC4557255 DOI: 10.4103/0971-5916.162127] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background & objectives: Urogenital infections of bacterial origin have a high incidence among the female population at reproductive age, affecting the fertility. Strains of Escherichia coli can colonize the vagina and replace natural microflora. Lactobacillus the predominant vaginal microorganism in healthy women, maintains the acidic vaginal pH which inhibits pathogenic microorganisms. Studies on Lactobacillus have shown that these can inhibit E. coli growth and vaginal colonization. An alternative therapeutic approach to antimicrobial therapy is to re-establish Lactobacillus in this microbiome through probiotic administration to resurge fertility. Therefore, the aim of the present study was to determine the capability of L. plantarum 2621 strain with probiotic properties, to prevent the vaginal colonization of E. coli causing agglutination of sperms and to evaluate its profertility effect in a murine model. Methods: Screened mice were divided into five groups i.e. control group, E. coli group, Lactobacillus group, prophylactic and therapeutic groups. The control group was infused with 20 µl PBS, E.coli group was administered with 106 cfu/20 µl E. coli, and probiotic group was administered with Lactobacillus (108 cfu/20 µl) for 10 consecutive days. In prophylactic group, the vagina was colonized with 10 consecutive doses of Lactobacillus (108 cfu/20 µl). After 24 h, it was followed by 10 day intravaginal infection with E. coli (106 cfu/20 µl) whereas for the therapeutic group vagina was colonized with (106 cfu/20 µl) E. coli for 10 consecutive days, followed by 10 day intravaginal administration with Lactobacillus after 24 h. Results: Upon mating and completion of gestation period, control, probiotic and the therapeutic groups had litters in contrast to the prophylactic group and the group administered with E. coli. Interpretation & conclusions: Results indicated that Lactobacillus intermitted colonization of pathogenic strains that resulted in reinforcement of natural microflora and resurge fertility.
Collapse
Affiliation(s)
| | - Vijay Prabha
- Department of Microbiology, Panjab University, Chandigarh, India
| |
Collapse
|
19
|
Pal S, Tatarenkova OV, de la Maza LM. A vaccine formulated with the major outer membrane protein can protect C3H/HeN, a highly susceptible strain of mice, from a Chlamydia muridarum genital challenge. Immunology 2015; 146:432-43. [PMID: 26423798 DOI: 10.1111/imm.12520] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 07/23/2015] [Accepted: 08/03/2015] [Indexed: 01/12/2023] Open
Abstract
C3H/HeN female mice were vaccinated with native Chlamydia muridarum major outer membrane protein (MOMP), using Montanide+CpG or Alum+CpG as adjuvants. Negative control groups were immunized with ovalbumin (OVA) and the same adjuvants. As positive control, mice were inoculated intranasally with live Chlamydia. Mice were challenged in the ovarian bursa with 10(5) C. muridarum inclusion forming units. Six weeks after the genital challenge the animals were caged with male mice and monitored for pregnancy. Mice vaccinated with MOMP+Montanide+CpG developed high levels of C. muridarum-specific antibodies, with a high IgG2a/IgG1 ratio and neutralizing titres. Animals immunized using Alum+CpG had low antibody levels. Cellular immune responses were significantly higher in mice vaccinated with MOMP and Montanide+CpG, but not with Alum+CpG, when compared with negative controls. Following the genital challenge, only 20% (4/20) of mice vaccinated with MOMP+CpG+Montanide had positive vaginal cultures whereas 100% (9/9) of mice immunized with MOMP+CpG+Alum had positive cultures. Of the positive control animals inoculated with live Chlamydia only 15% (3/20) had positive vaginal cultures. In contrast, 100% (20/20) of mice immunized with OVA+CpG+Montanide, or minimal essential medium, had positive cultures. Following mating, 80% (16/20) of mice vaccinated with MOMP+CpG+Montanide, and 85% (17/20) of animals inoculated intranasally with live C. muridarum carried embryos in both uterine horns. No protection against infertility was observed in mice immunized with MOMP and CpG+Alum or OVA. In conclusion, this is the first time that a subunit vaccine has been shown to elicit a protective immune response in the highly susceptible C3H/HeN strain of mice against an upper genital challenge.
Collapse
Affiliation(s)
- Sukumar Pal
- Department of Pathology and Laboratory Medicine, Medical Sciences I, University of California, Irvine, Irvine, CA, USA
| | - Olga V Tatarenkova
- Department of Pathology and Laboratory Medicine, Medical Sciences I, University of California, Irvine, Irvine, CA, USA
| | - Luis M de la Maza
- Department of Pathology and Laboratory Medicine, Medical Sciences I, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
20
|
Tifrea DF, Pal S, Popot JL, Cocco MJ, de la Maza LM. Increased immunoaccessibility of MOMP epitopes in a vaccine formulated with amphipols may account for the very robust protection elicited against a vaginal challenge with Chlamydia muridarum. THE JOURNAL OF IMMUNOLOGY 2014; 192:5201-13. [PMID: 24778450 DOI: 10.4049/jimmunol.1303392] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
There is a need to implement a vaccine to protect against Chlamydia trachomatis infections. To test a new vaccine, mice were immunized with the Chlamydia muridarum native major outer membrane protein (nMOMP) solubilized with either amphipol A8-35 or the detergent Z3-14. OVA was used as a negative control, and mice were inoculated intranasally with C. muridarum as positive controls. Animals vaccinated with nMOMP mounted strong Chlamydia-specific humoral and cell-mediated immune responses. Mice vaccinated with nMOMP/A8-35 had a higher ratio of Abs to denatured elementary bodies (EB) over live EB, recognized more synthetic MOMP peptides and had higher neutralizing titers than sera from mice immunized with nMOMP/Z3-14. T cell lymphoproliferative responses and levels of IFN-γ were also higher in mice vaccinated with nMOMP/A8-35 than with nMOMP/Z3-14. Following immunization, animals were challenged intravaginally with C. muridarum. On the basis of the number of mice with positive vaginal cultures, length of vaginal shedding, total number of positive vaginal cultures, and number of Chlamydia inclusion forming units recovered, nMOMP/A8-35 elicited a more robust protection than nMOMP/Z3-14. By depleting T cells with Abs, we determined that CD4(+) and not CD8(+) T cells mediated the protection elicited by nMOMP/A8-35. Mice were subsequently mated, and based on the number of pregnant mice and number of embryos, animals that were vaccinated with nMOMP/A8-35 or nMOMP/Z3-14 had fertility rates equivalent to the positive control group immunized with live EB and the fertility controls. In conclusion, increased accessibility of epitopes in the nMOMP/A8-35 preparation may account for the very robust protection against infection and disease elicited by this vaccine.
Collapse
Affiliation(s)
- Delia F Tifrea
- Department of Pathology and Laboratory Medicine, Medical Sciences I, University of California, Irvine, Irvine, CA 92697
| | - Sukumar Pal
- Department of Pathology and Laboratory Medicine, Medical Sciences I, University of California, Irvine, Irvine, CA 92697
| | - Jean-Luc Popot
- Centre National de la Recherche Scientifique/Université Paris-7 Unité Mixte de Recherche 7099, Institut de Biologie Physico-Chimique, F-75005 Paris, France; and
| | - Melanie J Cocco
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697
| | - Luis M de la Maza
- Department of Pathology and Laboratory Medicine, Medical Sciences I, University of California, Irvine, Irvine, CA 92697;
| |
Collapse
|
21
|
Cheng C, Pal S, Tifrea D, Jia Z, de la Maza LM. A vaccine formulated with a combination of TLR-2 and TLR-9 adjuvants and the recombinant major outer membrane protein elicits a robust immune response and significant protection against a Chlamydia muridarum challenge. Microbes Infect 2014; 16:244-52. [PMID: 24291713 PMCID: PMC3965591 DOI: 10.1016/j.micinf.2013.11.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 11/15/2013] [Accepted: 11/18/2013] [Indexed: 12/17/2022]
Abstract
Chlamydia trachomatis is the most common sexually transmitted bacterial pathogen in the World and there is a need for a vaccine. To enhance the immunogenicity of a vaccine formulated with the Chlamydia muridarum (Cm) mouse pneumonitis recombinant major outer membrane protein (MOMP), we used combinations of Pam2CSK4 + CpG-1826 and Montanide ISA 720 VG + CpG-1826 as adjuvants. Neisseria gonorrhoeae recombinant porin B (Ng-PorB) was used as the antigen control with the same adjuvants. Female BALB/c mice were immunized twice in the nares (i.n.) or in the colon (cl.) and were boosted twice by the intramuscular plus subcutaneous (i.m. + s.c.) routes. Based on the IgG2a/IgG1 ratio in sera, mice immunized with MOMP + Pam2CSK4 + CpG-1826 showed a strong Th2 response while animals vaccinated with MOMP + Montanide ISA 720 VG + CpG-1826 had a Th1 response. Both groups of mice also developed robust Cm-specific T cell proliferation and high levels of IFN-γ. Four weeks after the last immunization, the mice were challenged i.n. with 10(4) inclusion-forming units (IFU) of Cm. Using changes in body weight and number of IFU recovered from the lungs at 10 days post-challenge mice immunized i.n. + i.m./s.c. with MOMP + Pam2CSK4 + CpG-1826 were better protected than other groups. In conclusion, MOMP adjuvanted with Pam2CSK4 + CpG-1826, elicits strong humoral and cellular immune responses and induces significant protection against Chlamydia.
Collapse
Affiliation(s)
- Chunmei Cheng
- Department of Pathology and Laboratory Medicine, Medical Sciences I, Room D440, University of California, Irvine, Irvine, CA 92697-4800, USA
| | - Sukumar Pal
- Department of Pathology and Laboratory Medicine, Medical Sciences I, Room D440, University of California, Irvine, Irvine, CA 92697-4800, USA
| | - Delia Tifrea
- Department of Pathology and Laboratory Medicine, Medical Sciences I, Room D440, University of California, Irvine, Irvine, CA 92697-4800, USA
| | - Zhenyu Jia
- Translational Cancer Biology, Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA 92697-4800, USA
| | - Luis M de la Maza
- Department of Pathology and Laboratory Medicine, Medical Sciences I, Room D440, University of California, Irvine, Irvine, CA 92697-4800, USA.
| |
Collapse
|
22
|
Olsen AW, Andersen P, Follmann F. Characterization of protective immune responses promoted by human antigen targets in a urogenital Chlamydia trachomatis mouse model. Vaccine 2014; 32:685-92. [DOI: 10.1016/j.vaccine.2013.11.100] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 10/15/2013] [Accepted: 11/27/2013] [Indexed: 11/30/2022]
|
23
|
Tifrea DF, Pal S, Toussi DN, Massari P, de la Maza LM. Vaccination with major outer membrane protein proteosomes elicits protection in mice against a Chlamydia respiratory challenge. Microbes Infect 2013; 15:920-7. [PMID: 23999313 DOI: 10.1016/j.micinf.2013.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 08/13/2013] [Accepted: 08/14/2013] [Indexed: 10/26/2022]
Abstract
Vaccines formulated with the Chlamydia muridarum native major outer membrane protein (nMOMP) have so far been shown to elicit the most robust protection against this pathogen. nMOMP is a membrane protein and therefore, detergents are used to keep it in solution. Detergents however, have toxic effects. To address this limitation, we tested a nMOMP proteosome vaccine and compared its ability to elicit protection against nMOMP solubilized in the detergent Z3-14. The two preparations were formulated with or without CpG + Montanide (C/M). As a control antigen we used ovalbumin. Mice vaccinated with nMOMP developed strong humoral and cell mediated Chlamydia-specific immune responses. Based on the IgG2a/IgG1 levels in serum and amounts of IFN-γ in splenocytes supernatants the immune responses were predominantly Th1-biased. The animals were subsequently challenged intranasally with 2 × 10(3)Chlamydia inclusion forming units (IFU) and the course of the infection was followed for 10 days when the mice were euthanized. Based on changes in body weight, weight of the lungs and number of IFU recovered from the lungs, mice immunized with nMOMP-Ps and nMOMP + Z3-14 adjuvanted with C/M showed the most robust protection. In summary, nMOMP-Ps should be considered as Chlamydia vaccine candidates.
Collapse
Affiliation(s)
- Delia F Tifrea
- Department of Pathology and Laboratory Medicine, Medical Sciences I, Room D440, University of California, Irvine, Irvine, CA 92697-4800, USA
| | | | | | | | | |
Collapse
|
24
|
Animal models for studying female genital tract infection with Chlamydia trachomatis. Infect Immun 2013; 81:3060-7. [PMID: 23836817 DOI: 10.1128/iai.00357-13] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Chlamydia trachomatis is a Gram-negative obligate intracellular bacterial pathogen. It is the leading cause of bacterial sexually transmitted disease in the world, with more than 100 million new cases of genital tract infections with C. trachomatis occurring each year. Animal models are indispensable for the study of C. trachomatis infections and the development and evaluation of candidate vaccines. In this paper, the most commonly used animal models to study female genital tract infections with C. trachomatis will be reviewed, namely, the mouse, guinea pig, and nonhuman primate models. Additionally, we will focus on the more recently developed pig model.
Collapse
|
25
|
Pal S, de la Maza LM. Mechanism of T-cell mediated protection in newborn mice against a Chlamydia infection. Microbes Infect 2013; 15:607-14. [PMID: 23644176 PMCID: PMC5058356 DOI: 10.1016/j.micinf.2013.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 04/18/2013] [Accepted: 04/21/2013] [Indexed: 10/26/2022]
Abstract
To determine the immune components needed for protection of newborn mice against Chlamydia muridarum, animals born to Chlamydia-immunized and to sham-immunized dams were infected intranasally with C. muridarum at 2 post-natal days. T-cells isolated from immunized or sham-immunized adult mice were adoptively transferred to newborn mice at the time of infection. Also, to establish what cytokines are involved in protection, IFN-γ, TNF-α, IL-10, and IL-12 were passively transferred to newborn mice. To assess the Chlamydia burden in the lungs mice were euthanized at 12 post-natal days. When T-cells from immunized adult mice were transferred, mice born to and fed by immunized dams were significantly protected as evidenced by the reduced number of Chlamydia isolated from the lungs compared to mice born to and fed by sham-immunized dams. Transfer of IFN-γ and TNF-α also significantly reduced the number of Chlamydia in the lungs of mice born to immunized dams. Transfer of IL-10 or IL-12 did not result in a significant reduction of Chlamydia. In vitro T-cell proliferation data suggest that neonatal antigen presenting cells can present Chlamydia antigens to adult T-cells. In conclusion, maternal antibodies and Chlamydia specific T-cells or Th1 cytokines are required for protection of neonates against this pathogen.
Collapse
Affiliation(s)
- Sukumar Pal
- Department of Pathology and Laboratory Medicine, Medical Science Building 1, Room # D440, University of California, Irvine, Irvine, CA 92697-4800, USA.
| | | |
Collapse
|
26
|
Tifrea DF, Ralli-Jain P, Pal S, de la Maza LM. Vaccination with the recombinant major outer membrane protein elicits antibodies to the constant domains and induces cross-serovar protection against intranasal challenge with Chlamydia trachomatis. Infect Immun 2013; 81:1741-50. [PMID: 23478318 PMCID: PMC3648024 DOI: 10.1128/iai.00734-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 03/01/2013] [Indexed: 12/27/2022] Open
Abstract
To determine the ability of the major outer membrane protein (MOMP) to elicit cross-serovar protection, groups of mice were immunized by the intramuscular (i.m.) and subcutaneous (s.c.) routes with recombinant MOMP (rMOMP) from Chlamydia trachomatis serovars D (UW-3/Cx), E (Bour), or F (IC-Cal-3) or Chlamydia muridarum strain Nigg II using CpG-1826 and Montanide ISA 720 VG as adjuvants. Negative-control groups were immunized i.m. and s.c. with Neisseria gonorrhoeae recombinant porin B (Ng-rPorB) or i.n. with Eagle's minimal essential medium (MEM-0). Following vaccination, the mice developed antibodies not only against the homologous serovar but also against heterologous serovars. The rMOMP-vaccinated animals also mounted cell-mediated immune responses as assessed by a lymphoproliferative assay. Four weeks after the last immunization, mice were challenged i.n. with 10(4) inclusion-forming units (IFU) of C. muridarum. The mice were weighed for 10 days and euthanized, and the number of IFU in their lungs was determined. At 10 days postinfection (p.i.), mice immunized with the rMOMP of C. muridarum or C. trachomatis D, E, or F had lost 4%, 6%, 8%, and 8% of their initial body weight, respectively, significantly different from the negative-control groups (Ng-rPorB, 13%; MEM-0, 19%; P < 0.05). The median number of IFU recovered from the lungs of mice immunized with C. muridarum rMOMP was 0.13 × 10(6). The median number of IFU recovered from mice immunized with rMOMP from serovars D, E, and F were 0.38 × 10(6), 7.56 × 10(6), and 11.94 × 10(6) IFU, respectively. All the rMOMP-immunized animals had significantly less IFU than the Ng-rPorB (40 × 10(6))- or MEM-0 (70 × 10(6))-immunized mice (P < 0.05). In conclusion, vaccination with rMOMP can elicit protection against homologous and heterologous Chlamydia serovars.
Collapse
Affiliation(s)
- Delia F Tifrea
- Department of Pathology and Laboratory Medicine, Medical Sciences I, University of California, Irvine, Irvine, California, USA
| | | | | | | |
Collapse
|
27
|
Proteomic identification of immunodominant chlamydial antigens in a mouse model. J Proteomics 2012; 77:176-86. [PMID: 22959960 DOI: 10.1016/j.jprot.2012.08.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 08/04/2012] [Accepted: 08/23/2012] [Indexed: 11/20/2022]
Abstract
Chlamydia trachomatis is the most common bacterial sexually transmitted pathogen in the world. To identify new vaccine candidates a protein microarray was constructed by expressing the open reading frames (ORFs) from Chlamydia mouse pneumonitis (MoPn). C57BL/6, C3H/HeN and BALB/c mice were immunized either intranasally or intravaginally with live MoPn elementary bodies (EB). Two additional groups were immunized by the intramuscular plus subcutaneous routes with UV-treated EB, using CpG and Montanide as adjuvants to favor a Th1 response, or Alum, to elicit a Th2 response. Serum samples collected from the three strains of mice were tested in the microarray. The array included the expression of 909 proteins from the 921 ORFs of the MoPn genome and plasmid. A total of 530 ORFs were recognized by at least one serum sample. Of these, 36 reacted with sera from the three strains of mice immunized with live EB. These antigens included proteins that were previously described as immunogenic such as MOMP and HSP60. In addition, we uncovered new immunogens, including 11 hypothetical proteins. In summary, we have identified new immunodominant chlamydial proteins that can be tested for their ability to induce protection in animal models and subsequently in humans.
Collapse
|
28
|
Igietseme JU, Eko FO, Black CM. Chlamydia vaccines: recent developments and the role of adjuvants in future formulations. Expert Rev Vaccines 2012; 10:1585-96. [PMID: 22043957 DOI: 10.1586/erv.11.139] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Bacteria of the genus Chlamydia cause a plethora of ocular, genital and respiratory diseases that continue to pose a considerable public health challenge worldwide. The major diseases are conjunctivitis and blinding trachoma, non-gonococcal urethritis, cervicitis, pelvic inflammatory disease, ectopic pregnancy, tubal factor infertility and interstitial pneumonia. The rampart asymptomatic infections prevent timely and effective antibiotic treatments, and quite often clinical presentation of sequelae is the first evidence of an infection. Besides, significant broad coverage in population screening and treatment is economically and logistically impractical, and mass education for public awareness has been ineffective. The current medical opinion is that an efficacious prophylactic vaccine is the best approach to protect humans from chlamydial infections. Unfortunately, a human vaccine has yet to be realized despite successful veterinary vaccines. Fortunately, recent advances in chlamydial immunobiology, cell biology, molecular pathogenesis, genomics, antigen discovery and animal models of infections are hastening progress toward an efficacious vaccine. Thus, it is established that Chlamydia immunity is mediated by T cells and a complementary antibody response, and several potential vaccine candidates have been identified. However, further advances are needed in effective vaccine delivery systems and safe potent adjuvants to boost and sustain immune responses for long-lasting protective immunity. This article focuses on the current status of human chlamydial vaccine research, specifically how application of new delivery systems and human compatible adjuvants could lead to a timely achievement of efficacious Chlamydia vaccines. The ranking of the candidate vaccine antigens for human vaccine development will await the availability of results from studies in which the antigens are tested by comparable experimental standards, such as antigen-adjuvant combination, route of delivery and possible toxicity.
Collapse
Affiliation(s)
- Joseph U Igietseme
- National Center for Emerging Zoonotic and Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, MailStop G-36, Atlanta, GA 30333, USA.
| | | | | |
Collapse
|
29
|
Andrew DW, Hafner LM, Beagley KW, Timms P. Partial protection against chlamydial reproductive tract infection by a recombinant major outer membrane protein/CpG/cholera toxin intranasal vaccine in the guinea pig Chlamydia caviae model. J Reprod Immunol 2011; 91:9-16. [PMID: 21856018 DOI: 10.1016/j.jri.2011.06.100] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 06/22/2011] [Accepted: 06/25/2011] [Indexed: 10/17/2022]
Abstract
Chlamydia trachomatis is a major cause of sexually transmitted diseases worldwide. There is currently no vaccine to protect against chlamydial infection of the female reproductive tract. Vaccine development has predominantly utilised the murine model; however, infection of female guinea pigs with Chlamydia caviae more closely resembles chlamydial infection of the human female reproductive tract, and presents a better model to assess potential human chlamydial vaccines. We immunised female guinea pigs intranasally with recombinant major outer membrane protein (r-MOMP) combined with CpG-10109 and cholera toxin adjuvants. Both systemic and mucosal immune responses were elicited in immunised animals, with MOMP-specific IgG and IgA present in the vaginal mucosae, and high levels of MOMP-specific IgG detected in the serum. Antibodies from the vaginal mucosae were also capable of neutralising C. caviae in vitro. Following immunisation, animals were challenged intravaginally with 10(2) inclusion forming units of live C. caviae. We observed a decrease in the duration of infection and a significant (p<0.025) reduction in infection load in r-MOMP-immunised animals, compared with animals immunised with adjuvant only. Importantly, we also observed a marked reduction in upper reproductive tract pathology in r-MOMP-immunised animals. Intranasal immunisation of female guinea pigs with r-MOMP was able to provide partial protection against C. caviae infection, by reducing not only chlamydial burden, but also upper reproductive tract pathology. This data demonstrates the value of using the guinea pig model to evaluate potential chlamydial vaccines for protection against infection and disease pathology caused by C. trachomatis in the female reproductive tract.
Collapse
Affiliation(s)
- Dean W Andrew
- Infectious Diseases Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Brisbane 4059, Australia
| | | | | | | |
Collapse
|
30
|
A TLR2 agonist is a more effective adjuvant for a Chlamydia major outer membrane protein vaccine than ligands to other TLR and NOD receptors. Vaccine 2011; 29:6641-9. [PMID: 21742006 DOI: 10.1016/j.vaccine.2011.06.105] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 06/22/2011] [Accepted: 06/25/2011] [Indexed: 12/24/2022]
Abstract
Chlamydia trachomatis (Ct) is the most common sexually transmitted bacterial pathogen in the World and there is an urgent need for a vaccine to prevent these infections. To determine what type of adjuvant can better enhance the immunogenicity of a Chlamydia vaccine, we formulated the recombinant major outer membrane protein (Ct-rMOMP) with several ligands for Toll-like receptors (TLR) and the nucleotide-binding oligomerization domain (NOD) including Pam(2)CSK(4) (TLR2/TLR6), Poly (I:C) (TLR3), monophosphoryl lipid A (TLR4), flagellin (TLR5), imiquimod R837 (TLR7), imidazoquinoline R848 (TRL7/8), CpG-1826 (TLR9), M-Tri-(DAP) (NOD1/NOD2) and muramyldipeptide (NOD2). Groups of female BALB/c mice were immunized intramuscularly (i.m.) three times with the Ct-rMOMP and each one of those adjuvants. Four weeks after the last immunization the mice were challenged intranasally (i.n.) with 10(4)C. trachomatis mouse pneumonitis (MoPn) inclusion forming units (IFU). As negative antigen control, mice were immunized with the Neisseria gonorrhoeae recombinant porin B (Ng-rPorB) and the same adjuvants. As a positive vaccine control, mice were inoculated i.n. with 10(4)IFU of MoPn. The humoral and cell mediated immune responses were determined the day before the challenge. Following the challenge the mice were weighed daily and, at 10 days post-challenge (p.c.), they were euthanized, their lungs weighted and the number of IFU in the lungs counted. As determined by the IgG2a/IgG1 ratio in the sera, mice immunized with Ct-rMOMP+Pam(2)CSK(4) showed a strong Th2 biased humoral immune response. Furthermore, these mice developed a robust cellular immune response with high Chlamydia-specific T cell proliferation and levels of IFN-γ production. In addition, based on changes in body weight, weight of the lungs and number of IFU recovered from the lungs, the mice immunized with Ct-rMOMP+Pam(2)CSK(4), were better protected against the i.n. challenge than any group of mice immunized with Ct-rMOMP and the other adjuvants. In conclusion, Pam(2)CSK(4) should be evaluated as a candidate adjuvant for a C. trachomatis vaccine.
Collapse
|
31
|
Carmichael JR, Pal S, Tifrea D, de la Maza LM. Induction of protection against vaginal shedding and infertility by a recombinant Chlamydia vaccine. Vaccine 2011; 29:5276-83. [PMID: 21609745 DOI: 10.1016/j.vaccine.2011.05.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 05/06/2011] [Accepted: 05/07/2011] [Indexed: 01/04/2023]
Abstract
A vaccine formulated with the Chlamydia muridarum recombinant major outer membrane protein, plus the adjuvants CpG and Montanide, was tested for its ability to protect BALB/c mice against a vaginal challenge. Mice were immunized by mucosal [intravaginal (i.vag.) plus colonic (col.), or intranasal (i.n.) plus sublingual (s.l.)], or systemic [intramuscular (i.m.) plus subcutaneous (s.c.)] routes, and a combination of mucosal priming and systemic boosting routes. A negative control group was vaccinated with the Neisseria gonorrhoeae porin B (Ng-rPorB) and a positive control group was inoculated in the nares with live Chlamydia. The strongest Chlamydia-specific humoral and cell-mediated immune responses were observed in the groups immunized by a combination of mucosal and systemic routes. Following the vaginal challenge, groups immunized using mucosal priming followed by systemic immunization had a significant decrease in the number of mice with positive vaginal cultures. For example, of the mice immunized i.n./s.l.+i.m./s.c., 24% had positive cultures during the six weeks of the experiment versus 69% for the negative control group immunized with Ng-rPorB (P<0.05). Similarly, the groups of mice primed by the mucosal routes and boosted by the systemic routes had significantly less IFU in the vaginal cultures when compared to the Ng-rPorB animals (P<0.05). These combination groups were also protected against infertility. The two groups had fertility rates of 100% (i.n./s.l.+i.m./s.c.) and 81% (i.vag./col.+i.m./s.c.) equivalent to the positive-control group immunized with live Chlamydia (100% fertility; P>0.05). These results show the importance of the schedule and routes of vaccination and represent the first study to show protection against infertility by a Chlamydia recombinant subunit vaccine.
Collapse
Affiliation(s)
- Jennifer R Carmichael
- Department of Pathology and Laboratory Medicine, Medical Sciences, Room D440, University of California, Irvine, Irvine, CA 92697-4800, USA
| | | | | | | |
Collapse
|
32
|
Cochrane M, Armitage CW, O’Meara CP, Beagley KW. Towards a Chlamydia trachomatis vaccine: how close are we? Future Microbiol 2010; 5:1833-56. [DOI: 10.2217/fmb.10.148] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Chlamydia trachomatis is the leading cause of bacterial sexually transmitted infections and preventable blindness worldwide. The incidence of chlamydial sexually transmitted infections has increased rapidly and current antibiotic therapy has failed as an intervention strategy. The most accepted strategy for protection and/or control of chlamydial infections is a vaccine that induces both local neutralizing antibodies to prevent infections by the extracellular elementary bodies and a cell-mediated immune response to target the intracellular infection. This article will discuss the challenges in vaccine design for the prevention of chlamydial urogenital infection and/or disease, including selection of target antigens, discussion of effective delivery systems, immunization routes and adjuvants for induction of protective immunity at the targeted mucosal surface whilst minimizing severe inflammatory disease sequelae.
Collapse
Affiliation(s)
- Melanie Cochrane
- Institute of Health & Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Charles W Armitage
- Institute of Health & Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Connor P O’Meara
- Institute of Health & Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | | |
Collapse
|
33
|
Identification of immunodominant antigens by probing a whole Chlamydia trachomatis open reading frame proteome microarray using sera from immunized mice. Infect Immun 2010; 79:246-57. [PMID: 20956570 DOI: 10.1128/iai.00626-10] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Chlamydia trachomatis infections can lead to severe chronic complications, including trachoma, ectopic pregnancy, and infertility. The only effective approach to disease control is vaccination. The goal of this work was to identify new potential vaccine candidates through a proteomics approach. We constructed a protein chip array (Antigen Discovery, Inc.) by expressing the open reading frames (ORFs) from C. trachomatis mouse pneumonitis (MoPn) genomic and plasmid DNA and tested it with serum samples from MoPn-immunized mice. Two groups of BALB/c female mice were immunized either intranasally or intravaginally with live elementary bodies (EB). Another two groups were immunized by a combination of the intramuscular and subcutaneous routes with UV-treated EB (UV-EB), using either CpG and Montanide as adjuvants to favor a Th1 response or alum to elicit a Th2 response. Serum samples collected at regular intervals postimmunization were tested in the proteome array. The microarray included the expression products of 909 proteins from a total of 921 ORFs of the Chlamydia MoPn genome and plasmid. A total of 185 immunodominant proteins elicited an early and sustained antibody response in the mice immunized with live EB, and of these, 71 were also recognized by the sera from mice immunized with UV-EB. The reactive antigens included some proteins that were previously described as immunogenic, such as the major outer membrane protein, OmpB, Hsp60, and IncA and proteins from the type III secretion system. In addition, we identified in mice several new immunogens, including 75 hypothetical proteins. In summary, we have identified a new group of immunodominant chlamydial proteins that can be tested for their ability to induce protection.
Collapse
|
34
|
Ralli-Jain P, Tifrea D, Cheng C, Pal S, de la Maza LM. Enhancement of the protective efficacy of a Chlamydia trachomatis recombinant vaccine by combining systemic and mucosal routes for immunization. Vaccine 2010; 28:7659-66. [PMID: 20875490 DOI: 10.1016/j.vaccine.2010.09.040] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 09/09/2010] [Accepted: 09/12/2010] [Indexed: 10/19/2022]
Abstract
Chlamydia trachomatis causes respiratory and sexually transmitted infections. Here, we tested a vaccine formulated with the recombinant major outer membrane protein from C. trachomatis mouse pneumonitis (CT-MoPn) for its ability to protect mice against an intranasal (i.n.) challenge. The adjuvants CpG and Montanide were used for systemic routes, intramuscular (i.m.) and subcutaneous (s.c.), and cholera toxin for mucosal routes, sublingual (s.l.) and colonic (c.l.). Mucosal immunizations were performed either alone or in combination with systemic routes. Mice inoculated i.n. with 10(4) inclusion-forming units (IFU) of CT-MoPn served as a positive control and the Neisseria gonorrhoeae recombinant porin B (Ng-rPorB) as the negative antigen control. Immunized animals were challenged i.n. with 10(4)IFU of CT-MoPn. Following immunization the combination groups showed high chlamydial serum IgG titers (s.l.+i.m.+s.c. 25,600; c.l+i.m.+s.c. 102,400) and the IgG2a/IgG1 ratios indicated a Th1 response. Following the i.n. challenge the s.l.+i.m.+s.c. group showed the best protection as demonstrated by an increase in body weight of 0.3% over the 10 day course of infection. A statistically significant difference was found when compared with the Ng-rPorB immunized animals that had lost 20% of their original body weight (P<0.05). In addition, the repeated measures ANOVA test showed significant difference in body weight change for the combined immunized groups vs their mucosal counterparts and also the systemic immunized group. A statistically significant difference (P<0.05) was also observed in the number of IFUs recovered from the lungs when the s.l.+i.m.+s.c. (2.8×10(6)) and c.l.+i.m.+s.c. (3.4×10(6)) groups were compared to their respective mucosal only groups (s.l.: 61.9×10(6) and c.l: 136.2×10(6)) and the control Ng-rPorB immunized mice (198.2×10(6)) (P<0.05). In conclusion, a combined systemic plus mucosal vaccination provides better protection against a respiratory challenge with C. trachomatis than either systemic or mucosal immunizations alone.
Collapse
Affiliation(s)
- Pooja Ralli-Jain
- Department of Pathology and Laboratory Medicine, Medical Sciences, Room D440, University of California, Irvine, Irvine, CA 92697-4800, USA
| | | | | | | | | |
Collapse
|
35
|
Carey AJ, Beagley KW. Chlamydia trachomatis, a hidden epidemic: effects on female reproduction and options for treatment. Am J Reprod Immunol 2010; 63:576-86. [PMID: 20192953 DOI: 10.1111/j.1600-0897.2010.00819.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The number of genital tract Chlamydia trachomatis infections is steadily increasing worldwide, with approximately 50-70% of infections asymptomatic. There is currently no uniform screening practice, current antibiotic treatment has failed to prevent the increased incidence, and there is no vaccine available. We examined studies on the epidemiology of C. trachomatis infections, the effects infections have on the female reproductive tract and subsequent reproductive health and what measures are being taken to reduce these problems. Undetected or multiple infections in women can lead to the development of severe reproductive sequelae, including pelvic inflammatory disease and tubal infertility. There are two possible paradigms of chlamydial pathogenesis, the cellular and immunological paradigms. While many vaccine candidates are being extensively tested in animal models, they are still years from clinical trials. With no vaccine available and antibiotic treatment unable to halt the increased incidence, infection rates will continue to increase and cause a significant burden on health care systems.
Collapse
Affiliation(s)
- Alison J Carey
- Institute of Health & Biomedical Innovation, School of Life Sciences, Faculty of Science, Queensland University of Technology, Brisbane, Qld, Australia
| | | |
Collapse
|
36
|
Molina DM, Pal S, Kayala MA, Teng A, Kim PJ, Baldi P, Felgner PL, Liang X, de la Maza LM. Identification of immunodominant antigens of Chlamydia trachomatis using proteome microarrays. Vaccine 2009; 28:3014-24. [PMID: 20044059 DOI: 10.1016/j.vaccine.2009.12.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2009] [Revised: 12/02/2009] [Accepted: 12/14/2009] [Indexed: 12/26/2022]
Abstract
Chlamydia trachomatis is the most common bacterial sexually transmitted pathogen in the world. In order to control this infection there is an urgent need to formulate a vaccine. Identification of protective antigens is required to implement a subunit vaccine. To identify potential antigen vaccine candidates, three strains of mice, BALB/c, C3H/HeN and C57BL/6, were inoculated with live and inactivated C. trachomatis mouse pneumonitis (MoPn) by different routes of immunization. Using a protein microarray, serum samples collected after immunization were tested for the presence of antibodies against specific chlamydial antigens. A total of 225 open reading frames (ORF) of the C. trachomatis genome were cloned, expressed, and printed in the microarray. Using this protein microarray, a total of seven C. trachomatis dominant antigens were identified (TC0052, TC0189, TC0582, TC0660, TC0726, TC0816 and, TC0828) as recognized by IgG antibodies from all three strains of animals after immunization. In addition, the microarray was probed to determine if the antibody response exhibited a Th1 or Th2 bias. Animals immunized with live organisms mounted a predominant Th1 response against most of the chlamydial antigens while mice immunized with inactivated Chlamydia mounted a Th2-biased response. In conclusion, using a high throughput protein microarray we have identified a set of novel proteins that can be tested for their ability to protect against a chlamydial infection.
Collapse
Affiliation(s)
- Douglas M Molina
- ImmPORT Therapeutics, 1 Technology Drive, Suite E309, Irvine, CA 92618, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Igietseme JU, He Q, Joseph K, Eko FO, Lyn D, Ananaba G, Campbell A, Bandea C, Black CM. Role of T lymphocytes in the pathogenesis of Chlamydia disease. J Infect Dis 2009; 200:926-34. [PMID: 19656067 DOI: 10.1086/605411] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Vaccines are needed to prevent the oculogenital diseases of Chlamydia trachomatis. Infected hosts develop immunity, although temporary, and experimental vaccines have yielded significant protective immunity in animal models, fueling the impetus for a vaccine. Because infections cause sequelae, the functional relationship between infection- and vaccine-induced immunity is unclear. We hypothesized that infection- and vaccine-induced immunity are functionally distinct, particularly in the ability to prevent sequelae. Chlamydia-immune mice, with immunity generated by either a previous infection or vaccination, exhibited a significant degree of protective immunity, marked by a lower-intensity, abbreviated course of infection. However, vaccinated mice were protected from infertility, whereas preinfected mice were not. Thus, infection-induced immunity does not prevent the pathologic process leading to infertility. Furthermore, T cell subsets, especially CD8 T cells, play a major role in Chlamydia-induced infertility. The results have important implications for the immunopathogenesis of chlamydial disease and new vaccine strategies.
Collapse
Affiliation(s)
- Joseph U Igietseme
- Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Evolutionary dynamics of ompA, the gene encoding the Chlamydia trachomatis key antigen. J Bacteriol 2009; 191:7182-92. [PMID: 19783629 DOI: 10.1128/jb.00895-09] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chlamydia trachomatis is the trachoma agent and causes most bacterial sexually transmitted infections worldwide. Its major outer membrane protein (MOMP) is a well-known porin and adhesin and is the dominant antigen. So far, investigation of MOMP variability has been focused mainly on molecular epidemiological surveys. In contrast, we aimed to evaluate the impact of the host pressure on this key antigen by analyzing its evolutionary dynamics in 795 isolates from urogenital infections, taking into account the MOMP secondary structure and the sizes/positions of antigenic regions. One-third of the specimens showed a mutational drift from the corresponding genotype, where approximately 42% of the mutations had never been described. Amino acid alterations were sixfold more frequent within B-cell epitopes than in the remaining protein (P = 0.027), and some mutations were also found within or close to T-cell antigenic clusters. Interestingly, the two most ecologically successful genotypes, E and F, showed a mutation rate 60.3-fold lower than that of the other genotypes (P < 10(-8)), suggesting that their efficacy may be the result of a better fitness in dealing with the host immune system rather than of specific virulence factors. Furthermore, the variability exhibited by some genetic variants involved residues that are known to play a critical role during the membrane mechanical movements, contributing to a more stable and flexible porin conformation, which suggests some plasticity to deal with environmental pressure. Globally, these MOMP mutational trends yielded no mosaic structures or important phylogenetic changes, but instead yielded point mutations on specific protein domains, which may enhance pathogen's infectivity, persistence, and transmission.
Collapse
|
39
|
Kari L, Whitmire WM, Crane DD, Reveneau N, Carlson JH, Goheen MM, Peterson EM, Pal S, de la Maza LM, Caldwell HD. Chlamydia trachomatis native major outer membrane protein induces partial protection in nonhuman primates: implication for a trachoma transmission-blocking vaccine. THE JOURNAL OF IMMUNOLOGY 2009; 182:8063-70. [PMID: 19494332 DOI: 10.4049/jimmunol.0804375] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A vaccine is likely the most effective strategy for controlling human chlamydial infections. Recent studies have shown immunization with Chlamydia muridarum major outer membrane protein (MOMP) can induce significant protection against infection and disease in mice if its native trimeric structure is preserved (nMOMP). The objective of this study was to investigate the immunogenicity and vaccine efficacy of Chlamydia trachomatis nMOMP in a nonhuman primate trachoma model. Cynomolgus monkeys (Macaca fascicularis) were immunized systemically with nMOMP, and monkeys were challenged ocularly. Immunization induced high serum IgG and IgA ELISA Ab titers, with Abs displaying high strain-specific neutralizing activity. The PBMCs of immunized monkeys produced a broadly cross-reactive, Ag-specific IFN-gamma response equivalent to that induced by experimental infection. Immunized monkeys exhibited a significant decrease in infectious burden during the early peak shedding periods (days 3-14). However, at later time points, they exhibited no difference from control animals in either burden or duration of infection. Immunization had no effect on the progression of ocular disease. These results show that systemically administered nMOMP is highly immunogenic in nonhuman primates and elicits partially protective immunity against ocular chlamydial challenge. This is the first time a subunit vaccine has shown a significant reduction in ocular shedding in nonhuman primates. A partially protective vaccine, particularly one that reduces infectious burden after primary infection of children, could interrupt the natural trachoma reinfection cycle. This would have a beneficial effect on the transmission between children and sensitized adults which drives blinding inflammatory disease.
Collapse
Affiliation(s)
- Laszlo Kari
- Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Sun G, Pal S, Weiland J, Peterson EM, de la Maza LM. Protection against an intranasal challenge by vaccines formulated with native and recombinant preparations of the Chlamydia trachomatis major outer membrane protein. Vaccine 2009; 27:5020-5. [PMID: 19446590 DOI: 10.1016/j.vaccine.2009.05.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 04/20/2009] [Accepted: 05/04/2009] [Indexed: 12/29/2022]
Abstract
To compare the ability of a native and a recombinant preparation of the major outer membrane protein of Chlamydia trachomatis mouse pneumonitis (MoPn; Ct-nMOMP and Ct-rMOMP) to protect against an intranasal (i.n.) challenge, BALB/c mice were vaccinated by the intramuscular (i.m.) and subcutaneous (s.c.) routes using CpG-1826 and Montanide ISA 720 as adjuvants. Animals inoculated i.n. with live elementary bodies (EB) of Chlamydia served as a positive control. Negative control groups were immunized with either Neisseria gonorrhoeae recombinant porin B (Ng-rPorB) or with minimal essential medium (MEM-0). Mice immunized with Ct-rMOMP, Ct-nMOMP and EB developed a strong immune response as shown by high levels of Chlamydia specific antibodies in serum and a strong T-cell lymphoproliferative response. Following the i.n. challenge with 10(4) inclusion forming units (IFU) of C. trachomatis, mice immunized with Ct-nMOMP or Ct-rMOMP lost significantly less weight than the negative control animals immunized with Ng-rPorB or MEM-0 (P<0.05). However, mice vaccinated with the Ct-nMOMP lost less weight than those immunized with the Ct-rMOMP (P<0.05). Mice were euthanized at 10 days following the challenge, their lungs weighed and the number of IFU of Chlamydia determined. Based on the lung weight and number of IFU recovered, significant protection was observed in the groups of mice immunized with both Ct-nMOMP and the Ct-rMOMP (P<0.05). Nevertheless, significantly better protection was achieved with the Ct-nMOMP in comparison with the Ct-rMOMP (P<0.05). In conclusion, vaccination with a preparation of the nMOMP elicited a more robust protection than immunization with rMOMP, suggesting that the conformational structure of MOMP is critical for inducing strong protection.
Collapse
Affiliation(s)
- Guifeng Sun
- Department of Pathology and Laboratory Medicine, Medical Sciences, Room D440, University of California, Irvine, CA 92697-4800, United States
| | | | | | | | | |
Collapse
|
41
|
Cunningham KA, Beagley KW. Male Genital Tract Chlamydial Infection: Implications for Pathology and Infertility1. Biol Reprod 2008; 79:180-9. [DOI: 10.1095/biolreprod.108.067835] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
42
|
In silico identification and in vivo analysis of a novel T-cell antigen from Chlamydia, NrdB. Vaccine 2008; 26:1285-96. [DOI: 10.1016/j.vaccine.2007.12.048] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Revised: 12/12/2007] [Accepted: 12/28/2007] [Indexed: 01/11/2023]
|
43
|
Hafner LM, McNeilly C. Vaccines for Chlamydia infections of the female genital tract. Future Microbiol 2008; 3:67-77. [DOI: 10.2217/17460913.3.1.67] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Genital infection with Chlamydia trachomatis is an escalating global public health concern causing considerable morbidity and socioeconomic burden worldwide. Although antibiotics are used to treat symptomatic urogenital infections, chlamydial infection remains asymptomatic in approximately 50% of infected men and 70% of infected women. The major clinical manifestations of genital chlamydial infection in women include mucopurulent cervicitis, endometritis and pelvic inflammatory disease. Genital infection with C. trachomatis markedly enhances the risk for reproductive tract sequelae in women, including tubal factor infertility, chronic pain and ectopic pregnancy. Definitive infection control of chlamydial infections will likely be achievable through a safe and efficacious vaccine. This will require identifying protective chlamydial antigens in animal models as well as identifying effective adjuvants and delivery systems that target subunit vaccines to immune inductive sites or secondary lymphoid tissues, and will be safe for use in humans.
Collapse
Affiliation(s)
- Louise M Hafner
- School of Life Sciences & Instiute of Health & Biomedical Innovation (IHBI), Queensland, University of Technology, 2 George Street, Brisbane, Qld. 4001, Australia
| | - Celia McNeilly
- School of Biomedical & Molecular Sciences, University of Surrey, Guildford, GU2 7XH, UK
| |
Collapse
|
44
|
Hafner LM. Reducing the risk of Chlamydia trachomatis transmission: male circumcision or a female vaccine? Future Microbiol 2007; 2:219-22. [PMID: 17661693 DOI: 10.2217/17460913.2.3.219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
45
|
He Q, Martinez-Sobrido L, Eko FO, Palese P, Garcia-Sastre A, Lyn D, Okenu D, Bandea C, Ananaba GA, Black CM, Igietseme JU. Live-attenuated influenza viruses as delivery vectors for Chlamydia vaccines. Immunology 2007; 122:28-37. [PMID: 17451464 PMCID: PMC2265991 DOI: 10.1111/j.1365-2567.2007.02608.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Effective delivery systems are needed to design efficacious vaccines against the obligate intracellular bacterial pathogen, Chlamydia trachomatis. Potentially effective delivery vehicles should promote the induction of adequate levels of mucosal T-cell and antibody responses that mediate long-term protective immunity. Antigen targeting to the nasal-associated lymphoid tissue (NALT) is effective for inducing high levels of specific immune effectors in the genital mucosa, and therefore suitable for vaccine delivery against genital chlamydial infection. We tested the hypothesis that live attenuated influenza A viruses are effective viral vectors for intranasal delivery of subunit vaccines against genital chlamydial infection. Recombinant influenza A/PR8/34 (H1N1) viruses were generated by insertion of immunodominant T-cell epitopes from chlamydial major outer membrane protein into the stalk region of the neuraminidase gene. Intranasal immunization of mice with viral recombinants resulted in a strong T helper 1 (Th1) response against intact chlamydial elementary bodies. Also, immunized mice enjoyed a significant state of protective immunity (P > 0.002) by shedding less chlamydiae and rapidly clearing the infection. Furthermore, a high frequency of Chlamydia-specific Th1 was measured in the genital mucosal and systemic draining lymphoid tissues within 24 hr after challenge of vaccinated mice. Moreover, multiple epitope delivery provided a vaccine advantage over single recombinants. Besides, long-term protective immunity correlated with the preservation of a robustly high frequency of specific Th1 cells and elevated immunoglobulin G2a in genital secretions. Because live attenuated influenza virus vaccines are safe and acceptable for human use, they may provide a new and reliable approach to deliver efficacious vaccines against sexually transmitted diseases.
Collapse
MESH Headings
- Administration, Intranasal
- Animals
- Bacterial Vaccines/administration & dosage
- Bacterial Vaccines/immunology
- Chlamydia Infections/immunology
- Chlamydia Infections/prevention & control
- Chlamydia trachomatis/immunology
- Drug Delivery Systems/methods
- Female
- Genetic Vectors
- Genital Diseases, Female/immunology
- Genital Diseases, Female/microbiology
- Genital Diseases, Female/prevention & control
- Genitalia, Female/immunology
- Immunity, Mucosal
- Immunodominant Epitopes/administration & dosage
- Immunodominant Epitopes/immunology
- Influenza A Virus, H1N1 Subtype/genetics
- Mice
- Mice, Inbred C57BL
- Mucous Membrane/immunology
- Th1 Cells/immunology
- Vaccination/methods
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Qing He
- National Center for Infectious Disease, CDC, Atlanta, GA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
McNeilly CL, Beagley KW, Moore RJ, Haring V, Timms P, Hafner LM. Expression library immunization confers partial protection against Chlamydia muridarum genital infection. Vaccine 2007; 25:2643-55. [PMID: 17239501 DOI: 10.1016/j.vaccine.2006.12.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Revised: 11/30/2006] [Accepted: 12/10/2006] [Indexed: 01/27/2023]
Abstract
Protective sequences of Chlamydia muridarum were identified as potential vaccine candidates by screening a genomic DNA expression library and assessing the immune responses of mice immunized with individual library clones following vaginal challenge with live Chlamydia. Groups of female BALB/c mice were immunized intra-abdominally by gene gun delivery of DNA three times at three-weekly intervals with individual library clones expressing chlamydial protein fragments and humoral and cell-mediated immune responses were evaluated. Chlamydia-specific cytokines including tumour necrosis factor-alpha (TNF-alpha) interleukin-10 (IL-10), interleukin-4 (IL-4), interleukin-12 (IL-12) and interferon-gamma (IFN-gamma) were detected in mice immunized either with selected DNA clones in spleen cells (0.2-135.2 pg/mL) or lymph nodes (0.15-84.9 pg/mL). The most protective antigen identified was TC0512, a putative outer membrane protein (OMP). Immunization of mice with this clone elicited T-helper type-1 (Th-1) and T-helper type-2 (Th-2) cytokines as well as and IgG1 and IgG2a in sera of these animals. Ten days after the last immunization, animals were challenged intra-vaginally with 5 x 10(4) inclusion-forming units (IFUs) of C. muridarum. At 9 days following challenge TC0512 showed a 73% reduction in the number of recoverable Chlamydia compared with vector only immunized controls. Six additional clones were identified that also conferred varying degrees of protection against live chlamydial challenge. Significant protection against the initial stages of infection was shown by two DNA clones (encoding hypothetical proteins) and five clones showed enhanced clearance of chlamydial infection following DNA immunization and live chlamydial challenge. These results demonstrate that the C. muridarum genome can be screened for individual vaccine candidates by genetic immunization and that the screen produces novel and partially protective vaccine candidates.
Collapse
Affiliation(s)
- Celia L McNeilly
- School of Biomedical and Molecular Sciences, University of Surrey, Guildford GU 7XH, Surrey, UK
| | | | | | | | | | | |
Collapse
|
47
|
Thorpe C, Edwards L, Snelgrove R, Finco O, Rae A, Grandi G, Guilio R, Hussell T. Discovery of a vaccine antigen that protects mice from Chlamydia pneumoniae infection. Vaccine 2006; 25:2252-60. [PMID: 17275142 DOI: 10.1016/j.vaccine.2006.12.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2005] [Revised: 06/20/2006] [Accepted: 12/04/2006] [Indexed: 10/23/2022]
Abstract
Chlamydiae are atypical intracellular bacteria that infect via mucosal surfaces causing, for example, trachoma, pneumonia, cervicitis, urethritis and infertility. Existing antibiotics are only partially effective and no vaccines are available. Using surface expressed or secreted proteins previously identified by genomics and proteomics we tested five as vaccines against intranasal challenge with Chlamydia pneumoniae. One antigen, LcrE, induced CD4+ and CD8+ T cell activation, type 1 cytokine secretion and neutralising antibodies and was completely effective in eliminating infection. Such antigens are highly conserved and essential to all Chlamydial species. The discovery of an effective vaccine for Chlamydiae pneumoniae has potential wide benefits for human health.
Collapse
Affiliation(s)
- Callum Thorpe
- Kennedy Institute of Rheumatology, Imperial College London, Charing Cross Hospital Campus, 1 Aspenlea Rd., Hammersmith, London W8 8LH, UK
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Pal S, Peterson EM, Rappuoli R, Ratti G, de la Maza LM. Immunization with the Chlamydia trachomatis major outer membrane protein, using adjuvants developed for human vaccines, can induce partial protection in a mouse model against a genital challenge. Vaccine 2006; 24:766-75. [PMID: 16199110 DOI: 10.1016/j.vaccine.2005.08.074] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2005] [Accepted: 08/16/2005] [Indexed: 10/25/2022]
Abstract
To test several vaccines for Chlamydia trachomatis we vaccinated BALB/c and C3H/HeN female mice with a purified preparation of the native mouse pneumonitis (MoPn) major outer membrane protein (MOMP). The MOMP was formulated with anyone of three different adjuvants MF59, LT-K63 or LT-R72. As a negative control the animals were immunized with ovalbumin. Positive controls were inoculated intranasally (i.n.) with 10(4) inclusion-forming units (IFU) of C. trachomatis MoPn. High levels of Chlamydia-specific antibodies were detected in the serum and vaginal washes of the mice immunized with MOMP. Using a lymphoproliferative assay (LPA) a significant response was obtained in splenocytes from most of the groups of mice vaccinated with MOMP. Two weeks after the last immunization the mice were challenged in the left ovarian bursa with 10(5) IFU of C. trachomatis MoPn and vaginal cultures were collected for a period of 6 weeks. Overall, BALB/c and C3H/HeN mice immunized with MOMP showed a decrease in the severity and length of the infection but the difference with the controls was not statistically significant. Following mating the percentage of mice with bilateral fertility was not significantly different between mice vaccinated with MOMP and their respective ovalbumin-immunized controls. However, the C3H/HeN mice immunized with MOMP using MF59 or LTR72 as adjuvants had significantly more embryos per mouse than the control groups. In conclusion, mice immunized with native MOMP and adjuvants developed for human vaccines showed significant Chlamydia-specific immune response and a limited protection against infection and long-term sequelae.
Collapse
Affiliation(s)
- Sukumar Pal
- Department of Pathology and Laboratory Medicine, Medical Sciences, Room D440, University of California, Irvine, CA 92697-4800, USA
| | | | | | | | | |
Collapse
|
49
|
Morrison SG, Morrison RP. A predominant role for antibody in acquired immunity to chlamydial genital tract reinfection. THE JOURNAL OF IMMUNOLOGY 2006; 175:7536-42. [PMID: 16301662 PMCID: PMC3514507 DOI: 10.4049/jimmunol.175.11.7536] [Citation(s) in RCA: 171] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Acquired immunity to murine Chlamydia trachomatis genital tract reinfection has long been assumed to be solely dependent on cell-mediated immunity. However, in this study, we identify a previously unrecognized protective role for Ab. Immunity develops in Ab-deficient mice following the resolution of primary chlamydial genital infection. Subsequent depletion of CD4+ T cells, but not CD8+ T cells, in those immune Ab-deficient mice before secondary infectious challenge, resulted in an infection that did not resolve. Passive immunization with immune (convalescent) serum conferred a marked level of protective immunity to reinfection, which was characterized by a striking decrease in bacterial shedding, from >100,000 inclusion forming units to fewer than 10 inclusion forming units, and a shortened duration of infection. Furthermore, mAbs to the chlamydial major outer membrane protein and LPS conferred significant levels of immunity to reinfection and reduced chlamydial shedding by >100-fold. Anti-heat shock protein 60 mAb had no protective effect. In contrast to the marked protective efficacy of immune serum on reinfection, the course of primary infection was essentially unaltered by the passive transfer of immune serum. Our results convincingly demonstrate that Abs contribute importantly to immunity to chlamydial genital tract reinfection, and that Ab-mediated protection is highly dependent on CD4+ T cell-mediated adaptive changes that occur in the local genital tract tissues during primary infection. These results impact our understanding of immunity to chlamydial genital infection and may provide important insight into vaccine development.
Collapse
Affiliation(s)
- Sandra G. Morrison
- Division of Infectious Diseases, Department of Medicine, University of Alabama, Birmingham, AL 35294
| | - Richard P. Morrison
- Division of Infectious Diseases, Department of Medicine, University of Alabama, Birmingham, AL 35294
- Department of Microbiology, University of Alabama, Birmingham, AL 35294
- Address correspondence and reprint requests to Dr. Richard P. Morrison, Division of Infectious Diseases, Department of Medicine, University of Alabama, ZRB 216, 1530 3rd Avenue South, Birmingham, AL 35294-0007.
| |
Collapse
|
50
|
Pal S, Peterson EM, de la Maza LM. Vaccination with the Chlamydia trachomatis major outer membrane protein can elicit an immune response as protective as that resulting from inoculation with live bacteria. Infect Immun 2006; 73:8153-60. [PMID: 16299310 PMCID: PMC1307068 DOI: 10.1128/iai.73.12.8153-8160.2005] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
BALB/c mice were vaccinated by the intramuscular (i.m.) and subcutaneous (s.c.) routes with a native preparation of the Chlamydia trachomatis mouse pneumonitis (MoPn) major outer membrane protein (MOMP), using Montanide ISA 720 and CpG-1826 as adjuvants. A negative control group was immunized with ovalbumin and the two adjuvants, and a positive control group was immunized intranasally (i.n.) with 10(4) inclusion-forming units (IFU) of C. trachomatis. Four weeks after the last i.m.-plus-s.c. immunization, mice were challenged in the ovarian bursa with 10(5) IFU of C. trachomatis MoPn. Six weeks after the genital challenge, animals were mated, and the pregnancies were monitored. After vaccination with MOMP, the mice developed strong Chlamydia-specific humoral and cellular immune responses. Following the genital challenge, of the mice vaccinated with the MOMP, only 15% (3/20) had positive vaginal cultures, while 85% (17/20) of the animals immunized with ovalbumin had positive cultures over the 6 weeks of observation (P < 0.05). Also, only 14% (3/21) of the animals inoculated i.n. with Chlamydia had positive vaginal cultures. After mating, 75% (15/20) of the mice vaccinated with MOMP carried embryos in both uterine horns. Of the animals vaccinated i.n. with the Chlamydia, 81% (17/21) had embryos in both uterine horns (P > 0.05). In contrast, only 10% (2/20) of the mice immunized with ovalbumin had embryos in both uterine horns (P < 0.05). In conclusion, immunization with a purified preparation of the MOMP is as effective as vaccination with viable C. trachomatis in eliciting a protective immune response against a genital challenge in mice.
Collapse
Affiliation(s)
- Sukumar Pal
- Department of Pathology and Laboratory Medicine, Medical Sciences I, Room D440, University of California, Irvine, Irvine, CA 92697-4800, USA
| | | | | |
Collapse
|