1
|
Bhardwaj RG, Khalaf ME, Karched M. Secretome analysis and virulence assessment in Abiotrophia defectiva. J Oral Microbiol 2024; 16:2307067. [PMID: 38352067 PMCID: PMC10863525 DOI: 10.1080/20002297.2024.2307067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 01/11/2024] [Indexed: 02/16/2024] Open
Abstract
Background Abiotrophia defectiva, although infrequently occurring, is a notable cause of culture-negative infective endocarditis with limited research on its virulence. Associated with oral infections such as dental caries, exploring its secretome may provide insights into virulence mechanisms. Our study aimed to analyze and characterize the secretome of A. defectiva strain CCUG 27639. Methods Secretome of A. defectiva was prepared from broth cultures and subjected to mass spectrometry and proteomics for protein identification. Inflammatory potential of the secretome was assessed by ELISA. Results Eighty-four proteins were identified, with diverse subcellular localizations predicted by PSORTb. Notably, 20 were cytoplasmic, 12 cytoplasmic membrane, 5 extracellular, and 9 cell wall-anchored proteins. Bioinformatics tools revealed 54 proteins secreted via the 'Sec' pathway and 8 via a non-classical pathway. Moonlighting functions were found in 23 proteins, with over 20 exhibiting potential virulence properties, including peroxiredoxin and oligopeptide ABC transporter substrate-binding protein. Gene Ontology and KEGG analyses categorized protein sequences in various pathways. STRING analysis revealed functional protein association networks. Cytokine profiling demonstrated significant proinflammatory cytokine release (IL-8, IL-1β, and CCL5) from human PBMCs. Conclusions Our study provides a comprehensive understanding of A. defectiva's secretome, laying the foundation for insights into its pathogenicity.
Collapse
Affiliation(s)
- Radhika G Bhardwaj
- Oral Microbiology Research Laboratory, Department of Bioclinical Sciences College of Dentistry, Kuwait University, Safat, Kuwait
| | - Mai E Khalaf
- Department of General Dental Practice, College of Dentistry, Kuwait University, Safat, Kuwait
| | - Maribasappa Karched
- Oral Microbiology Research Laboratory, Department of Bioclinical Sciences College of Dentistry, Kuwait University, Safat, Kuwait
| |
Collapse
|
2
|
Wu A, Wang Y, Ali A, Xu Z, Zhang D, Zhumanov K, Sheng J, Yi J. Design of a multi-epitope vaccine against brucellosis fused to IgG-fc by an immunoinformatics approach. Front Vet Sci 2023; 10:1238634. [PMID: 37937155 PMCID: PMC10625910 DOI: 10.3389/fvets.2023.1238634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/27/2023] [Indexed: 11/09/2023] Open
Abstract
Introduction Brucella, a type of intracellular Gram-negative bacterium, has unique features and acts as a zoonotic pathogen. It can lead to abortion and infertility in animals. Eliminating brucellosis becomes very challenging once it spreads among both humans and animals, putting a heavy burden on livestock and people worldwide. Given the increasing spread of brucellosis, it is crucial to develop improved vaccines for susceptible animals to reduce the disease's impact. Methods In this study, we effectively used an immunoinformatics approach with advanced computer software to carefully identify and analyze important antigenic parts of Brucella abortus. Subsequently, we skillfully designed chimeric peptides to enhance the vaccine's strength and effectiveness. We used computer programs to find four important parts of the Brucella bacteria that our immune system recognizes. Then, we carefully looked for eight parts that are recognized by a type of white blood cell called cytotoxic T cells, six parts recognized by T helper cells, and four parts recognized by B cells. We connected these parts together using a special link, creating a strong new vaccine. To make the vaccine even better, we added some extra parts called molecular adjuvants. These included something called human β-defensins 3 (hBD-3) that we found in a database, and another part that helps the immune system called PADRE. We attached these extra parts to the beginning of the vaccine. In a new and clever way, we made the vaccine even stronger by attaching a part from a mouse's immune system to the end of it. This created a new kind of vaccine called MEV-Fc. We used advanced computer methods to study how well the MEV-Fc vaccine interacts with certain receptors in the body (TLR-2 and TLR-4). Results In the end, Immunosimulation predictions showed that the MEV-Fc vaccine can make the immune system respond strongly, both in terms of cells and antibodies. Discussion In summary, our results provide novel insights for the development of Brucella vaccines. Although further laboratory experiments are required to assess its protective effect.
Collapse
Affiliation(s)
- Aodi Wu
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Yueli Wang
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Adnan Ali
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Zhenyu Xu
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Dongsheng Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Kairat Zhumanov
- College of Veterinary Medicine, Kazakhstan Kazakh State Agricultural University, Almaty, Kazakhstan
| | - Jinliang Sheng
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Jihai Yi
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| |
Collapse
|
3
|
Nandini P, Jakka P, Murugan S, Mazumdar V, Kumar D, Prakash R, Barbuddhe SB, Radhakrishnan G. Immuno-profiling of Brucella proteins for developing improved vaccines and DIVA capable serodiagnostic assays for brucellosis. Front Microbiol 2023; 14:1253349. [PMID: 37860136 PMCID: PMC10582347 DOI: 10.3389/fmicb.2023.1253349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/12/2023] [Indexed: 10/21/2023] Open
Abstract
Brucellosis remains a worldwide zoonotic disease with a serious impact on public health and livestock productivity. Controlling brucellosis in livestock is crucial for limiting human infections in the absence of effective human vaccines. Brucellosis control measures are majorly dependent on rigorous monitoring of disease outbreaks and mass vaccination of livestock. Live attenuated vaccines are available for livestock vaccination that play a vital role in brucellosis control programs in many countries. Even though the existing animal vaccines confer protection against brucellosis, they carry some drawbacks, including their infectivity to humans and interference with sero-monitoring. The available serodiagnostic assays for brucellosis depend on detecting anti-LPS antibodies in the serum. Since diagnosis plays a vital role in controlling brucellosis, developing improved serodiagnostic assays with enhanced specificity, sensitivity and DIVA capability is required. Therefore, it is essential to identify novel antigens for developing improved vaccines and serodiagnostic assays for brucellosis. In the present study, we performed a high throughput immunoprofiling of B. melitensis protein microarray using brucellosis-positive human and animal serum samples. The screening identified several serodominant proteins of Brucella that exhibited common or differential reactivity with sera from animals and humans. Subsequently, we cloned, expressed, and purified ten serodominant proteins, followed by analyzing their potential to develop next-generation vaccines and improved serodiagnostic assays for brucellosis. Further, we demonstrated the protective efficacy of one of the serodominant proteins against the B. melitensis challenge in mice. We found that the seroreactive protein, Dps (BMEI1980), strongly reacted with brucellosis-positive serum samples, but it did not react with sera from B. abortus S19-vaccinated cattle, indicating DIVA capability. A prototype lateral flow assay and indirect ELISA based on Dps protein exhibited high sensitivity, specificity, and DIVA capability. Thus, the present study identified promising candidates for developing improved vaccines and affordable, DIVA-capable serodiagnostic assays for animal and human brucellosis.
Collapse
Affiliation(s)
- Prachita Nandini
- National Institute of Animal Biotechnology (NIAB), Hyderabad, India
- Regional Centre for Biotechnology (RCB), Faridabad, India
| | - Padmaja Jakka
- National Institute of Animal Biotechnology (NIAB), Hyderabad, India
| | - Subathra Murugan
- National Institute of Animal Biotechnology (NIAB), Hyderabad, India
| | - Varadendra Mazumdar
- National Institute of Animal Biotechnology (NIAB), Hyderabad, India
- Regional Centre for Biotechnology (RCB), Faridabad, India
| | - Deepak Kumar
- National Institute of Animal Biotechnology (NIAB), Hyderabad, India
| | - Richa Prakash
- National Institute of Animal Biotechnology (NIAB), Hyderabad, India
| | | | | |
Collapse
|
4
|
Rahimnahal S, Yousefizadeh S, Mohammadi Y. Novel multi-epitope vaccine against bovine brucellosis: approach from immunoinformatics to expression. J Biomol Struct Dyn 2023; 41:15460-15484. [PMID: 36927475 DOI: 10.1080/07391102.2023.2188962] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/02/2023] [Indexed: 03/18/2023]
Abstract
Brucellosis is a zoonotic caused by the Brucella which is a well-known infectious disease agent in domestic animals and if transmitted, it can cause infection in humans. Because brucellosis is contagious, its control depends on the eradication of the animal disease in farms. There are two vaccines based on the killed and/or weakened bacteria against B. melitensis and B. abortus, but no recombinant vaccine is available for preventing the disease. The present study was designed to develop a multi-epitope vaccine against of B. melitensis and B. abortus using virB10, Omp31 and Omp16 antigens by the prediction of T lymphocytes, T cell cytotoxicity and IFN-γ epitopes. 50S L7/L12 Ribosomal protein from Mycobacterium tuberculosis was used as a bovine TLR4 and TLR9 agonist. GPGPG, AAY and KK linkers were used as a linker. Brucella construct was well-integrated in the pET-32a Shuttle vector with BamHI and HindIII restriction enzymes. The final construct contained 769 amino acids, that it was soluble protein of about ∼82 kDa after expression in the Escherichia coli SHuffle host. Modeled protein analysis based on the tertiary structure validation, molecular docking studies, molecular dynamics simulations results like RMSD, Gyration and RMSF as well as MM/PBSA analysis showed that this protein has a stable construct and is capable being in interaction with bovine TLR4 and TLR9. Analysis of the data obtained suggests that the proposed vaccine can induce the immune response by stimulating T- and B-cells, and may be used for prevention and remedial purposes, against B. melitensis and B. abortus.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Somayyeh Rahimnahal
- Department of Animal Science, Faculty of Agriculture, Ilam University, Ilam, Iran
| | - Shahnaz Yousefizadeh
- Department of Laboratory and Clinical Sciences, Faculty of Para-Veterinary, Ilam University, Ilam, Iran
| | - Yahya Mohammadi
- Department of Animal Science, Faculty of Agriculture, Ilam University, Ilam, Iran
| |
Collapse
|
5
|
Tarrahimofrad H, Zamani J, Hamblin MR, Darvish M, Mirzaei H. A designed peptide-based vaccine to combat Brucella melitensis, B. suis and B. abortus: Harnessing an epitope mapping and immunoinformatics approach. Biomed Pharmacother 2022; 155:113557. [PMID: 36115112 DOI: 10.1016/j.biopha.2022.113557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/08/2022] [Accepted: 08/14/2022] [Indexed: 11/19/2022] Open
Abstract
Vaccines against Brucella abortus, B. melitensis and B. suis have been based on weakened or killed bacteria, however there is no recombinant vaccine for disease prevention or therapy. This study attempted to predict IFN-γ epitopes, T cell cytotoxicity, and T lymphocytes in order to produce a multiepitope vaccine based on BtpA, Omp16, Omp28, virB10, Omp25, and Omp31 antigens against B. melitensis, B. abortus, and B. suis. AAY, GPGPG, and EAAAK peptides were used as epitope linkers, while the PADRE sequence was used as a Toll-like receptor 2 (TLR2) and TLR4 agonist. The final construct included 389 amino acids, and was a soluble protein with a molecular weight of 41.3 kDa, and nonallergenic and antigenic properties. Based on molecular docking studies, molecular dynamics simulations such as Gyration, RMSF, and RMSD, as well as tertiary structure validation methods, the modeled protein had a stable structure capable of interacting with TLR2/4. As a result, this novel vaccine may stimulate immune responses in B and T cells, and could prevent infection by B. suis, B. abortus, and B. melitensis.
Collapse
Affiliation(s)
- Hossein Tarrahimofrad
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Javad Zamani
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Maryam Darvish
- Department of Medical Biotechnology, School of Medicine, Arak University of Medical Sciences, Arak, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
6
|
Heidary M, Dashtbin S, Ghanavati R, Mahdizade Ari M, Bostanghadiri N, Darbandi A, Navidifar T, Talebi M. Evaluation of Brucellosis Vaccines: A Comprehensive Review. Front Vet Sci 2022; 9:925773. [PMID: 35923818 PMCID: PMC9339783 DOI: 10.3389/fvets.2022.925773] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/03/2022] [Indexed: 01/18/2023] Open
Abstract
Brucellosis is a bacterial zoonosis caused by Brucella spp. which can lead to heavy economic losses and severe human diseases. Thus, controlling brucellosis is very important. Due to humans easily gaining brucellosis from animals, animal brucellosis control programs can help the eradication of human brucellosis. There are two popular vaccines against animal brucellosis. Live attenuated Brucella abortus strain 19 (S19 vaccine) is the first effective and most extensively used vaccine for the prevention of brucellosis in cattle. Live attenuated Brucella melitensis strain Rev.1 (Rev.1 vaccine) is the most effective vaccine against caprine and ovine brucellosis. Although these two vaccines provide good immunity for animals against brucellosis, the expense of persistent serological responses is one of the main problems of both vaccines. The advantages and limitations of Brucella vaccines, especially new vaccine candidates, have been less studied. In addition, there is an urgent need for new strategies to control and eradicate this disease. Therefore, this narrative review aims to present an updated overview of the available different types of brucellosis vaccines.
Collapse
Affiliation(s)
- Mohsen Heidary
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Shirin Dashtbin
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Roya Ghanavati
- School of Paramedical Sciences, Behbahan Faculty of Medical Sciences, Behbahan, Iran
| | - Marzie Mahdizade Ari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Narjess Bostanghadiri
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Atieh Darbandi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Malihe Talebi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- *Correspondence: Malihe Talebi
| |
Collapse
|
7
|
Oliveira KC, Brancaglion GA, Santos NCM, Araújo LP, Novaes E, Santos RDL, Oliveira SC, Corsetti PP, de Almeida LA. Epitope-Based Vaccine of a Brucella abortus Putative Small RNA Target Induces Protection and Less Tissue Damage in Mice. Front Immunol 2021; 12:778475. [PMID: 34992597 PMCID: PMC8724193 DOI: 10.3389/fimmu.2021.778475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/03/2021] [Indexed: 01/18/2023] Open
Abstract
Brucella spp. are Gram-negative, facultative intracellular bacteria that cause brucellosis in humans and animals. Currently available live attenuated vaccines against brucellosis still have drawbacks. Therefore, subunit vaccines, produced using epitope-based antigens, have the advantage of being safe, cost-effective and efficacious. Here, we identified B. abortus small RNAs expressed during early infection with bone marrow-derived macrophages (BMDMs) and an apolipoprotein N-acyltransferase (Int) was identified as the putative target of the greatest expressed small RNA. Decreased expression of Int was observed during BMDM infection and the protein sequence was evaluated to rationally select a putative immunogenic epitope by immunoinformatic, which was explored as a vaccinal candidate. C57BL/6 mice were immunized and challenged with B. abortus, showing lower recovery in the number of viable bacteria in the liver, spleen, and axillary lymph node and greater production of IgG and fractions when compared to non-vaccinated mice. The vaccinated and infected mice showed the increased expression of TNF-α, IFN-γ, and IL-6 following expression of the anti-inflammatory genes IL-10 and TGF-β in the liver, justifying the reduction in the number and size of the observed granulomas. BMDMs stimulated with splenocyte supernatants from vaccinated and infected mice increase the CD86+ marker, as well as expressing greater amounts of iNOS and the consequent increase in NO production, suggesting an increase in the phagocytic and microbicidal capacity of these cells to eliminate the bacteria.
Collapse
Affiliation(s)
- Karen Cristina Oliveira
- Laboratory of Molecular Biology of Microorganisms, Federal University of Alfenas, Alfenas, Brazil
| | | | - Natália C. M. Santos
- Laboratory of Molecular Biology of Microorganisms, Federal University of Alfenas, Alfenas, Brazil
| | - Leonardo P. Araújo
- Laboratory of Molecular Biology of Microorganisms, Federal University of Alfenas, Alfenas, Brazil
| | - Evandro Novaes
- Department of Biology, Federal University of Lavras, Lavras, Brazil
| | - Renato de Lima Santos
- Department of Clinic and Veterinary Surgery, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Sergio Costa Oliveira
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Patrícia Paiva Corsetti
- Laboratory of Molecular Biology of Microorganisms, Federal University of Alfenas, Alfenas, Brazil
- *Correspondence: Leonardo Augusto de Almeida, ; Patrícia Paiva Corsetti,
| | - Leonardo Augusto de Almeida
- Laboratory of Molecular Biology of Microorganisms, Federal University of Alfenas, Alfenas, Brazil
- *Correspondence: Leonardo Augusto de Almeida, ; Patrícia Paiva Corsetti,
| |
Collapse
|
8
|
Ryskeldinova S, Zinina N, Kydyrbayev Z, Yespembetov B, Kozhamkulov Y, Inkarbekov D, Assanzhanova N, Mailybayeva A, Bugybayeva D, Sarmykova M, Khairullin B, Tabynov K, Bulashev A, Aitzhanov B, Abeuov K, Sansyzbay A, Yespolov T, Renukaradhya GJ, Olsen S, Oñate A, Tabynov K. Registered Influenza Viral Vector Based Brucella abortus Vaccine for Cattle in Kazakhstan: Age-Wise Safety and Efficacy Studies. Front Cell Infect Microbiol 2021; 11:669196. [PMID: 34290993 PMCID: PMC8288105 DOI: 10.3389/fcimb.2021.669196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/07/2021] [Indexed: 11/23/2022] Open
Abstract
A novel influenza viral vector based Brucella abortus vaccine (Flu-BA) was introduced for use in cattle in Kazakhstan in 2019. In this study, the safety and efficacy of the vaccine was evaluated in male and female cattle at different ages, and during pregnancy as a part of its registration process. Our data demonstrated that the Flu-BA vaccine was safe after prime or booster vaccination in calves (5–7 months old male and female), heifers (15–17 months old) and cows (6–7 years old) and was not abortogenic in pregnant animals. A mild, localized granuloma was observed at the Flu-BA injection site. Vaccinated animals did not show signs of influenza infection or reduced milk production in dairy cows, and the influenza viral vector (IVV) was not recovered from nasal swabs or milk. Vaccinated animals in all age groups demonstrated increased IgG antibody responses against Brucella Omp16 and L7/L12 proteins with calves demonstrating the greatest increase in humoral responses. Following experimental challenge with B. abortus 544, vaccinates demonstrated greater protection and no signs of clinical disease, including abortion, were observed. The vaccine effectiveness against B. abortus 544 infection was 75, 60 and 60%, respectively, in calves, heifers and adult cows. Brucella were not isolated from calves of vaccinated cattle that were experimentally challenged during pregnancy. Our data suggests that the Flu-BA vaccine is safe and efficacious in cattle, including pregnant animals; and can therefore be administered to cattle of any age.
Collapse
Affiliation(s)
- Sholpan Ryskeldinova
- Infectious Disease Prevention Laboratory, Research Institute for Biological Safety Problems, Gvardeiskiy, Kazakhstan
| | - Nadezhda Zinina
- Microbiology Laboratory, Research Institute for Biological Safety Problems, Gvardeiskiy, Kazakhstan
| | - Zhailaubay Kydyrbayev
- Infectious Disease Prevention Laboratory, Research Institute for Biological Safety Problems, Gvardeiskiy, Kazakhstan
| | - Bolat Yespembetov
- Microbiology Laboratory, Research Institute for Biological Safety Problems, Gvardeiskiy, Kazakhstan
| | - Yerken Kozhamkulov
- Infectious Disease Prevention Laboratory, Research Institute for Biological Safety Problems, Gvardeiskiy, Kazakhstan
| | - Dulat Inkarbekov
- Infectious Disease Prevention Laboratory, Research Institute for Biological Safety Problems, Gvardeiskiy, Kazakhstan
| | - Nurika Assanzhanova
- Infectious Disease Prevention Laboratory, Research Institute for Biological Safety Problems, Gvardeiskiy, Kazakhstan
| | - Aigerim Mailybayeva
- Infectious Disease Prevention Laboratory, Research Institute for Biological Safety Problems, Gvardeiskiy, Kazakhstan
| | - Dina Bugybayeva
- Infectious Disease Prevention Laboratory, Research Institute for Biological Safety Problems, Gvardeiskiy, Kazakhstan.,International Center for Vaccinology, Kazakh National Agrarian University (KazNAU), Almaty, Kazakhstan
| | - Makhpal Sarmykova
- Microbiology Laboratory, Research Institute for Biological Safety Problems, Gvardeiskiy, Kazakhstan
| | - Berik Khairullin
- Infectious Disease Monitoring Laboratory, Research Institute for Biological Safety Problems, Gvardeiskiy, Kazakhstan
| | - Kairat Tabynov
- International Center for Vaccinology, Kazakh National Agrarian University (KazNAU), Almaty, Kazakhstan.,Preclinical Research Laboratory With Vivarium, M. Aikimbayev National Research Center for Especially Dangerous Infections, Almaty, Kazakhstan
| | - Aitbay Bulashev
- Department of Microbiology and Biotechnology, S. Seifullin Kazakh Agrotechnical University, Nur-Sultan, Kazakhstan
| | - Batyrbek Aitzhanov
- Department of Clinical Veterinary Medicine, Kazakh National Agrarian University (KazNAU), Almaty, Kazakhstan
| | - Khairulla Abeuov
- Infectious Disease Monitoring Laboratory, Research Institute for Biological Safety Problems, Gvardeiskiy, Kazakhstan
| | - Abylay Sansyzbay
- Department of Biological Safety, Kazakh National Agrarian University (KazNAU), Almaty, Kazakhstan
| | - Tlektes Yespolov
- International Center for Vaccinology, Kazakh National Agrarian University (KazNAU), Almaty, Kazakhstan
| | - Gourapura J Renukaradhya
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University (OSU), Wooster, OH, United States
| | - Steven Olsen
- Independent Researcher, McCallsburg, IA, United States
| | - Angel Oñate
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
| | - Kaissar Tabynov
- International Center for Vaccinology, Kazakh National Agrarian University (KazNAU), Almaty, Kazakhstan.,Preclinical Research Laboratory With Vivarium, M. Aikimbayev National Research Center for Especially Dangerous Infections, Almaty, Kazakhstan
| |
Collapse
|
9
|
Huy TXN, Nguyen TT, Reyes AWB, Vu SH, Min W, Lee HJ, Lee JH, Kim S. Immunization With a Combination of Four Recombinant Brucella abortus Proteins Omp16, Omp19, Omp28, and L7/L12 Induces T Helper 1 Immune Response Against Virulent B. abortus 544 Infection in BALB/c Mice. Front Vet Sci 2021; 7:577026. [PMID: 33553273 PMCID: PMC7854899 DOI: 10.3389/fvets.2020.577026] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 12/21/2020] [Indexed: 01/11/2023] Open
Abstract
Protective efficiency of a combination of four recombinant Brucella abortus (B. abortus) proteins, namely outer membrane protein (Omp) 16, Omp19, Omp28, and 50S ribosomal protein L7/L12 was evaluated as a combined subunit vaccine (CSV) against B. abortus infection in RAW 264.7 cell line and murine model. The immunoreactivity of these four recombinant proteins as well as pCold-TF vector reacted with Brucella-positive serum individually, but not with Brucella-negative serum by immunoblotting assay. CSV-treated RAW 264.7 cells significantly induced production of IFN-γ and IL-12 while decreased IL-10 production at the late stage of infection compared to PBS-treated control cells. In addition, the enhancement of nitric oxide production together with cytokines secretion profile in CSV-treated cells proved that CSV notably activated bactericidal mechanisms in macrophages. Consistently, mice immunized with CSV strongly elicited production of pro-inflammatory cytokines TNF-α, IL-6 and MCP-1 compared to PBS control group. Moreover, the concentration of IFN-γ was >IL-10 and titers of IgG2a were also heightened compared to IgG1 in CSV-immunized mice which suggest that CSV induced predominantly T helper 1 T cell. These results suggest that the CSV used in the present study is a potential candidate as a preventive therapy against brucellosis.
Collapse
Affiliation(s)
- Tran Xuan Ngoc Huy
- Institute of Applied Sciences, Ho Chi Minh City University of Technology - HUTECH, Ho Chi Minh City, Vietnam.,Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, South Korea
| | - Trang Thi Nguyen
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, South Korea
| | | | - Son Hai Vu
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, South Korea
| | - WonGi Min
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, South Korea
| | - Hu Jang Lee
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, South Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Chonbuk National University, Iksan, South Korea
| | - Suk Kim
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, South Korea
| |
Collapse
|
10
|
Solanki KS, Varshney R, Qureshi S, Thomas P, Singh R, Agrawal A, Chaudhuri P. Non-infectious outer membrane vesicles derived from Brucella abortus S19Δper as an alternative acellular vaccine protects mice against virulent challenge. Int Immunopharmacol 2020; 90:107148. [PMID: 33189614 DOI: 10.1016/j.intimp.2020.107148] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/15/2020] [Accepted: 10/23/2020] [Indexed: 10/23/2022]
Abstract
The prime human and animal safety issues accentuate the search of promising newer alternative vaccine candidates to resolve complications associated with the live attenuated Brucella abortus strain19 (S19) vaccine. Outer membrane vesicles (OMVs S19 Δper) extracted from Brucella abortus S19Δper (S19Δper) as an alternative subunit vaccine candidate has been explored in the present study as OMVs are endowed with immunogenic molecules, including LPS and outer membrane proteins (OMPs) and do not cause infection by virtue of being an acellular entity. The LPS defective S19Δper released a higher amount of OMVs than its parent strain S19. Under transmission electron microscopy (TEM), OMVs were seen as nano-sized outward bulge from the surface of Brucella. Dynamic light scattering analysis of OMVs revealed that OMVs S19Δper showed the less polydispersity index (PDI) than OMVs S19 pointing towards relatively more homogenous OMVs populations. Both OMVs S19Δper and OMVs S19 with or without booster dose and S19 vaccine were used for immunization of mice and subsequently challenged with 2 × 105 CFU virulent Brucella abortus strain 544 (S544) to assess protective efficacy of vaccines. The less splenic weight index and less S544 count in OMVs immunized mice in comparison to unimmunized mice after S544 challenge clearly indicated good protective efficacy of OMVs. OMVs S19 Δper induced relatively high titer of IgG than OMVs S19 but conferred nearly equal protection against brucellosis. An ELISA based determination of IgG and its isotype response, Cytometric Bead Array (CBA) based quantitation of serum cytokines and FACS based enumeration of CD4+ and CD8+ T cells revealed high titer of IgG, production of both Th1 (IgG2a) and Th2 (IgG1) related antibodies, stimulation of IL-2, TNF (Th1) and IL-4, IL-6, IL-10 (Th2) cytokines, and induced T cell response suggested that OMVs S19Δper elicited Th1 and Th2 type immune response and ensured protection against S544 challenge in murine model.
Collapse
Affiliation(s)
- Khushal Singh Solanki
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India.
| | - Rajat Varshney
- Division of Bacteriology and Mycology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India; Department of Veterinary Microbiology, FVAS, IAS, RGSC, Banaras Hindu University, Barkachha, Mirzapur, Uttar Pradesh 231001, India.
| | - Salauddin Qureshi
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India.
| | - Prasad Thomas
- Division of Bacteriology and Mycology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India.
| | - Rahul Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India; Department of Veterinary Pathology, Khalsa College of Veterinary & Animal Sciences, Amritsar, Punjab 143001, India.
| | - Aditya Agrawal
- Division of Animal Biochemistry, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India.
| | - Pallab Chaudhuri
- Division of Bacteriology and Mycology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India.
| |
Collapse
|
11
|
Xiao C, Huang Y, Wei Q, Liu Y, Ji Q, Li K, Bao G. Comparative Proteomic Analysis Reveals Complex Responses to Bordetella bronchiseptica Infections in the Spleen of Rabbits. Proteomics 2020; 20:e2000117. [PMID: 32820866 DOI: 10.1002/pmic.202000117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/30/2020] [Indexed: 11/07/2022]
Abstract
Bordetella bronchiseptica (B. bronchiseptica) causes a respiratory disease in rabbits. To determine the proteins of B. bronchiseptica in rabbits related to the disease, differentially accumulated proteins in B. bronchiseptica-infected cells are identified by comparative proteomic analysis. Comparative proteomic analysis detects 5814 proteins and quantifies 4854 of these. Fifty eight upregulated and 38 downregulated proteins are identified in spleen tissue after B. bronchiseptica infection of rabbits (both p < 0.05). The significantly enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways are ribosome, biosynthesis of amino acids, biosynthesis of amino acids, protein export, and carbon metabolism etc. (all p < 0.01). Significantly enriched KEGG pathways include 'ocu03010 ribosome' (a); 'ocu00260 glycine, serine threonine metabolism'. Analyses of control and infected spleen cells detect responses to B. bronchiseptica infection. Many differentially affected proteins are evident, and reflect different biological changes and diverse subcellular localizations between control and infected spleen cells. Infection markedly alters the expressions of proteins linked to the serine protease system, with the 'phagosome,' 'biosynthesis of amino acids,' 'glycine, serine threonine metabolism,' 'intestinal immune network for IgA production', and 'amino sugar and nucleotide sugar metabolism' associated with B. bronchiseptica infection. The result will inform studies of responses to B. bronchiseptica infections in rabbits.
Collapse
Affiliation(s)
- Chenwen Xiao
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Shiqiao Road 145#, Hangzhou, 310021, China
| | - Yee Huang
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Shiqiao Road 145#, Hangzhou, 310021, China
| | - Qiang Wei
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Shiqiao Road 145#, Hangzhou, 310021, China
| | - Yan Liu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Shiqiao Road 145#, Hangzhou, 310021, China
| | - Quanan Ji
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Shiqiao Road 145#, Hangzhou, 310021, China
| | - Ke Li
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Shiqiao Road 145#, Hangzhou, 310021, China
| | - Guolian Bao
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Shiqiao Road 145#, Hangzhou, 310021, China
| |
Collapse
|
12
|
Huy TXN, Bernardo Reyes AW, Vu SH, Arayan LT, Hop HT, Min W, Lee HJ, Lee JH, Kim S. Immunogenicity and protective response induced by recombinant Brucella abortus proteins Adk, SecB and combination of these two recombinant proteins against a virulent strain B. abortus 544 infection in BALB/c mice. Microb Pathog 2020; 143:104137. [PMID: 32169487 DOI: 10.1016/j.micpath.2020.104137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/17/2020] [Accepted: 03/06/2020] [Indexed: 01/04/2023]
Abstract
In this study, two recombinant proteins encoded by Brucella abortus genes Adk and SecB were evaluated as single subunit vaccine (SSV) as well as combined subunit vaccine (CSV) against B. abortus infection in BALB/c mice. These genes were cloned into pcold-TF expression system and recombinant proteins were expressed in Escherichia coli DH5α. The immunoreactivity of purified rAdk and rSecB was analyzed by immunoblotting showing that purified rAdk and rSecB as well as pcold-TF vector strongly reacted with Brucella-positive serum. Mice were immunized intraperitoneally with SSVs, CSV, pcold-TF, RB51 and PBS. The analysis of cytokine revealed that SSVs and CSV can strongly induce production of proinflammatory cytokines TNF and IL-6, suggesting that these subunit vaccines elicited innate immune response, particularly, activated antimicrobial mechanism of macrophages to limit the initial infection. On the other hand, immunization with SSVs and CSV elicited strong IFN-γ production and decreased IL-10 production compared to PBS group. The secretion profiles of IFN-γ and IL-10 together with an enhancement of blood CD4+ population and significantly induced specific IgG1 and IgG2a antibodies indicated that SSVs and CSV induced not only humoral immunity but also T helper 1 T cell immunity. Finally, spleen proliferation and bacterial burden in the spleen of mice vaccinated with these subunit vaccines were significantly lower than those of PBS group, which conferred significant protection against B. abortus infection. Altogether, the potential of these antigens of B. abortus could be prospective candidates to develop subunit vaccines against brucellosis.
Collapse
Affiliation(s)
- Tran Xuan Ngoc Huy
- Institute of Applied Sciences, Ho Chi Minh City University of Technology - HUTECH, 475A Dien Bien Phu St., Ward 25, Binh Thanh District, Ho Chi Minh City, Vietnam; Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| | - Alisha Wehdnesday Bernardo Reyes
- Institute of Applied Sciences, Ho Chi Minh City University of Technology - HUTECH, 475A Dien Bien Phu St., Ward 25, Binh Thanh District, Ho Chi Minh City, Vietnam
| | - Son Hai Vu
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Lauren Togonon Arayan
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Huynh Tan Hop
- Biozentrum, University of Basel, 4056, Basel, Switzerland
| | - WonGi Min
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Hu Jang Lee
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Chonbuk National University, Iksan, 54596, Republic of Korea
| | - Suk Kim
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| |
Collapse
|
13
|
Gupta S, Mohan S, Somani VK, Aggarwal S, Bhatnagar R. Simultaneous Immunization with Omp25 and L7/L12 Provides Protection against Brucellosis in Mice. Pathogens 2020; 9:pathogens9020152. [PMID: 32102449 PMCID: PMC7175130 DOI: 10.3390/pathogens9020152] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/20/2020] [Accepted: 02/20/2020] [Indexed: 01/18/2023] Open
Abstract
Currently used Brucella vaccines, Brucella abortus strain 19 and RB51, comprises of live attenuated Brucella strains and prevent infection in animals. However, these vaccines pose potential risks to recipient animals such as attenuation reversal and virulence in susceptible hosts on administration. In this context, recombinant subunit vaccines emerge as a safe and competent alternative in combating the disease. In this study, we formulated a divalent recombinant vaccine consisting of Omp25 and L7/L12 of B. abortus and evaluated vaccine potential individually as well as in combination. Sera obtained from divalent vaccine (Omp25+L7/L12) immunized mice group exhibited enhanced IgG titers against both components and indicated specificity upon immunoblotting reiterating its authenticity. Further, the IgG1/IgG2a ratio obtained against each antigen predicted a predominant Th2 immune response in the Omp25+L7/L12 immunized mice group. Upon infection with virulent B. abortus 544, Omp25+L7/L12 infected mice exhibited superior Log10 protection compared to individual vaccines. Consequently, this study recommends that simultaneous immunization of Omp25 and L7/L12 as a divalent vaccine complements and triggers a Th2 mediated immune response in mice competent of providing protection against brucellosis.
Collapse
Affiliation(s)
- Sonal Gupta
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India; (S.G.); (S.M.); (V.K.S.); (S.A.)
| | - Surender Mohan
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India; (S.G.); (S.M.); (V.K.S.); (S.A.)
| | - Vikas Kumar Somani
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India; (S.G.); (S.M.); (V.K.S.); (S.A.)
- Department of Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Somya Aggarwal
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India; (S.G.); (S.M.); (V.K.S.); (S.A.)
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rakesh Bhatnagar
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India; (S.G.); (S.M.); (V.K.S.); (S.A.)
- Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
- Correspondence: ; Tel.: +91-11-26704079; Fax: +91-11-26717040
| |
Collapse
|
14
|
Gupta S, Singh D, Gupta M, Bhatnagar R. A combined subunit vaccine comprising BP26, Omp25 and L7/L12 against brucellosis. Pathog Dis 2020; 77:5714751. [DOI: 10.1093/femspd/ftaa002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 01/22/2020] [Indexed: 01/27/2023] Open
Abstract
ABSTRACT
The current vaccines against brucellosis, namely Brucella abortus strains 19 and RB51, prevent infection in animals but pose potential risks like virulence and attenuation reversal. In this milieu, although subunit vaccination using a single potent immunogen of B. abortus, e.g. BP26 or Omp25 or L7/L12 etc., appears as a safer alternative, nonetheless it confers inadequate protection against the zoonosis compared to attenuated vaccines. Hence, we have investigated the prophylactic potential of a combined subunit vaccine (CSV) comprising the BP26, Omp25 and L7/L12 antigens of B. abortus, in mice model. Sera obtained from CSV immunized mice groups showed heightened IgG titers against all the three components and exhibited specificity upon immunoblotting, reiterating their authenticity. Further, the IgG1/IgG2a ratio obtained against each antigen revealed a predominant Th2 immune response in CSV immunized mice group. However, on assessing the levels of Th1-dependent (IFN-γ and TNF-α) and Th2-dependent (IL-4 and IL-10) cytokines in different formulations, prominent IFN-γ levels were elicited in CSV immunized mice. Further, upon infection with virulent B. abortus 544, the combined subunit vaccinated mice displayed superior degree of protection (Log10 reduction) than the individual vaccines; however, B. abortus S19 showed the highest protection. Altogether, this study suggests that co-immunization of three B. abortus immunogens as a CSV complements and triggers a mixed Th1/Th2 immune response leading to superior degree of protection against pathogenic B. abortus 544 infection.
Collapse
Affiliation(s)
- Sonal Gupta
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Damini Singh
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Manish Gupta
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rakesh Bhatnagar
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
- Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
15
|
Deng Y, Liu X, Duan K, Peng Q. Research Progress on Brucellosis. Curr Med Chem 2019; 26:5598-5608. [PMID: 29745323 DOI: 10.2174/0929867325666180510125009] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 02/09/2018] [Accepted: 05/02/2018] [Indexed: 01/08/2023]
Abstract
Brucellosis is a debilitating febrile illness caused by an intracellular Brucella. The disease is distributed in humans and animals widely, especially in developing countries. Ten species are included in the genus Brucella nowadays; four species of them are pathogenic to humans, which make brucellosis a zoonosis with more than 500,000 new cases reported annually. For human brucellosis, the most pathogenic species is B. melitensis followed by B. suis, while B. abortus is the mildest type of brucellosis. The infection mechanism of Brucella is complicated and mostly relies on its virulence factors. The therapy of the disease contains vaccination and antibiotic. However, there are some defects in currently available vaccines such as the lower protective level and safety. Thus, safe and efficient vaccines for brucellosis are still awaited. The dual therapy of antibacterial is effective in the treatment of brucellosis if a rapid and exact detection method is found.
Collapse
Affiliation(s)
- Yuming Deng
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun 130062, China
| | - Xinyue Liu
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun 130062, China
| | - Kaifang Duan
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun 130062, China
| | - Qisheng Peng
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun 130062, China
| |
Collapse
|
16
|
Hou H, Liu X, Peng Q. The advances in brucellosis vaccines. Vaccine 2019; 37:3981-3988. [PMID: 31176541 DOI: 10.1016/j.vaccine.2019.05.084] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 05/04/2019] [Accepted: 05/21/2019] [Indexed: 01/18/2023]
Abstract
Brucellosis is a worldwide zoonosis affecting animal and human health. Till now, there is no effective vaccine licensed for brucellosis in humans. Although M5, H38 and 45/20 vaccines were used to prevent animal brucellosis in the early stages, the currently used animal vaccines are S19, Rev.1, S2, RB51 and SR82. However, these vaccines still have several drawbacks such as residual virulence and interfering conventional serological tests. With the development of DNA recombination technologies and the completion of the sequence of Brucella genome, much research focuses on the search for potential safer and more effective vaccines. Preliminary studies have demonstrated that new vaccines, including genetically engineered attenuated vaccines, subunit vaccines and other potential vaccines, have higher levels of protection, but there are still some problems. In this paper, we briefly review the main vaccines that have been used in controlling the brucellosis for decades and the progress in the development of new brucellosis vaccines.
Collapse
Affiliation(s)
- Huanhuan Hou
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun 130062, China
| | - Xiaofeng Liu
- Tumor Hospital of Jilin Province, Changchun 130021, China
| | - Qisheng Peng
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun 130062, China.
| |
Collapse
|
17
|
Karched M, Bhardwaj RG, Tiss A, Asikainen S. Proteomic Analysis and Virulence Assessment of Granulicatella adiacens Secretome. Front Cell Infect Microbiol 2019; 9:104. [PMID: 31069174 PMCID: PMC6491454 DOI: 10.3389/fcimb.2019.00104] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/26/2019] [Indexed: 12/31/2022] Open
Abstract
Despite reports on the occurrence of Granulicatella adiacens in infective endocarditis, few mechanistic studies on its virulence characteristics or pathogenicity are available. Proteins secreted by this species may act as determinants of host-microbe interaction and play a role in virulence. Our aim in this study was to investigate and functionally characterize the secretome of G. adiacens. Proteins in the secretome preparation were digested by trypsin and applied to nanoLC-ESI-MS/MS. By using a combined mass spectrometry and bioinformatics approach, we identified 101 proteins. Bioinformatics tools predicting subcellular localization revealed that 18 of the secreted proteins possessed signal sequence. More than 20% of the secretome proteins were putative virulence proteins including serine protease, superoxide dismutase, aminopeptidase, molecular chaperone DnaK, and thioredoxin. Ribosomal proteins, molecular chaperones, and glycolytic enzymes, together known as "moonlighting proteins," comprised fifth of the secretome proteins. By Gene Ontology analysis, more than 60 proteins of the secretome were grouped in biological processes or molecular functions. KEGG pathway analysis disclosed that the secretome consisted of enzymes involved in biosynthesis of antibiotics. Cytokine profiling revealed that secreted proteins stimulated key cytokines, such as IL-1β, MCP-1, TNF-α, and RANTES from human PBMCs. In summary, the results from the current investigation of the G. adiacens secretome provide a basis for understanding possible pathogenic mechanisms of G. adiacens.
Collapse
Affiliation(s)
- Maribasappa Karched
- Oral Microbiology Research Laboratory, Faculty of Dentistry, Kuwait University, Kuwait City, Kuwait
| | - Radhika G Bhardwaj
- Oral Microbiology Research Laboratory, Faculty of Dentistry, Kuwait University, Kuwait City, Kuwait
| | - Ali Tiss
- Functional Proteomics and Metabolomics Unit, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Sirkka Asikainen
- Oral Microbiology Research Laboratory, Faculty of Dentistry, Kuwait University, Kuwait City, Kuwait
| |
Collapse
|
18
|
Soh SH, Shim S, Im YB, Park HT, Cho CS, Yoo HS. Induction of Th2-related immune responses and production of systemic IgA in mice intranasally immunized with Brucella abortus malate dehydrogenase loaded chitosan nanoparticles. Vaccine 2019; 37:1554-1564. [PMID: 30792035 DOI: 10.1016/j.vaccine.2019.02.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/02/2019] [Accepted: 02/07/2019] [Indexed: 12/28/2022]
Abstract
The aim of this study was to investigate the induction of mucosal immune responses by an important Brucella abortus antigen, malate dehydrogenase (Mdh), loaded in mucoadhesive chitosan nanoparticles (CNs) and immunized intranasally in a BALB/c mouse model. The production of cytokines was investigated in human leukemic monocyte cells (THP-1 cells) after stimulation with the nanoparticles. Mdh-loaded CNs (CNs-Mdh) induced higher interleukin (IL)-6 production than unloaded antigens and TF loaded CNs (CNs-TF). Using ELISpot to quantify cytokines and antibody-secreting cells in the intranasally immunized mice, IL-4 and IgG-secreting cells were found to be significantly increased at 4 weeks and 6 weeks post-immunization in the CNs-Mdh immunized group, respectively. Increases in Mdh-specific IgG, IgG1, and IgG2a antibodies were confirmed at 6 weeks after immunization, indicating a predominant IgG1 response. Analysis of the mucosal immune response in the intranasally immunized mice revealed, Mdh-specific IgA and total IgA in the nasal washes, genital secretions, fecal extracts and sera that were remarkably increased in the CNs-Mdh-immunized group compared to the CNs-TF-immunized group except total IgA of nasal wash. Therefore, the results indicated that the intranasal immunization of CNs-loaded B. abortus Mdh antigen effectively induced antigen-specific mucosal immune responses through the elicitation of Th2-related immune responses.
Collapse
Affiliation(s)
- Sang Hee Soh
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea.
| | - Soojin Shim
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea.
| | - Young Bin Im
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea.
| | - Hong-Tae Park
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea.
| | - Chong-Su Cho
- Department of Agricultural Biotechnology & Research Institute for Agriculture & Life Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| | - Han Sang Yoo
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
19
|
Hisham Y, Ashhab Y. Identification of Cross-Protective Potential Antigens against Pathogenic Brucella spp. through Combining Pan-Genome Analysis with Reverse Vaccinology. J Immunol Res 2018; 2018:1474517. [PMID: 30622973 PMCID: PMC6304850 DOI: 10.1155/2018/1474517] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 11/04/2018] [Indexed: 01/18/2023] Open
Abstract
Brucellosis is a zoonotic infectious disease caused by bacteria of the genus Brucella. Brucella melitensis, Brucella abortus, and Brucella suis are the most pathogenic species of this genus causing the majority of human and domestic animal brucellosis. There is a need to develop a safe and potent subunit vaccine to overcome the serious drawbacks of the live attenuated Brucella vaccines. The aim of this work was to discover antigen candidates conserved among the three pathogenic species. In this study, we employed a reverse vaccinology strategy to compute the core proteome of 90 completed genomes: 55 B. melitensis, 17 B. abortus, and 18 B. suis. The core proteome was analyzed by a metasubcellular localization prediction pipeline to identify surface-associated proteins. The identified proteins were thoroughly analyzed using various in silico tools to obtain the most potential protective antigens. The number of core proteins obtained from analyzing the 90 proteomes was 1939 proteins. The surface-associated proteins were 177. The number of potential antigens was 87; those with adhesion score ≥ 0.5 were considered antigen with "high potential," while those with a score of 0.4-0.5 were considered antigens with "intermediate potential." According to a cumulative score derived from protein antigenicity, density of MHC-I and MHC-II epitopes, MHC allele coverage, and B-cell epitope density scores, a final list of 34 potential antigens was obtained. Remarkably, most of the 34 proteins are associated with bacterial adhesion, invasion, evasion, and adaptation to the hostile intracellular environment of macrophages which is adjusted to deprive Brucella of required nutrients. Our results provide a manageable list of potential protective antigens for developing a potent vaccine against brucellosis. Moreover, our elaborated analysis can provide further insights into novel Brucella virulence factors. Our next step is to test some of these antigens using an appropriate antigen delivery system.
Collapse
Affiliation(s)
- Yasmin Hisham
- Palestine-Korea Biotechnology Center, Palestine Polytechnic University, Hebron, State of Palestine
| | - Yaqoub Ashhab
- Palestine-Korea Biotechnology Center, Palestine Polytechnic University, Hebron, State of Palestine
| |
Collapse
|
20
|
Golshani M, Amani M, Siadat SD, Nejati-Moheimani M, Arsang A, Bouzari S. Comparison of the protective immunity elicited by a Brucella cocktail protein vaccine (rL7/L12+rTOmp31+rSOmp2b) in two different adjuvant formulations in BALB/c mice. Mol Immunol 2018; 103:306-311. [PMID: 30343119 DOI: 10.1016/j.molimm.2018.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 09/26/2018] [Accepted: 10/01/2018] [Indexed: 11/29/2022]
Abstract
In the present study, protective efficacy conferred by a cocktail protein consisted of Brucella L7/L12 ribosomal, truncated outer membrane protein 31 (TOmp31) and SOmp2b recombinant proteins in CpG ODN 1826+ Montanide ISA 70VG or Poly (I:C) adjuvants was evaluated and compared in BALB/c mice. Immunization of mice with both vaccine regimens elicited strong specific IgG responses (higher IgG2a titers over IgG1 titers), provided T helper1 (Th1) oriented immune responses and conferred protection levels compatible to the live vaccines against Brucella challenge. Vaccination of BALB/c mice with the cocktail protein in CpG ODN 1826+ Montanide ISA 70 V G adjuvants induced higher levels of antibody, IFN-γ/IL-2 and conferred more protection levels against B. melitenisis and B. abortus challenge than did the cocktail protein in Poly (I:C) formulation. In conclusion, both vaccine regimens are capable of stimulating specific Th1- biased immune responses and conferring cross protection against B. melitensis and B. abortus infections. Therefore, they could be introduced as new potential candidates for the development of subunit vaccines against Brucella infection.
Collapse
Affiliation(s)
- Maryam Golshani
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Mona Amani
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Davar Siadat
- Tuberculosis and Pulmonary Research Department, Pasteur Institute of Iran, Tehran, Iran
| | | | - Amin Arsang
- Bacterial Vaccine and Antigen Production Branch, Pasteur Institute of Iran, Karaj, Iran
| | - Saeid Bouzari
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
21
|
Gómez L, Alvarez F, Betancur D, Oñate A. Brucellosis vaccines based on the open reading frames from genomic island 3 of Brucella abortus. Vaccine 2018; 36:2928-2936. [PMID: 29685597 DOI: 10.1016/j.vaccine.2018.04.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/02/2018] [Accepted: 04/04/2018] [Indexed: 01/18/2023]
Abstract
Brucella abortus is the etiological agent of brucellosis, a zoonotic disease affecting cattle and humans. This disease has been partially controlled in cattle by immunization with live attenuated B. abortus S19 and RB51 strains. However, use of these vaccine strains has been associated with safety issues in animals and humans. New vaccines have since emerged in the prevention of brucellosis, particularly DNA vaccines, which have shown effectiveness and a good safety profile. Their protection efficacy in mice is associated with the induction of Th1 type and cytotoxic T cell mediated immune response against structural antigens and virulence factors expressed during B. abortus infection. Some antigenic candidate for vaccine design against brucellosis (mainly DNA vaccines) have been obtained from genomic island 3 (GI-3) of B. abortus, which encodes several open reading frames (ORFs) involved in the intracellular survival and virulence of this pathogen. The immunogenicity and protection conferred by these DNA vaccines in a murine model is reviewed in this article, suggesting that some of them could be safe and effective vaccine candidates against to prevent B. abortus infection.
Collapse
Affiliation(s)
- Leonardo Gómez
- Laboratory of Molecular Immunology, Faculty of Biological Sciences, Department of Microbiology, University of Concepción, Concepción, Chile
| | - Francisco Alvarez
- Laboratory of Molecular Immunology, Faculty of Biological Sciences, Department of Microbiology, University of Concepción, Concepción, Chile
| | - Daniel Betancur
- Laboratory of Molecular Immunology, Faculty of Biological Sciences, Department of Microbiology, University of Concepción, Concepción, Chile
| | - Angel Oñate
- Laboratory of Molecular Immunology, Faculty of Biological Sciences, Department of Microbiology, University of Concepción, Concepción, Chile.
| |
Collapse
|
22
|
Paul S, Peddayelachagiri BV, Nagaraj S, Konduru B, Batra HV. Protective and therapeutic efficacy study of divalent fusion protein rL7/L12-Omp25 against B. abortus 544 in presence of IFNγ. Appl Microbiol Biotechnol 2018; 102:8895-8907. [PMID: 30136204 DOI: 10.1007/s00253-018-9314-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/05/2018] [Accepted: 08/07/2018] [Indexed: 01/18/2023]
Abstract
Brucella as intracellular pathogen requires a coordinate interaction between Th1 subset of gamma interferon-secreting CD4 T cells and CD8 T cells for optimal protective immunity. It was previously recognized that L7/L12 as T cell-reactive antigen from the pathogen. On other hand, Omp25 was found as another antigen to provide protection against the Brucella infection by eliciting both Th1 and Th2 type of immune responses in mice. Here, we analyzed the prophylactic and therapeutic efficacy of a divalent fusion protein (rL7/L12-Omp25) comprising these two promising immunogens of Brucella in the presence of murine IFN-gamma in mice against B. abortus 544 challenge. rIFN-gamma with rL7/L12-Omp25 resulted in superior immune response when compared to the animal vaccine strain B. abortus S19. The vaccine candidate caused dominance of IgG1 over IgG2a and upregulated cytokine secretion (IFN-gamma, TNF-α, and IL-10) among immunized mice. Moreover, the antigen in combination with murine IFN-gamma elicited stronger cell-mediated immune response among the immunized animals when compared to standard vaccine (S19). The registered log protection unit among challenged mice with B. abortus 544 pathogen was 2.16, p = 0.0001 when rL7/L12-Omp25 was administered alone and 2.4, p = 0.0001 when it was administered along with rIFN-gamma. However, the molecule upon administration with murine IFN-gamma imparted very minimal or no therapeutic effect against brucellosis. To conclude, our study demonstrates the potential of rL7/L12-Omp25 as an immunogen of prospective and efficient prophylaxis as it is capable of eliciting both cell-mediated and humoral immune responses against brucellosis.
Collapse
Affiliation(s)
- Soumya Paul
- Microbiology Division, Defence Food Research Laboratory, Mysore, Karnataka, India
| | | | - Sowmya Nagaraj
- Microbiology Division, Defence Food Research Laboratory, Mysore, Karnataka, India
| | - Balakrishna Konduru
- Microbiology Division, Defence Food Research Laboratory, Mysore, Karnataka, India
| | - Harsh V Batra
- Microbiology Division, Defence Food Research Laboratory, Mysore, Karnataka, India.
| |
Collapse
|
23
|
Immunization of BALB/c mice with a combination of four recombinant Brucella abortus proteins, AspC, Dps, InpB and Ndk, confers a marked protection against a virulent strain of Brucella abortus. Vaccine 2018; 36:3027-3033. [PMID: 29678458 DOI: 10.1016/j.vaccine.2018.04.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 04/04/2018] [Accepted: 04/09/2018] [Indexed: 11/21/2022]
Abstract
In this study, we assessed the protective efficacy of single subunit vaccines, encoded by the B. abortus 544 genes aspC, dps, yaeC and inpB, against B. abortus infection in mice. First, immunization with these antigens, with the exception of the YaeC protein, was found to elicit both humoral and cellular immune responses with IgG2a being dominant over IgG1. In addition, a massive production of IFN-γ but lower degree of IL-10 was observed, suggesting that all three antigens were able to induce predominantly cell-mediated immunity in response to B. abortus infection. Further investigation of a combined subunit vaccine (CSV) consisting of purified AspC, Dps, InpB and Ndk proteins showed a superior protective effect in mice against brucellosis. The intraperitoneal injection of this combination was shown to induce a remarkable production of IFN-γ and IL-2, which occurred in conjunction with an increase of blood CD4+ and CD8+ T cell proportions. In addition, the higher titer of IgG2a compared to IgG1 elicited by this CSV was obtained, suggesting that this CSV induced a typical T-helper-1-dominated immune response in vivo. Furthermore, the protection level induced by this combination was significantly higher than that induced by single antigens and was not significantly different compared to a group immunized with a live attenuated vaccine (RB51). Altogether, our findings suggest that the combination of different immunogenic antigens could be a useful approach for the development of a new, effective and safe brucellosis vaccine that can replace current vaccine strains.
Collapse
|
24
|
Golshani M, Ghasemian M, Gheibi N, Bouzari S. In silico Design, and In vitro Expression of a Fusion Protein Encoding Brucella abortus L7/L12 and SOmp2b Antigens. Adv Biomed Res 2018. [PMID: 29531919 PMCID: PMC5840964 DOI: 10.4103/abr.abr_10_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: L7/L12 is a protective antigen conserved in main Brucella pathogens and is considered as potential vaccine candidate. Outer membrane protein 2b is an immunogen conserved in all Brucella pathogens. Materials and Methods: The purpose of the current study was to in silico design a L7/L12-SOmp2b fusion protein and in vitro production of the chimera. Two possible fusion forms, L7/L12-SOmp2b and SOmp2b-L7/L12, were subjected to in silico modeling and analysis. Cloning and expression of the fusion protein has been done in the pET28a vector and Escherichia coli Bl21 (DE3), respectively. Results: Analysis and validation of the fusion proteins three-dimensional models showed that both models are in the range of native proteins. However, L7/L12-SOmp2b structure was more valid than the SOmp2b-L7/L12 model and subjected to in vitro production. The major histocompatibility complex II (MHC-II) epitope mapping using Immune Epitope DataBase indicated that the model contained good MHC-II binders. The L7/L12-Omp2b coding sequence was cloned in pET28a vector. The fusion was successfully expressed in E. coli BL21 by induction with isopropyl-β-d-thiogalactopyranoside. The rL7/L12-SOmp2b was purified with Ni-NTA column. The yield of the purified rL7/L12-SOmp2b was estimated by Bradford method to be 240 μg/ml of the culture. Western blot analysis revealed a specific reactivity with purified rL7/L12-SOmp2b produced in E. coli cells and showed the expression in the prokaryotic system. Conclusions: Our data indicates that L7/L12-SOmp2b fusion protein has a potential to induce both B- and T-cell-mediated immune responses and it can be evaluated as a new subunit vaccine candidate against brucellosis.
Collapse
Affiliation(s)
- Maryam Golshani
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Melina Ghasemian
- Department of Biotechemistry, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Nematollah Gheibi
- Department of Biotechemistry, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Saeid Bouzari
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
25
|
Abbassi-Daloii T, Yousefi S, Sekhavati MH, Tahmoorespur M. Impact of heat shock protein 60KD in combination with outer membrane proteins on immune response against Brucella melitensis. APMIS 2017; 126:65-75. [PMID: 29154438 DOI: 10.1111/apm.12778] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 09/05/2017] [Indexed: 01/05/2023]
Abstract
Brucellosis caused by the bacterium Brucella affects various domestic and wild species. The outer membrane proteins 25 and 31 play key roles on stimulation of cell-mediated immune response against Brucella. GroEL as one of the major Brucella antigens stimulates the immune system and increases intracellular survival of bacteria. In the present study, we assumed injection of GroEL in combination with OMP25 and OMP31 would offer higher immunity levels. So, the impact of GroEL with different concentrations of recombinant outer membrane proteins emulsified in Chitosan Nanoparticles on immune responses was evaluated in mice model. Results showed both univalent (except rGroEL) and divalent immunized groups induced higher IFN-γ, TNF-α, and IL-4 titers in comparison to negative control groups. While GroEL showed negative effect on TNF-α titer, there were positive increase trends in IFN-γ in some treatments. Analysis of humoral antibody response revealed both univalent and divalent immunized groups induced higher IgG2a titer than IgG1 titer, indicating strong bent of Th1 immune response. Also, results showed GroEL can have positive impact on lymphocyte proliferation response. Overall, mice immunization using individual OMP25 or OMP31 demonstrated more effective cell-mediated immunity, although some combinations of rGroEL and rOMP31 vaccines were more efficient than other divalent ones.
Collapse
Affiliation(s)
- Tooba Abbassi-Daloii
- Department of Animal Science, Ferdowsi University of Mashhad, Mashhad, Iran.,Department of Human Genetics, Leiden University of Medical Center, Leiden, The Netherlands
| | - Soheil Yousefi
- Department of Animal Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | | |
Collapse
|
26
|
Lalsiamthara J, Lee JH. Development and trial of vaccines against Brucella. J Vet Sci 2017; 18:281-290. [PMID: 28859268 PMCID: PMC5583415 DOI: 10.4142/jvs.2017.18.s1.281] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/07/2017] [Accepted: 07/14/2017] [Indexed: 01/18/2023] Open
Abstract
The search for ideal brucellosis vaccines remains active today. Currently, no licensed human or canine anti-brucellosis vaccines are available. In bovines, the most successful vaccine (S19) is only used in calves, as adult vaccination results in orchitis in male, prolonged infection, and possible abortion complications in pregnant female cattle. Another widely deployed vaccine (RB51) has a low protective efficacy. An ideal vaccine should exhibit a safe profile as well as enhance protective efficacy. However, currently available vaccines exhibit one or more major drawbacks. Smooth live attenuated vaccines suffer shortcomings such as residual virulence and serodiagnostic interference. Inactivated vaccines, in general, confer relatively low levels of protection. Recent developments to improve brucellosis vaccines include generation of knockout mutants by targeting genes involved in metabolism, virulence, and the lipopolysaccharide synthesis pathway, as well as generation of DNA vaccines, mucosal vaccines, and live vectored vaccines, have all produced varying degrees of success. Herein, we briefly review the bacteriology, pathogenesis, immunological implications, candidate vaccines, vaccinations, and models related to Brucella.
Collapse
Affiliation(s)
| | - John Hwa Lee
- College of Veterinary Medicine, Chonbuk National University, Iksan 54596, Korea
| |
Collapse
|
27
|
Identification of Mycobacterial RplJ/L10 and RpsA/S1 Proteins as Novel Targets for CD4 + T Cells. Infect Immun 2017; 85:IAI.01023-16. [PMID: 28115505 PMCID: PMC5364311 DOI: 10.1128/iai.01023-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 01/13/2017] [Indexed: 12/20/2022] Open
Abstract
Tuberculosis (TB) due to Mycobacterium tuberculosis remains a major global infectious disease problem, and a more efficacious vaccine is urgently needed for the control and prevention of disease caused by this organism. We previously reported that a genetically modified strain of Mycobacterium smegmatis called IKEPLUS is a promising TB vaccine candidate. Since protective immunity induced by IKEPLUS is dependent on antigen-specific CD4+ T cell memory, we hypothesized that the specificity of the CD4+ T cell response was a critical feature of this protection. Using in vitro assays of interferon gamma production (enzyme-linked immunosorbent spot [ELISPOT] assays) by splenocytes from IKEPLUS-immunized C57BL/6J mice, we identified an immunogenic peptide within the mycobacterial ribosomal large subunit protein RplJ, encoded by the Rv0651 gene. In a complementary approach, we generated major histocompatibility complex (MHC) class II-restricted T cell hybridomas from IKEPLUS-immunized mice. Screening of these T cell hybridomas against IKEPLUS and ribosomes enriched from IKEPLUS suggested that the CD4+ T cell response in IKEPLUS-immunized mice was dominated by the recognition of multiple components of the mycobacterial ribosome. Importantly, CD4+ T cells specific for mycobacterial ribosomes accumulate to significant levels in the lungs of IKEPLUS-immunized mice following aerosol challenge with virulent M. tuberculosis, consistent with a role for these T cells in protective host immunity in TB. The identification of CD4+ T cell responses to defined ribosomal protein epitopes expands the range of antigenic targets for adaptive immune responses to M. tuberculosis and may help to inform the design of more effective vaccines against tuberculosis.
Collapse
|
28
|
Carvalho TF, Haddad JPA, Paixão TA, Santos RL. Meta-Analysis and Advancement of Brucellosis Vaccinology. PLoS One 2016; 11:e0166582. [PMID: 27846274 PMCID: PMC5112997 DOI: 10.1371/journal.pone.0166582] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/31/2016] [Indexed: 01/18/2023] Open
Abstract
Background/Objectives In spite of all the research effort for developing new vaccines against brucellosis, it remains unclear whether these new vaccine technologies will in fact become widely used. The goal of this study was to perform a meta-analysis to identify parameters that influence vaccine efficacy as well as a descriptive analysis on how the field of Brucella vaccinology is advancing concerning type of vaccine, improvement of protection on animal models over time, and factors that may affect protection in the mouse model. Methods A total of 117 publications that met the criteria were selected for inclusion in this study, with a total of 782 individual experiments analyzed. Results Attenuated (n = 221), inactivated (n = 66) and mutant (n = 102) vaccines provided median protection index above 2, whereas subunit (n = 287), DNA (n = 68), and vectored (n = 38) vaccines provided protection indexes lower than 2. When all categories of experimental vaccines are analyzed together, the trend line clearly demonstrates that there was no improvement of the protection indexes over the past 30 years, with a low negative and non significant linear coefficient. A meta-regression model was developed including all vaccine categories (attenuated, DNA, inactivated, mutant, subunit, and vectored) considering the protection index as a dependent variable and the other parameters (mouse strain, route of vaccination, number of vaccinations, use of adjuvant, challenge Brucella species) as independent variables. Some of these variables influenced the expected protection index of experimental vaccines against Brucella spp. in the mouse model. Conclusion In spite of the large number of publication over the past 30 years, our results indicate that there is not clear trend to improve the protective potential of these experimental vaccines.
Collapse
Affiliation(s)
- Tatiane F. Carvalho
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - João Paulo A. Haddad
- Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Tatiane A. Paixão
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Renato L. Santos
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- * E-mail:
| |
Collapse
|
29
|
Tadepalli G, Singh AK, Balakrishna K, Murali HS, Batra HV. Immunogenicity and protective efficacy of Brucella abortus recombinant protein cocktail (rOmp19 + rP39) against B. abortus 544 and B. melitensis 16M infection in murine model. Mol Immunol 2016; 71:34-41. [DOI: 10.1016/j.molimm.2016.01.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 12/30/2015] [Accepted: 01/04/2016] [Indexed: 01/18/2023]
|
30
|
Protective immune-response of aluminium hydroxide gel adjuvanted phage lysate of Brucella abortus S19 in mice against direct virulent challenge with B. abortus 544. Biologicals 2015; 43:369-76. [PMID: 26156404 DOI: 10.1016/j.biologicals.2015.06.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 06/09/2015] [Accepted: 06/10/2015] [Indexed: 11/23/2022] Open
Abstract
The prophylactic efficacies of plain and alum adsorbed lysate were evaluated by direct virulent challenge in mice model. A recently isolated brucellaphage 'ϕLd' was used for generation of lysates. Twenty four h incubated Brucella abortus S19 broth cultures standardized to contain approximately 10(8) CFU/ml were found suitable for generation of lysates. Three lysate batches produced through separate cycles did not show any significant variation with respect to protein and polysaccharide contents, endotoxin level and phage counts, indicating that compositionally stable lysate preparations can be generated through an optimized production process. Three polypeptides of ∼16, 19 and 23 kDa could be identified as immuno-dominant antigens of the lysate which induced both humoral and cell-mediated immune responses in a dose dependent manner. Results of efficacy evaluation trial confirmed dose-dependent protective potencies of lysate preparation. The lysate with an antigenic dose of 0.52 μg protein and 60 μg CHO adsorbed on aluminium gel (0.1 percent aluminium concentration) exhibited the highest protective potency which was greater than that induced by standard S19 vaccine. Phage lysate methodology provides a very viable option through which an improved immunizing preparation with all desirable traits can be developed against brucellosis, and integrated with immunization programmes in a more efficient manner.
Collapse
|
31
|
Improved immunogenicity and protective efficacy of a divalent DNA vaccine encoding Brucella L7/L12-truncated Omp31 fusion protein by a DNA priming and protein boosting regimen. Mol Immunol 2015; 66:384-91. [DOI: 10.1016/j.molimm.2015.04.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 04/20/2015] [Accepted: 04/22/2015] [Indexed: 12/16/2022]
|
32
|
Dorneles EMS, Sriranganathan N, Lage AP. Recent advances in Brucella abortus vaccines. Vet Res 2015; 46:76. [PMID: 26155935 PMCID: PMC4495609 DOI: 10.1186/s13567-015-0199-7] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 05/05/2015] [Indexed: 01/18/2023] Open
Abstract
Brucella abortus vaccines play a central role in bovine brucellosis control/eradication programs and have been successfully used worldwide for decades. Strain 19 and RB51 are the approved B. abortus vaccines strains most commonly used to protect cattle against infection and abortion. However, due to some drawbacks shown by these vaccines much effort has been undertaken for the development of new vaccines, safer and more effective, that could also be used in other susceptible species of animals. In this paper, we present a review of the main aspects of the vaccines that have been used in the brucellosis control over the years and the current research advances in the development of new B. abortus vaccines.
Collapse
Affiliation(s)
- Elaine M S Dorneles
- Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Laboratório de Bacteriologia Aplicada, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Nammalwar Sriranganathan
- Department of Biomedical Sciences and Pathobiology, Center for Molecular Medicine and Infectious Diseases, Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| | - Andrey P Lage
- Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Laboratório de Bacteriologia Aplicada, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
33
|
Vaccination with recombinant L7/L12-truncated Omp31 protein induces protection against Brucella infection in BALB/c mice. Mol Immunol 2015; 65:287-92. [DOI: 10.1016/j.molimm.2015.01.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 01/08/2015] [Accepted: 01/09/2015] [Indexed: 11/20/2022]
|
34
|
de Souza Filho JA, de Paulo Martins V, Campos PC, Alves-Silva J, Santos NV, de Oliveira FS, Menezes GB, Azevedo V, Cravero SL, Oliveira SC. Mutant Brucella abortus membrane fusogenic protein induces protection against challenge infection in mice. Infect Immun 2015; 83:1458-64. [PMID: 25644010 PMCID: PMC4363440 DOI: 10.1128/iai.02790-14] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 01/25/2015] [Indexed: 01/10/2023] Open
Abstract
Brucella species can cause brucellosis, a zoonotic disease that causes serious livestock economic losses and represents a public health threat. The mechanism of virulence of Brucella spp. is not yet fully understood. Therefore, it is crucial to identify new molecules that serve as virulence factors to better understand this host-pathogen interplay. Here, we evaluated the role of the Brucella membrane fusogenic protein (Mfp) and outer membrane protein 19 (Omp19) in bacterial pathogenesis. In this study, we showed that B. abortus Δmfp::kan and Δomp19::kan deletion mutant strains have reduced persistence in vivo in C57BL/6 and interferon regulatory factor 1 (IRF-1) knockout (KO) mice. Additionally, 24 h after macrophage infection with a Δmfp::kan or Δomp19::kan strain expressing green fluorescent protein (GFP) approximately 80% or 65% of Brucella-containing vacuoles (BCVs) retained the late endosomal/lysosomal marker LAMP-1, respectively, whereas around 60% of BCVs containing wild-type S2308 were found in LAMP-1-negative compartments. B. abortus Δomp19::kan was attenuated in vivo but had a residual virulence in C57BL/6 and IRF-1 KO mice, whereas the Δmfp::kan strain had a lower virulence in these same mouse models. Furthermore, Δmfp::kan and Δomp19::kan strains were used as live vaccines. Challenge experiments revealed that in C57BL/6 and IRF-1 KO mice, the Δmfp::kan strain induced greater protection than the vaccine RB51 and protection similar that of vaccine S19. However, a Δomp19::kan strain induced protection similar to that of RB51. Thus, these results demonstrate that Brucella Mfp and Omp19 are critical for full bacterial virulence and that the Δmfp::kan mutant may serve as a potential vaccine candidate in future studies.
Collapse
Affiliation(s)
- Job Alves de Souza Filho
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Priscila Carneiro Campos
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Juliana Alves-Silva
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Nathalia V Santos
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Fernanda Souza de Oliveira
- Departamento de Bioquímica, Universidade Federal de Juiz de Fora Gerais, Governador Valadares, MG, Brazil
| | - Gustavo B Menezes
- Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Vasco Azevedo
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Sergio Costa Oliveira
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
35
|
Hop HT, Simborio HL, Reyes AWB, Arayan LT, Min W, Lee HJ, Kim DH, Chang HH, Kim S. Immunogenicity and protective effect of recombinant Brucella abortus Ndk (rNdk) against a virulent strain B. abortus 544 infection in BALB/c mice. FEMS Microbiol Lett 2015; 362:fnv003. [DOI: 10.1093/femsle/fnv003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
36
|
Immunization with Brucella VirB proteins reduces organ colonization in mice through a Th1-type immune response and elicits a similar immune response in dogs. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 22:274-81. [PMID: 25540276 DOI: 10.1128/cvi.00653-14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
VirB proteins from Brucella spp. constitute the type IV secretion system, a key virulence factor mediating the intracellular survival of these bacteria. Here, we assessed whether a Th1-type immune response against VirB proteins may protect mice from Brucella infection and whether this response can be induced in the dog, a natural host for Brucella. Splenocytes from mice immunized with VirB7 or VirB9 responded to their respective antigens with significant and specific production of gamma interferon (IFN-γ), whereas interleukin-4 (IL-4) was not detected. Thirty days after an intraperitoneal challenge with live Brucella abortus, the spleen load of bacteria was almost 1 log lower in mice immunized with VirB proteins than in unvaccinated animals. As colonization reduction seemed to correlate with a Th1-type immune response against VirB proteins, we decided to assess whether such a response could be elicited in the dog. Peripheral blood mononuclear cells (PBMCs) from dogs immunized with VirB proteins (three subcutaneous doses in QuilA adjuvant) produced significantly higher levels of IFN-γ than cells from control animals upon in vitro stimulation with VirB proteins. A skin test to assess specific delayed-type hypersensitivity was positive in 4 out of 5 dogs immunized with either VirB7 or VirB9. As both proteins are predicted to locate in the outer membrane of Brucella organisms, the ability of anti-VirB antibodies to mediate complement-dependent bacteriolysis of B. canis was assessed in vitro. Sera from dogs immunized with either VirB7 or VirB9, but not from those receiving phosphate-buffered saline (PBS), produced significant bacteriolysis. These results suggest that VirB-specific responses that reduce organ colonization by Brucella in mice can be also elicited in dogs.
Collapse
|
37
|
Siadat SD, Vaziri F, Eftekhary M, Karbasian M, Moshiri A, Aghasadeghi MR, Ardestani MS, Alitappeh MA, Arsang A, Fateh A, Peerayeh SN, Bahrmand AR. Preparation and Evaluation of a New Lipopolysaccharide-based Conjugate as a Vaccine Candidate for Brucellosis. Osong Public Health Res Perspect 2014; 6:9-13. [PMID: 25737825 PMCID: PMC4346588 DOI: 10.1016/j.phrp.2014.10.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 10/08/2014] [Accepted: 10/31/2014] [Indexed: 11/09/2022] Open
Abstract
Objectives Development of an efficacious vaccine against brucellosis has been a challenge for scientists for many years. At present, there is no licensed vaccine against human brucellosis. To overcome this problem, currently, antigenic determinants of Brucella cell wall such as Lipopolysaccharide (LPS) are considered as potential candidates to develop subunit vaccines. Methods In this study, Brucella abortus LPS was used for conjugation to Neisseria meningitidis serogroup B outer membrane vesicle (OMV) as carrier protein using carbodiimide and adipic acid–mediated coupling and linking, respectively. Groups of eight BALB/c mice were injected subcutaneously with 10 μg LPS alone, combined LPS + OMV and conjugated LPS–OMV on 0 days, 14 days, 28 days and 42 days. Anti-LPS IgG was measured in serum. Results The yield of LPS to OMV in LPS–OMV conjugate was 46.55%, on the basis of carbohydrate content. The ratio for LPS to OMV was 4.07. The LPS–OMV conjugate was the most immunogenic compound that stimulated following the first injection with increased IgG titer of ∼5-fold and ∼1.3-fold higher than that produced against LPS and LPS in noncovalent complex to OMV (LPS + OMV), respectively. The highest anti-LPS IgG titer was detected 2 weeks after the third injection (Day 42) of LPS–OMV conjugate. The conjugated compound elicited higher titers of IgG than LPS + OMV, that showed a 100–120-fold rise of anti-LPS IgG in mice. Conclusion These results indicate that our conjugated LPS–OMV can be used as a brucellosis vaccine, but further investigation is required.
Collapse
Affiliation(s)
- Seyed Davar Siadat
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran ; Department of Microbiology, Pasteur Institute of Iran, Tehran, Iran
| | - Farzam Vaziri
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Mamak Eftekhary
- Department of Microbiology, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Karbasian
- Department of Microbiology, Pasteur Institute of Iran, Tehran, Iran
| | - Arfa Moshiri
- Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mehdi S Ardestani
- Department of Microbiology, Iran University of Medical Sciences, Tehran, Iran
| | | | - Amin Arsang
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Abolfazl Fateh
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Shahin Najar Peerayeh
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ahmad R Bahrmand
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
38
|
Tabynov K, Yespembetov B, Sansyzbay A. Novel vector vaccine against Brucella abortus based on influenza A viruses expressing Brucella L7/L12 or Omp16 proteins: evaluation of protection in pregnant heifers. Vaccine 2014; 32:5889-92. [PMID: 25218295 DOI: 10.1016/j.vaccine.2014.08.073] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 08/13/2014] [Accepted: 08/27/2014] [Indexed: 11/16/2022]
Abstract
The present study provides the first information about the protection of a novel influenza viral vector vaccine expressing the Brucella proteins ribosomal L7/L12 or Omp16 containing the adjuvant Montanide Gel01 in pregnant heifers. Immunization of pregnant heifers was conducted via the conjunctival (n=10) or subcutaneous (n=10) route using cross prime and booster vaccination schedules at an interval of 28 days. The vector vaccine was evaluated in comparison with positive control groups vaccinated with Brucella abortus S19 (n=10) or B. abortus RB51 (n=10) and a negative (PBS+Montanide Gel01; n=10) control group. Via both the conjunctival or subcutaneous route, evaluation of protectiveness against abortion, effectiveness of vaccination and index of infection (in heifers and their fetuses or calves) demonstrated the vector vaccine provided good protection against B. abortus 544 infection compared to the negative control group (PBS+Montanide Gel01) and comparable protection to commercial vaccines B. abortus S19 or B. abortus RB51.
Collapse
Affiliation(s)
- Kaissar Tabynov
- The Research Institute for Biological Safety Problems, Zhambulskaya oblast, Kordaiskiy rayon, 080409 Gvardeisky, Kazakhstan.
| | - Bolat Yespembetov
- The Research Institute for Biological Safety Problems, Zhambulskaya oblast, Kordaiskiy rayon, 080409 Gvardeisky, Kazakhstan
| | - Abylai Sansyzbay
- The Research Institute for Biological Safety Problems, Zhambulskaya oblast, Kordaiskiy rayon, 080409 Gvardeisky, Kazakhstan
| |
Collapse
|
39
|
Studies on recombinant glucokinase (r-glk) protein of Brucella abortus as a candidate vaccine molecule for brucellosis. Vaccine 2014; 32:5600-6. [DOI: 10.1016/j.vaccine.2014.07.106] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/09/2014] [Accepted: 07/31/2014] [Indexed: 01/18/2023]
|
40
|
Evaluation of immunogenicity and protective efficacy of a plasmid DNA vaccine encoding ribosomal protein L9 of Brucella abortus in BALB/c mice. Vaccine 2014; 32:4537-4542. [PMID: 24950353 DOI: 10.1016/j.vaccine.2014.06.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 05/23/2014] [Accepted: 06/06/2014] [Indexed: 01/18/2023]
Abstract
Brucellosis is a worldwide zoonotic disease. No Brucella vaccine is available for use in humans and existing animal vaccines have limitations. We have previously described the ribosomal protein L9 to have the vaccine potential. In this study, L9 based DNA vaccine (pVaxL9) was generated and evaluated in mouse model. Intramuscular immunisation of pVaxL9 was able to elicit the anti-L9 IgG antibody response of both IgG1 and IgG2a isotypes when compared with PBS and pVax immunised control animals. Heightened antibody response was observed in mice groups immunised with pVaxL9 priming and recombinant L9 boosting (PB) and where pDNA immunisation was carried out by in vivo electroporation (EP). The vaccine groups proliferated splenocytes and released Th1 type cytokines e.g. IFN-γ, TNF-α, IL-2. Further, flow cytometric analysis revealed that IFN-γ was released by both by CD4+ and CD8+ T cells particularly in PB and EP groups when compared with mice immunised with empty control vector. The L9 based pDNA vaccine was able to confer significant protection in mice against challenge with virulent B. abortus with PB and EP groups offering better protection. Taken together, it can be concluded that L9 based DNA vaccine is immunogenic and confer protection in mouse model.
Collapse
|
41
|
Olaya-Abril A, Prados-Rosales R, McConnell MJ, Martín-Peña R, González-Reyes JA, Jiménez-Munguía I, Gómez-Gascón L, Fernández J, Luque-García JL, García-Lidón C, Estévez H, Pachón J, Obando I, Casadevall A, Pirofski LA, Rodríguez-Ortega MJ. Characterization of protective extracellular membrane-derived vesicles produced by Streptococcus pneumoniae. J Proteomics 2014; 106:46-60. [PMID: 24769240 DOI: 10.1016/j.jprot.2014.04.023] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 04/10/2014] [Accepted: 04/12/2014] [Indexed: 12/31/2022]
Abstract
UNLABELLED Extracellular vesicles are produced by many pathogenic microorganisms and have varied functions that include secretion and release of microbial factors, which contribute to virulence. Very little is known about vesicle production by Gram-positive bacteria, as well as their biogenesis and release mechanisms. In this work, we demonstrate the active production of vesicles by Streptococcus pneumoniae from the plasma membrane, rather than being a product from cell lysis. We biochemically characterized them by proteomics and fatty acid analysis, showing that these vesicles and the plasma membrane resemble in essential aspects, but have some differences: vesicles are more enriched in lipoproteins and short-chain fatty acids. We also demonstrate that these vesicles act as carriers of surface proteins and virulence factors. They are also highly immunoreactive against human sera and induce immune responses that protect against infection. Overall, this work provides insights into the biology of this important Gram-positive human pathogen and the role of extracellular vesicles in clinical applications. BIOLOGICAL SIGNIFICANCE Pneumococcus is one of the leading causes of bacterial pneumonia worldwide in children and the elderly, being responsible for high morbidity and mortality rates in developing countries. The augment of pneumococcal disease in developed countries has raised major public health concern, since the difficulties to treat these infections due to increasing antibiotic resistance. Vaccination is still the best way to combat pneumococcal infections. One of the mechanisms that bacterial pathogens use to combat the defense responses of invaded hosts is the production and release of extracellular vesicles derived from the outer surface. Little is known about this phenomenon in Gram-positives. We show that pneumococcus produces membrane-derived vesicles particularly enriched in lipoproteins. We also show the utility of pneumococcal vesicles as a new type of vaccine, as they induce protection in immunized mice against infection with a virulent strain. This work will contribute to understand the role of these structures in important biological processes such as host-pathogen interactions and prevention of human disease.
Collapse
Affiliation(s)
- Alfonso Olaya-Abril
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Campus de Excelencia Internacional CeiA3, Córdoba, Spain; Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain
| | - Rafael Prados-Rosales
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Michael J McConnell
- Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain; Unidad de Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Instituto de Biomedicina de Sevilla/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Reyes Martín-Peña
- Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain; Unidad de Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Instituto de Biomedicina de Sevilla/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - José Antonio González-Reyes
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Campus de Excelencia Internacional CeiA3, Córdoba, Spain
| | - Irene Jiménez-Munguía
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Campus de Excelencia Internacional CeiA3, Córdoba, Spain; Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain
| | - Lidia Gómez-Gascón
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Campus de Excelencia Internacional CeiA3, Córdoba, Spain; Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain
| | - Javier Fernández
- Departamento de Botánica, Ecología y Fisiología Vegetal, Universidad de Córdoba, Campus de Excelencia Internacional CeiA3, Córdoba, Spain
| | - José L Luque-García
- Departamento de Química Analítica, Universidad Complutense de Madrid, Madrid, Spain
| | - Carlos García-Lidón
- Departamento de Química Analítica, Universidad Complutense de Madrid, Madrid, Spain
| | - Héctor Estévez
- Departamento de Química Analítica, Universidad Complutense de Madrid, Madrid, Spain
| | - Jerónimo Pachón
- Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain; Unidad de Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Instituto de Biomedicina de Sevilla/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Ignacio Obando
- Sección de Enfermedades Infecciosas Pediátricas e Inmunopatología, Hospital Universitario Infantil Virgen del Rocío, Sevilla, Spain
| | - Arturo Casadevall
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Liise-Anne Pirofski
- Department of Medicine and Microbiology and Immunology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Manuel J Rodríguez-Ortega
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Campus de Excelencia Internacional CeiA3, Córdoba, Spain; Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
42
|
Tabynov K, Sansyzbay A, Kydyrbayev Z, Yespembetov B, Ryskeldinova S, Zinina N, Assanzhanova N, Sultankulova K, Sandybayev N, Khairullin B, Kuznetsova I, Ferko B, Egorov A. Influenza viral vectors expressing the Brucella OMP16 or L7/L12 proteins as vaccines against B. abortus infection. Virol J 2014; 11:69. [PMID: 24716528 PMCID: PMC3997475 DOI: 10.1186/1743-422x-11-69] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Accepted: 04/04/2014] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND We generated novel, effective candidate vaccine against Brucella abortus based on recombinant influenza viruses expressing the Brucella ribosomal protein L7/L12 or outer membrane protein (Omp)-16 from the NS1 open reading frame. The main purpose of this work was to evaluate the safety, immunogenicity and protectiveness of vaccine candidate in laboratory animals. METHODS AND RESULTS Four recombinant influenza A viral constructs of the subtypes Н5N1 or H1N1 expressing the Brucella proteins L7/L12 or Omp16 were obtained by a reverse genetics method: Flu-NS1-124-L7/L12-H5N1, Flu-NS1-124-Omp16-H5N1, Flu-NS1-124-L7/L12-H1N1 and Flu-NS1-124-Omp16-H1N1. Despite of substantial modification of NS1 gene, all constructs replicated well and were retain their Brucella inserts over five passages in embryonated chicken eggs (CE). Administration of the mono- or bivalent vaccine formulation via prime-boost intranasal (i.n.), conjunctival (c.) or subcutaneous (s.c.) immunization was safe in mice; no deaths, body weight loss or pathomorphological changes were observed over 56 days. Moreover, guinea pigs vaccinated i.n. with vaccine vectors did not shed the vaccine viruses through their upper respiratory tract after the prime and booster vaccination. These findings confirmed the replication-deficient phenotype of viral vectors. The highest antibody response to Brucella antigen was obtained with constructs expressing L7/L12 (ELISA, GMT 242.5-735.0); whereas the highest T-cell immune response- with construct expressing Omp16 (ELISPOT, 337 ± 52-651 ± 45 spots/4×105cells), which was comparable (P > 0.05) to the response induced by the commercial vaccine B. abortus 19. Interestingly, c. immunization appeared to be optimal for eliciting T-cell immune response. In guinea pigs, the highest protective efficacy after challenge with B. abortus 544 was achieved with Omp16 expressing constructs in both monovalent or bivalent vaccine formulations; protective efficacy was comparable to those induced by a commercial live B. abortus 19 vaccine. CONCLUSION Thus, influenza vectors expressing Brucella protective antigens can be developed as novel influenza vectored vaccine against B. abortus infection.
Collapse
Affiliation(s)
- Kaissar Tabynov
- The Research Institute for Biological Safety Problems, Zhambulskaya oblast, Kordaiskiy rayon, Gvardeisky, Republic of Kazakhstan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Tabynov K, Kydyrbayev Z, Ryskeldinova S, Yespembetov B, Zinina N, Assanzhanova N, Kozhamkulov Y, Inkarbekov D, Gotskina T, Sansyzbay A. Novel influenza virus vectors expressing Brucella L7/L12 or Omp16 proteins in cattle induced a strong T-cell immune response, as well as high protectiveness against B. abortus infection. Vaccine 2014; 32:2034-41. [PMID: 24598723 DOI: 10.1016/j.vaccine.2014.02.058] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Revised: 02/04/2014] [Accepted: 02/12/2014] [Indexed: 12/17/2022]
Abstract
This paper presents the results of a study of the immunogenicity and protectiveness of new candidate vector vaccine against Brucella abortus - a bivalent vaccine formulation consisting of a mixture of recombinant influenza A subtype H5N1 or H1N1 (viral constructs vaccine formulation) viruses expressing Brucella ribosomal protein L7/L12 and Omp16, in cattle. To increase the effectiveness of the candidate vaccine, adjuvants such as Montanide Gel01 or chitosan were included in its composition. Immunization of cattle (heifers aged 1-1.5 years, 5 animals per group) with the viral constructs vaccine formulation only, or its combination with adjuvants Montanide Gel01 or chitosan, was conducted via the conjunctival method using cross prime (influenza virus subtype H5N1) and booster (influenza virus subtype H1N1) vaccination schedules at an interval of 28 days. Vaccine candidates were evaluated in comparison with the positive (B. abortus S19) and negative (PBS) controls. The viral constructs vaccine formulations, particularly in combination with Montanide Gel01 adjuvant promoted formation of IgG antibodies (with a predominance of antibodies of isotype IgG2a) against Brucella L7/L12 and Omp16 proteins in ELISA. Moreover, these vaccines in cattle induced a strong antigen-specific T-cell immune response, as indicated by a high number of CD4(+) and CD8(+) cells, as well as the concentration of IFN-γ, and most importantly provided a high level of protectiveness comparable to the commercial B. abortus S19 vaccine and superior to the B. abortus S19 vaccine in combination with Montanide Gel01 adjuvant. Based on these findings, we recommended the bivalent vaccine formulation containing the adjuvant Montanide Gel01 for practical use in cattle.
Collapse
Affiliation(s)
- Kaissar Tabynov
- The Research Institute for Biological Safety Problems, 080409, Zhambulskaya oblast, Kordaiskiy rayon, Gvardeisky, Kazakhstan.
| | - Zhailaubay Kydyrbayev
- The Research Institute for Biological Safety Problems, 080409, Zhambulskaya oblast, Kordaiskiy rayon, Gvardeisky, Kazakhstan
| | - Sholpan Ryskeldinova
- The Research Institute for Biological Safety Problems, 080409, Zhambulskaya oblast, Kordaiskiy rayon, Gvardeisky, Kazakhstan
| | - Bolat Yespembetov
- The Research Institute for Biological Safety Problems, 080409, Zhambulskaya oblast, Kordaiskiy rayon, Gvardeisky, Kazakhstan
| | - Nadezhda Zinina
- The Research Institute for Biological Safety Problems, 080409, Zhambulskaya oblast, Kordaiskiy rayon, Gvardeisky, Kazakhstan
| | - Nurika Assanzhanova
- The Research Institute for Biological Safety Problems, 080409, Zhambulskaya oblast, Kordaiskiy rayon, Gvardeisky, Kazakhstan
| | - Yerken Kozhamkulov
- The Research Institute for Biological Safety Problems, 080409, Zhambulskaya oblast, Kordaiskiy rayon, Gvardeisky, Kazakhstan
| | - Dulat Inkarbekov
- The Research Institute for Biological Safety Problems, 080409, Zhambulskaya oblast, Kordaiskiy rayon, Gvardeisky, Kazakhstan
| | - Tatyana Gotskina
- The Research Institute for Biological Safety Problems, 080409, Zhambulskaya oblast, Kordaiskiy rayon, Gvardeisky, Kazakhstan
| | - Abylai Sansyzbay
- The Research Institute for Biological Safety Problems, 080409, Zhambulskaya oblast, Kordaiskiy rayon, Gvardeisky, Kazakhstan
| |
Collapse
|
44
|
Oliveira SC, Giambartolomei GH, Cassataro J. Confronting the barriers to develop novel vaccines against brucellosis. Expert Rev Vaccines 2014; 10:1291-305. [DOI: 10.1586/erv.11.110] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
45
|
Jaiswal V, Chauhan RS, Rout C. Common antigens prediction in bacterial bioweapons: a perspective for vaccine design. INFECTION GENETICS AND EVOLUTION 2013; 21:315-9. [PMID: 24300889 DOI: 10.1016/j.meegid.2013.11.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 11/10/2013] [Accepted: 11/11/2013] [Indexed: 01/22/2023]
Abstract
Bioweapons (BWs) are a serious threat to mankind and the lack of efficient vaccines against bacterial bioweapons (BBWs) further worsens the situation in face of BW attack. Experts believe that difficulties in detection and ease in dissemination of deadly pathogens make BW a better option for attack compared to nuclear weapons. Molecular biology techniques facilitate the use of genetically modified BBWs thus creating uncertainty on which bacteria will be used for BW attack. In the present work, available resources such as proteomic sequences of BBWs, protective antigenic proteins (PAPs) reported in Protegen database and VaxiJen dataset, and immunogenic epitopes in immune epitope database (IEDB) were used to predict potential broad-specific vaccine candidates against BBWs. Comparison of proteomes sequences of BBWs and their analyses using in-house PERL scripts identified 44 conserved proteins and many of them were known to be immunogenic. Comparison of conserved proteins against PAPs identified six either as PAPs or their homologues with a potential of providing protection against multiple pathogens. Similarly, mapping of conserved proteins against experimentally known IEDB epitopes identified six epitopes which had exact epitope match in four proteins including three from earlier predicted six PAPs. These epitopes were also reported to provide protection against several pathogens. In the backdrop of conserved heat shock GroEL protein from Salmonella enterica providing protection against five diverse bacterial pathogens involved in different diseases, and synthetic proteins produced by combination of epitopes from Mycobacterium tuberculosis and 4 viruses providing protection against both bacterium and viruses, the identified putative immunogenic conserved proteins and immune-protective epitopes can further be explored for their potential as broad-specific vaccine candidates against BBWs.
Collapse
Affiliation(s)
- Varun Jaiswal
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh 173234, India.
| | - Rajinder S Chauhan
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh 173234, India.
| | - Chittaranjan Rout
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh 173234, India.
| |
Collapse
|
46
|
Jain S, Kumar S, Dohre S, Afley P, Sengupta N, Alam SI. Identification of a protective protein from stationary-phase exoproteome of Brucella abortus. Pathog Dis 2013; 70:75-83. [PMID: 23913725 DOI: 10.1111/2049-632x.12079] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Revised: 07/26/2013] [Accepted: 07/26/2013] [Indexed: 01/18/2023] Open
Abstract
Brucellosis is a worldwide zoonotic disease. No Brucella vaccine is available for use in humans, and existing animal vaccines have limitations. To search the putative vaccine candidates, we studied the exoproteome of Brucella abortus NCTC 10093 using 2-DE-MS approach. Twenty-six proteins were identified using MALDI-TOF/TOF tandem mass spectrometry. Outer membrane protein 25, d-galactose periplasmic-binding protein, oligopeptide ABC transporter protein and isopropylmalate synthase were found to be the most abundant proteins. Most proteins (6, 23%) were predicted to be involved in amino acid transport and metabolism followed by carbohydrate transport and metabolism (4, 15%). Outer membrane protein 25, Omp2b porin and one hypothetical protein were predicted as outer membrane proteins. In addition, Omp28, Omp31 and one ribosomal protein (L9) were also identified. The ribosomal protein L9 was produced as a recombinant protein and was studied in mouse model for vaccine potential. It was found to be immunogenic in terms of generating serum antibody response and release of IFN-γ from mice spleen cells. Recombinant L9-immunized mice were protected against challenge with virulent B. abortus strain 544, suggesting usefulness of ribosomal protein L9 as a good vaccine candidate against brucellosis.
Collapse
Affiliation(s)
- Shikha Jain
- Division of Microbiology, Defence Research & Development Establishment, Gwalior, Madhya Pradesh, India
| | | | | | | | | | | |
Collapse
|
47
|
Gomez G, Adams LG, Rice-Ficht A, Ficht TA. Host-Brucella interactions and the Brucella genome as tools for subunit antigen discovery and immunization against brucellosis. Front Cell Infect Microbiol 2013; 3:17. [PMID: 23720712 PMCID: PMC3655278 DOI: 10.3389/fcimb.2013.00017] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 04/26/2013] [Indexed: 01/18/2023] Open
Abstract
Vaccination is the most important approach to counteract infectious diseases. Thus, the development of new and improved vaccines for existing, emerging, and re-emerging diseases is an area of great interest to the scientific community and general public. Traditional approaches to subunit antigen discovery and vaccine development lack consideration for the critical aspects of public safety and activation of relevant protective host immunity. The availability of genomic sequences for pathogenic Brucella spp. and their hosts have led to development of systems-wide analytical tools that have provided a better understanding of host and pathogen physiology while also beginning to unravel the intricacies at the host-pathogen interface. Advances in pathogen biology, host immunology, and host-agent interactions have the potential to serve as a platform for the design and implementation of better-targeted antigen discovery approaches. With emphasis on Brucella spp., we probe the biological aspects of host and pathogen that merit consideration in the targeted design of subunit antigen discovery and vaccine development.
Collapse
Affiliation(s)
- Gabriel Gomez
- Department of Veterinary Pathobiology, Texas A&M University College Station, TX 77843, USA.
| | | | | | | |
Collapse
|
48
|
Olaya-Abril A, Jiménez-Munguía I, Gómez-Gascón L, Rodríguez-Ortega MJ. Surfomics: shaving live organisms for a fast proteomic identification of surface proteins. J Proteomics 2013; 97:164-76. [PMID: 23624344 DOI: 10.1016/j.jprot.2013.03.035] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 02/25/2013] [Accepted: 03/24/2013] [Indexed: 12/11/2022]
Abstract
Surface proteins play a critical role in the interaction between cells and their environment, as they take part in processes like signaling, adhesion, transport, etc. In pathogenic microorganisms, they can also participate in virulence or cytotoxicity. As these proteins have the highest chances to be recognized by the immune system, they are often the targets for the discovery of new vaccines. In addition, they can serve for the development of serological-based tools to diagnose infectious diseases. First-generation proteomic strategies for the identification of surface proteins rely on the biochemical fractionation and/or enrichment of this group of molecules or organelles containing them. However, in the last years, a novel second-generation approach has been developed, consisting of the digestion of live, intact cells with proteases, so that surface-exposed moieties (i.e. the "surfome" of a cell) are "shaved" and analyzed by LC/MS/MS. Here we review such a strategy, firstly set up and developed in Gram-positive bacteria, and further applied to Gram-negative bacteria, unicellular fungi, and also pluricellular organisms. We also discuss the advantages and inconvenients of the approach, and the still unresolved question about the intriguing presence of proteins predicted as cytoplasmic in the surfomes. This article is part of a Special Issue entitled: Trends in Microbial Proteomics.
Collapse
Affiliation(s)
- Alfonso Olaya-Abril
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Campus de Excelencia Internacional CeiA3, Córdoba, Spain; Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
| | - Irene Jiménez-Munguía
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Campus de Excelencia Internacional CeiA3, Córdoba, Spain; Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
| | - Lidia Gómez-Gascón
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Campus de Excelencia Internacional CeiA3, Córdoba, Spain; Departamento de Sanidad Animal, Universidad de Córdoba, Córdoba, Spain
| | - Manuel J Rodríguez-Ortega
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Campus de Excelencia Internacional CeiA3, Córdoba, Spain; Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain.
| |
Collapse
|
49
|
Lanotte P, Perivier M, Haguenoer E, Mereghetti L, Burucoa C, Claverol S, Atanassov C. Proteomic biomarkers associated with Streptococcus agalactiae invasive genogroups. PLoS One 2013; 8:e54393. [PMID: 23372719 PMCID: PMC3553121 DOI: 10.1371/journal.pone.0054393] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 12/11/2012] [Indexed: 11/18/2022] Open
Abstract
Group B streptococcus (GBS, Streptococcus agalactiae) is a leading cause of meningitis and sepsis in newborns and an etiological agent of meningitis, endocarditis, osteoarticular and soft tissue infections in adults. GBS isolates are routinely clustered in serotypes and in genotypes. At present one GBS sequence type (i.e. ST17) is considered to be closely associated with bacterial invasiveness and novel proteomic biomarkers could make a valuable contribution to currently available GBS typing data. For that purpose we analyzed the protein profiles of 170 genotyped GBS isolates by Surface-Enhanced Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (SELDI). Univariate statistical analysis of the SELDI profiles identified four protein biomarkers significantly discriminating ST17 isolates from those of the other sequence types. Two of these biomarkers (MW of 7878 Da and 12200 Da) were overexpressed and the other two (MW of 6258 Da and 10463 Da) were underexpressed in ST17. The four proteins were isolated by mass spectrometry-assisted purification and their tryptic peptides analyzed by LC-MS/MS. They were thereby identified as the small subunit of exodeoxyribonuclease VII, the 50S ribosomal protein L7/L12, a CsbD-like protein and thioredoxin, respectively. In conclusion, we identified four candidate biomarkers of ST17 by SELDI for high-throughput screening. These markers may serve as a basis for further studies on the pathophysiology of GBS infection, and for the development of novel vaccines.
Collapse
Affiliation(s)
- Philippe Lanotte
- Equipe “Bactéries et risque materno-fœtal”, UMR 1282 ISP, Université François Rabelais de Tours, Tours, France
- Equipe “Bactéries et risque materno-fœtal”, UMR 1282 ISP, INRA, Nouzilly, France
- Service de Bactériologie et de Virologie, CHRU de Tours, Tours, France
| | | | - Eve Haguenoer
- Equipe “Bactéries et risque materno-fœtal”, UMR 1282 ISP, Université François Rabelais de Tours, Tours, France
- Equipe “Bactéries et risque materno-fœtal”, UMR 1282 ISP, INRA, Nouzilly, France
- Service de Bactériologie et de Virologie, CHRU de Tours, Tours, France
| | - Laurent Mereghetti
- Equipe “Bactéries et risque materno-fœtal”, UMR 1282 ISP, Université François Rabelais de Tours, Tours, France
- Equipe “Bactéries et risque materno-fœtal”, UMR 1282 ISP, INRA, Nouzilly, France
- Service de Bactériologie et de Virologie, CHRU de Tours, Tours, France
| | - Christophe Burucoa
- Service de Bactériologie-Hygiène, CHU de Poitiers, Poitiers, France
- Equipe d'accueil 4331 “Laboratoire Inflammation, Tissus Epithéliaux et Cytokines”, Université de Poitiers, Poitiers, France
| | - Stéphane Claverol
- Pôle Protéomique - Centre de Génomique Fonctionnelle, Université Victor Segalen - Bordeaux 2, Bordeaux, France
| | - Christo Atanassov
- Service de Bactériologie-Hygiène, CHU de Poitiers, Poitiers, France
- Equipe d'accueil 4331 “Laboratoire Inflammation, Tissus Epithéliaux et Cytokines”, Université de Poitiers, Poitiers, France
- * E-mail:
| |
Collapse
|
50
|
Sustained and differential antibody responses to virulence proteins of Brucella melitensis during acute and chronic infections in human brucellosis. Eur J Clin Microbiol Infect Dis 2012; 32:437-47. [DOI: 10.1007/s10096-012-1767-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 10/16/2012] [Indexed: 01/18/2023]
|