Abstract
The N-terminal somatomedin B domain (SMB) of vitronectin binds PAI-1 and the urokinase receptor with high affinity and regulates tumor cell adhesion and migration. We have shown previously in the crystal structure of the PAI-1/SMB complex that SMB, a peptide of 51 residues, is folded as a compact cysteine knot of four pairs of crossed disulfide bonds. However, the physiological significance of this structure was questioned by other groups, who disputed the disulfide bonding shown in the crystal structure (Cys5-Cys21, Cys9-Cys39, Cys19-Cys32, Cys25-Cys31), notably claiming that the first disulfide is Cys5-Cys9 rather than the Cys5-Cys21 bonding shown in the structure. To test if the claimed Cys5-Cys9 bond does exist in the SMB domain of plasma vitronectin, we purified mouse and rat plasma vitronectin that have a Met (hence cleavable by cyanogen bromide) at residue 14, and also prepared recombinant human SMB variants from insect cells with residues Asn14 or Leu24 mutated to Met. HPLC and mass spectrometry analysis showed that, after cyanogen bromide digestion, all the fragments of the SMB derived from mouse or rat vitronectin or the recombinant SMB mutants are still linked together by disulfides, and the N-terminal peptide (residue 1-14 or 1-24) can only be released when the disulfide bonds are broken. This clearly demonstrates that Cys5 and Cys9 of SMB do not form a disulfide bond in vivo, and together with other structural evidence confirms that the only functional structure of the SMB domain of plasma vitronectin is that seen in its crystallographic complex with PAI-1.
Collapse