1
|
Ranđelović I, Schuster S, Kapuvári B, Fossati G, Steinkühler C, Mező G, Tóvári J. Improved In Vivo Anti-Tumor and Anti-Metastatic Effect of GnRH-III-Daunorubicin Analogs on Colorectal and Breast Carcinoma Bearing Mice. Int J Mol Sci 2019; 20:E4763. [PMID: 31557968 PMCID: PMC6801585 DOI: 10.3390/ijms20194763] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/10/2019] [Accepted: 09/20/2019] [Indexed: 12/19/2022] Open
Abstract
Among various homing devices, gonadotropin-releasing hormone-III (GnRH-III) peptide represents a suitable targeting moiety for drug delivery systems. The anti-tumor activity of the previously developed GnRH-III-[4Lys(Bu),8Lys(Dau=Aoa)] conjugate and the novel synthesized GnRH-III-[2ΔHis,3d-Tic,4Lys(Bu),8Lys(Dau=Aoa)] conjugate, containing the anti-cancer drug daunorubicin, were evaluated. Here, we demonstrate that both GnRH-III-Dau conjugates possess an efficient growth inhibitory effect on more than 20 cancer cell lines, whereby the biological activity is strongly connected to the expression of gonadotropin-releasing hormone receptors (GnRH-R). The novel conjugate showed a higher in vitro anti-proliferative activity and a higher uptake capacity. Moreover, the treatment with GnRH-III-Dau conjugates cause a significant in vivo tumor growth and metastases inhibitory effect in three different orthotopic models, including 4T1 mice and MDA-MB-231 human breast carcinoma, as well as HT-29 human colorectal cancer bearing BALB/s and SCID mice, while toxic side-effects were substantially reduced in comparison to the treatment with the free drug. These findings illustrate that our novel lead compound is a highly promising candidate for targeted tumor therapy in both colon cancer and metastatic breast cancer.
Collapse
Affiliation(s)
- Ivan Ranđelović
- Department of Experimental Pharmacology, National Institute of Oncology, 1122 Budapest, Hungary.
| | - Sabine Schuster
- Faculty of Science, Institute of Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary.
- MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös Loránd University, 1117 Budapest, Hungary.
| | - Bence Kapuvári
- Department of Biochemistry, National Institute of Oncology, 1122 Budapest, Hungary.
| | - Gianluca Fossati
- Preclinical R&D, Italfarmaco SpA, 20092 Cinisello Balsamo (Milan), Italy.
| | | | - Gábor Mező
- Faculty of Science, Institute of Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary.
- MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös Loránd University, 1117 Budapest, Hungary.
| | - József Tóvári
- Department of Experimental Pharmacology, National Institute of Oncology, 1122 Budapest, Hungary.
| |
Collapse
|
2
|
Ying X, Wen H, Yao HJ, Zhang Y, Tian W, Zhang L, Ju RJ, Wang XX, Yu Y, Lu WL. Pharmacokinetics and Tissue Distribution of Dual-Targeting Daunorubicin Liposomes in Mice. Pharmacology 2011; 87:105-14. [DOI: 10.1159/000323222] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 11/23/2010] [Indexed: 01/16/2023]
|
3
|
Silvestrini A, Meucci E, Vitali A, Giardina B, Mordente A. Chalcone Inhibition of Anthracycline Secondary Alcohol Metabolite Formation in Rabbit and Human Heart Cytosol. Chem Res Toxicol 2006; 19:1518-24. [PMID: 17112240 DOI: 10.1021/tx060159a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Antineoplastic therapy with anthracyclines like doxorubicin (DOX) and daunorubicin (DNR) is limited by the possible development of a dose-related cardiomyopathy. Secondary alcohol metabolites like doxorubicinol (DOXol) and daunorubicinol (DNRol), formed by cytoplasmic two-electron reductases, have been implicated as potential mediators of anthracycline-induced cardiomyopathy. In the present study, we characterized the effects of 12 chalcones on the formation of anthracycline secondary alcohol metabolites by rabbit or human heart cytosol and compared them with those of quercetin and other flavonoids. Both chalcones and flavonoids inhibited DOXol or DNRol formation in isolated rabbit heart cytosol. Structure--activity relationships showed that inhibition by chalcones was determined primarily by the position of hydroxyl groups in their phenolic A and B rings. In particular, the presence of a hydroxyl group at C-4' in the A ring was an important determinant of the inhibitory activity of chalcones. Among chalcones, 2',4',2-trihydroxychalcone exhibited the highest inhibition of both DOXol and DRNol formation, but it proved less efficient than quercetin. Different results were obtained with isolated human heart cytosol: in the latter, 2',4',2-trihydroxychalcone and other hydroxychalcones inhibited both DOXol and DNRol formation, whereas quercetin and other flavonoids inhibited DNRol formation but failed to inhibit or slightly stimulated DOXol formation. These results identify chalcones as versatile inhibitors of the cytoplasmic reductases that convert anthracyclines to cardiotoxic secondary alcohol metabolites.
Collapse
Affiliation(s)
- Andrea Silvestrini
- Institute of Biochemistry and Clinical Biochemistry, Institute of Chemistry of Molecular Recognition CNR, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Roma, Italy
| | | | | | | | | |
Collapse
|
4
|
Menna P, Minotti G, Salvatorelli E. In vitro modeling of the structure–activity determinants of anthracycline cardiotoxicity. Cell Biol Toxicol 2006; 23:49-62. [PMID: 17031515 DOI: 10.1007/s10565-006-0143-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Accepted: 07/20/2006] [Indexed: 10/24/2022]
Abstract
Doxorubicin and other anthracyclines rank among the most effective anticancer drugs ever developed. Unfortunately, the clinical use of anthracyclines is limited by a dose-related life-threatening cardiotoxicity. Understanding how anthracyclines induce cardiotoxicity is essential to improve their therapeutic index or to identify analogues that retain activity while also inducing less severe cardiac damage. Here, we briefly review the prevailing hypotheses on anthracycline-induced cardiotoxicity. We also attempt to establish cause-and-effect relations between the structure of a given anthracycline and its cardiotoxicity when administered as a single agent or during the course of multiagent chemotherapies. Finally, we discuss how the hypotheses generated by preclinical models eventually translate into phase I-II clinical trials.
Collapse
Affiliation(s)
- P Menna
- Department of Drug Sciences and Center of Excellence on Aging, G. dAnnunzio University School of Medicine, Chieti, Italy.
| | | | | |
Collapse
|
5
|
Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L. Anthracyclines: Molecular Advances and Pharmacologic Developments in Antitumor Activity and Cardiotoxicity. Pharmacol Rev 2004; 56:185-229. [PMID: 15169927 DOI: 10.1124/pr.56.2.6] [Citation(s) in RCA: 2602] [Impact Index Per Article: 130.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The clinical use of anthracyclines like doxorubicin and daunorubicin can be viewed as a sort of double-edged sword. On the one hand, anthracyclines play an undisputed key role in the treatment of many neoplastic diseases; on the other hand, chronic administration of anthracyclines induces cardiomyopathy and congestive heart failure usually refractory to common medications. Second-generation analogs like epirubicin or idarubicin exhibit improvements in their therapeutic index, but the risk of inducing cardiomyopathy is not abated. It is because of their janus behavior (activity in tumors vis-à-vis toxicity in cardiomyocytes) that anthracyclines continue to attract the interest of preclinical and clinical investigations despite their longer-than-40-year record of longevity. Here we review recent progresses that may serve as a framework for reappraising the activity and toxicity of anthracyclines on basic and clinical pharmacology grounds. We review 1) new aspects of anthracycline-induced DNA damage in cancer cells; 2) the role of iron and free radicals as causative factors of apoptosis or other forms of cardiac damage; 3) molecular mechanisms of cardiotoxic synergism between anthracyclines and other anticancer agents; 4) the pharmacologic rationale and clinical recommendations for using cardioprotectants while not interfering with tumor response; 5) the development of tumor-targeted anthracycline formulations; and 6) the designing of third-generation analogs and their assessment in preclinical or clinical settings. An overview of these issues confirms that anthracyclines remain "evergreen" drugs with broad clinical indications but have still an improvable therapeutic index.
Collapse
Affiliation(s)
- Giorgio Minotti
- G. d'Annunzio University School of Medicine, Centro Studi sull'Invecchiamento, Room 412, Via dei Vestini, 66013 Chieti, Italy.
| | | | | | | | | |
Collapse
|
6
|
Mordente A, Minotti G, Martorana GE, Silvestrini A, Giardina B, Meucci E. Anthracycline secondary alcohol metabolite formation in human or rabbit heart: biochemical aspects and pharmacologic implications. Biochem Pharmacol 2003; 66:989-98. [PMID: 12963485 DOI: 10.1016/s0006-2952(03)00442-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Clinical use of the anticancer anthracyclines doxorubicin (DOX) and daunorubicin (DNR) is limited by development of cardiotoxicity upon chronic administration. Secondary alcohol metabolites, formed after two-equivalent reduction of a carbonyl group in the side chain of DOX or DNR, have been implicated as potential mediators of chronic cardiotoxicity. In the present study we characterized how human heart converted DOX or DNR to their alcohol metabolites DOXol or DNRol. Experiments were carried out using post-mortem myocardial samples obtained by ethically-acceptable procedures, and results showed that DOXol and DNRol were formed by flavin-independent cytoplasmic reductases which shared common features like pH-dependence and requirement for NADPH, but not NADH, as a source of reducing equivalents. However, studies performed with inhibitors exhibiting absolute or mixed specificity toward best known cytoplasmic reductases revealed that DOX and DNR were metabolized to DOXol or DNRol through the action of distinct enzymes. Whereas DOX was converted to DOXol by aldehyde-type reductase(s) belonging to the superfamily of aldo-keto reductases, DNR was converted to DNRol by carbonyl reductase(s) belonging to the superfamily of short-chain dehydrogenase/reductases. This pattern changed in cardiac cytosol derived from rabbit, a laboratory animal often exploited to reproduce cardiotoxicity induced by anthracyclines and to develop protectants for use in cancer patients. In fact, only carbonyl reductases were involved in metabolizing DOX and DNR in rabbit cardiac cytosol, although with different K(m) and V(max). Collectively, these results demonstrate that human myocardium convert DOX and DNR to DOXol or DNRol by virtue of different reductases, an information which may be of value to prevent alcohol metabolite formation during the course of anthracycline-based anticancer therapy. These results also raise caution on the preclinical value of animal models of anthracycline cardiotoxicity, as they demonstrate that the metabolic routes leading to DOXol in a laboratory animal may not be the same as those occurring in patients.
Collapse
Affiliation(s)
- Alvaro Mordente
- Institute of Biochemistry and Clinical Biochemistry, Catholic University School of Medicine, Largo F. Vito 1, 00168 Rome, Italy.
| | | | | | | | | | | |
Collapse
|
7
|
Minotti G, Parlani M, Salvatorelli E, Menna P, Cipollone A, Animati F, Maggi CA, Manzini S. Impairment of myocardial contractility by anticancer anthracyclines: role of secondary alcohol metabolites and evidence of reduced toxicity by a novel disaccharide analogue. Br J Pharmacol 2001; 134:1271-8. [PMID: 11704647 PMCID: PMC1573059 DOI: 10.1038/sj.bjp.0704369] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
1. The anticancer anthracycline doxorubicin (DOX) causes cardiotoxicity. Enzymatic reduction of a side chain carbonyl group converts DOX to a secondary alcohol metabolite that has been implicated in cardiotoxicity. We therefore monitored negative inotropism, assessed as inhibition of post-rest contractions, in rat right ventricle strips exposed to DOX or to analogues forming fewer amounts of their alcohol metabolites (epirubicin, EPI, and the novel disaccharide anthracycline MEN 10755). 2. Thirty microM EPI exhibited higher uptake than equimolar DOX, but formed comparable amounts of alcohol metabolite due to its resistance to carbonyl reduction. MEN 10755 exhibited also an impaired uptake, and consequently formed the lowest levels of alcohol metabolite. Accordingly, DOX and EPI inhibited post-rest contractions by approximately 40-50%, whereas MEN 10755 inhibited by approximately 6%. 3. One hundred microM EPI exhibited the same uptake as equimolar DOX, but formed approximately 50% less alcohol metabolite. One hundred microM MEN 10755 still exhibited the lowest uptake, forming approximately 60% less alcohol metabolite than EPI. Under these conditions DOX inhibited post-rest contractions by 88%. EPI and MEN 10755 were approximately 18% (P<0.05) or approximately 80% (P<0.001) less inhibitory than DOX, respectively. 4. The negative inotropism of 30-100 microM DOX, EPI, or MEN 10755 correlated with cellular levels of both alcohol metabolites (r=0.88, P<0.0001) and carbonyl anthracyclines (r=0.79, P<0.0001). Nonetheless, multiple comparisons showed that alcohol metabolites were approximately 20-40 times more effective than carbonyl anthracyclines in inhibiting contractility. The negative inotropism of MEN 10755 was therefore increased by chemical procedures, like side chain valeryl esterification, that facilitated its uptake and conversion to alcohol metabolite but not its retention in a carbonyl form. 5. These results demonstrate that secondary alcohol metabolites are important mediators of cardiotoxicity. A combination of reduced uptake and limited conversion to alcohol metabolite formation might therefore render MEN 10755 more cardiac tolerable than DOX and EPI.
Collapse
Affiliation(s)
- G Minotti
- Department of Drug Sciences, G. D'Annunzio University School of Pharmacy, Via dei Vestini, 66013 Chieti, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Zima T, Tesar V, Mantle D, Koll M, Patel V, Richardson PJ, Preedy VR. Acute doxorubicin (adriamycin) dosage does not reduce cardiac protein synthesis in vivo, but decreases diaminopeptidase I and proline endopeptidase activities. Exp Mol Pathol 2001; 70:154-61. [PMID: 11263958 DOI: 10.1006/exmp.2000.2353] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Anthracycline antibiotics are effective anticancer agents but their use is limited due to unwanted adverse side effects. The toxic effects of doxorubicin (adriamycin) include the development of defined cardiac lesions leading to cardiomyopathy in some patients. This has been reported to be due to reductions in cardiac protein synthesis. However, virtually all of these previous studies have failed to consider the specific radioactivity of the precursor pool in their measurements or have carried out their studies in vitro. To further resolve the above we measured fractional rates of cardiac protein synthesis using the "flooding dose" method in rats treated with adriamycin (5 mg/kg body wt). Controls were identically treated and injected with saline. At 2.5 or 24 h after adriamycin injection, rates of protein synthesis were measured with a flooding dose of l-[4-(3)H]phenylalanine. Measurements included free (S(i)) and protein-bound (S(b)) phenylalanine-specific radioactivities, the protein synthetic capacity (RNA/protein ratio; C(s)), the fractional rates of protein synthesis calculated from the ratio S(b)/S(i), and the protein synthetic efficiency calculated from the ratio k(s)/C(s). Complementary analyses included assays of lysosomal (cathepsins B, D, H, and L and diaminopeptidases I and II) and cytoplasmic proteases (alanyl aminopeptidase, arginyl aminopeptidase, leucyl aminopeptidase, diaminopeptidase IV, tripeptidyl aminopeptidase, and proline endopeptidase). These enzymes constitute the most active proteases in this tissue and represent an index of protein degradation capacity in cardiac muscle. The results showed that in 2.5-h dosed rats, adriamycin had no effect on S(i), S(b), C(s), k(s), or k(RNA) (P > 0.05, not significant (NS) in all instances). In 2.5-h dosed rats, levels of diaminopeptidase I activity were reduced (P < 0.05), whereas the activities of other proteases were not significantly altered (NS in all instances). In 24-h dosed rats, adriamycin reduced cardiac S(b) (P < 0.001), which would normally be interpreted as a reduction in protein synthesis. However, S(i) was also decreased in 24-h adriamycin-injected rats (P < 0.025%). C(s) was not changed (NS). Consequently, the calculated k(s) and k(RNA) values were not significantly affected in 24-h adriamycin-dosed rats (NS). There were also significant reductions in proline endopeptidase activities in rats exposed for 24 h to adriamycin. The activities of other proteases were not significantly affected at this time point (NS in all instances). In conclusion, adriamycin reduces amino acid labeling of cardiac proteins, an effect that is a consequence of altered free phenylalanine-specific radioactivities. There was some evidence of limited altered intracellular proteolysis.
Collapse
Affiliation(s)
- T Zima
- Institute of Clinical Chemistry, First Faculty of Medicine, Charles University, Prague 2, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
9
|
Cusack BJ, Young SP, Driskell J, Olson RD. Doxorubicin and doxorubicinol pharmacokinetics and tissue concentrations following bolus injection and continuous infusion of doxorubicin in the rabbit. Cancer Chemother Pharmacol 1993; 32:53-8. [PMID: 8462124 DOI: 10.1007/bf00685876] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Cumulative dose-related, chronic cardiotoxicity is a serious clinical complication of anthracycline therapy. Clinical and animal studies have demonstrated that continuous infusion, compared to bolus injection of doxorubicin, decreases the risk of cardiotoxicity. Continuous infusion of doxorubicin may result in decreased cardiac tissue concentrations of anthracyclines, including the primary metabolite doxorubicinol, which may also be an important contributor to cardiotoxicity. In this study, doxorubicin and doxorubicinol plasma pharmacokinetics and tissue concentrations were compared in New Zealand white rabbits following intravenous administration of doxorubicin (5 mg.kg-1) by bolus and continuous infusion. Blood samples were obtained over a 72-h period after doxorubicin administration to determine plasma doxorubicin and doxorubicinol concentrations. Rabbits were killed 7 days after the completion of doxorubicin administration and tissue concentrations of doxorubicin and doxorubicinol in heart, kidney, liver, and skeletal muscle were measured. In further experiments, rabbits were killed 1 h after bolus injection of doxorubicin and at the completion of a 24-h doxorubicin infusion (anticipated times of maximum heart anthracycline concentrations) to compare cardiac concentrations of doxorubicin and doxorubicinol following both methods of administration. Peak plasma concentrations of doxorubicin (1739 +/- 265 vs 100 +/- 10 ng.ml-1) and doxorubicinol (78 +/- 3 vs 16 +/- 3 ng.ml-1) were significantly higher following bolus than infusion dosing. In addition, elimination half-life of doxorubicinol was increased following infusion. However, other plasma pharmacokinetic parameters for doxorubicin and doxorubicinol, including AUC infinity, were similar following both methods of doxorubicin administration. Peak left ventricular tissue concentrations of doxorubicin (16.92 +/- 0.9 vs 3.59 +/- 0.72 micrograms.g-1 tissue; P < 0.001) and doxorubicinol (0.24 +/- 0.02 vs 0.09 +/- 0.01 micrograms.g-1 tissue; P < 0.01) following bolus injection of doxorubicin were significantly higher than those following infusion administration. Tissue concentrations of parent drug and metabolite in bolus and infusion groups were similar 7 days after dosing. The results suggest that cardioprotection following doxorubicin infusion may be related to attenuation of the peak plasma or cardiac concentrations of doxorubicin and/or doxorubicinol.
Collapse
Affiliation(s)
- B J Cusack
- Gerontology and Clinical Pharmacology Research Unit, VA Medical Center, Boise, ID 83702-4598
| | | | | | | |
Collapse
|
10
|
Agen C, Bernardini N, Danesi R, Della Torre P, Costa M, Del Tacca M. Reducing doxorubicin cardiotoxicity in the rat using deferred treatment with ADR-529. Cancer Chemother Pharmacol 1992; 30:95-9. [PMID: 1600601 DOI: 10.1007/bf00686399] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The purpose of this study was to evaluate the optimal timing of ADR-529 administration to protect rats treated with doxorubicin (DXR) against drug-induced cardiotoxicity. Complete electrocardiographic monitoring (QRS complex, S alpha T segment and T wave) and the histopathological analysis of cardiac tissue were used to assess the degree of heart damage produced in female rats treated with ten i.v. doses of 1 mg/kg DXR over a period of 15 weeks; body-weight increase and survival were also analyzed to evaluate the toxicity of treatments. Cardiac alterations induced by DXR were compared with those occurring in animals receiving 20 mg/kg i.v. ADR-529 at 30 min prior to DXR administration, starting at the first, third, or sixth DXR dose and given until the end of the study (15th week). Rats treated with DXR were severely cardiomyopathic, showing progressive and irreversible ECG alterations (QRS-complex and S alpha T-segment widening and T-wave flattening) and marked degeneration of the myocardium (myocyte vacuolation, myofibrillar loss, and endomyocardial fibrosis). The most effective cardiac protection was provided by the administration of ADR-529 beginning with the first or third DXR dose. Delaying treatment with ADR-529 until the sixth DXR dose resulted in a significant reduction in its therapeutic action on heart damage. A significant difference in body-weight increase and survival was observed between the treatment groups: ADR-529 injected prior to the first DXR dose significantly protected animals from DXR toxicity, but this schedule was significantly more toxic than the administration of ADR-529 beginning with the third or sixth DXR dose. Taking into account the degree of cardiac protection and the toxicity of combination treatments, the results of the present study demonstrate the superiority of ADR-529 given prior to the third DXR dose over the other schedules tested. This finding suggests that significant protection against DXR-induced chronic cardiotoxicity in the rat can be obtained using deferred treatment with ADR-529.
Collapse
Affiliation(s)
- C Agen
- Institute of Medical Pharmacology, University of Pisa, Italy
| | | | | | | | | | | |
Collapse
|
11
|
Henneberry HP, Aherne GW. Visualisation of doxorubicin in human and animal tissues and in cell cultures by immunogold-silver staining. Br J Cancer 1992; 65:82-6. [PMID: 1733446 PMCID: PMC1977343 DOI: 10.1038/bjc.1992.15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In previous pharmacologic studies, the native fluorescent properties of doxorubicin (DOX) have been utilised to visualise tissue and cellular drug distribution. Such distribution studies provide valuable additional information to that obtained by measuring tissue drug concentration alone. An alternative immunocytochemical method of drug localisation using a rabbit immunoadsorbed antiserum to DOX and silver-enhanced gold-labelled second antibodies has been used to achieve visualisation of DOX in normal and malignant tissues from drug-treated animals and patients, and in human tumour cell lines treated in vitro. Non-specific staining in untreated tissues or in controls stained without primary antibody was minimal. Widespread dark brown to black specific immunostaining was observed in the normal tissues of drug-treated animals and in rat sarcoma and in the mouse EMT6 mammary tumour. In human breast tumour biopsy samples obtained at surgery 1 h following a 25 mg intravenous dose of DOX, considerable variation in drug distribution was observed which appeared to be related to drug concentration. Both nuclear and membrane staining was apparent; the latter was especially noticeable in human tumour cells grown in the presence of DOX at concentrations greater than 0.92 microM. Immunolocalisation using silver enhanced gold-labelled reagents provides an additional technique to study cell and organ specific differences in drug uptake and distribution.
Collapse
Affiliation(s)
- H P Henneberry
- Biomedical Research Division, School of Biological Sciences, University of Surrey, Guildford, UK
| | | |
Collapse
|
12
|
Bernardini N, Giannessi F, Bianchi F, Dolfi A, Lupetti M, Zaccaro L, Malvaldi G, Del Tacca M. Comparative activity of doxorubicin and its major metabolite, doxorubicinol, on V79/AP4 fibroblasts: a morphofunctional study. Exp Mol Pathol 1991; 55:238-50. [PMID: 1748213 DOI: 10.1016/0014-4800(91)90004-h] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Doxorubicin (DXR), an anthracycline antineoplastic drug, is mainly metabolized to the C-13 dihydroderivative doxorubicinol (DXR-ol), which displays cytotoxic activity on various cell lines. To better characterize the cytotoxic activity of this metabolite, we have studied the effect of DXR (0.1-10 micrograms/ml) or DXR-ol (1-100 micrograms/ml) on the transformed fibroblast cell line V79/AP4 by means of the clonogenic assay, cytofluorescence, and light and electron microscopy. Both DXR and DXR-ol displayed a dose-dependent inhibition of colony formation with an IC50 factor DXR-ol/DXR of 19.5. A striking nuclear fluorescence was observed after DXR but not after DXR-ol. A low number of mitoses and a decrease in nucleoli staining affinity were the most evident alterations induced by DXR. Electron microscopy showed both nuclear and cytoplasmic changes in DXR treated cells: nucleolar segregation, cytoplasmic vacuoles, and mitochondrial swelling with dense needle-shaped material were observed. Exposure to formic acid confirmed the calcific nature of the mitochondrial bodies. Only the highest dose of DXR-ol brought about nuclear and cytoplasmic ultrastructural changes similar to those induced by DXR. Our data describe new in vitro findings on the cytotoxicity and morphological alterations induced by both DXR and DXR-ol, with a lower activity of DXR-ol against V79/AP4 fibroblasts.
Collapse
Affiliation(s)
- N Bernardini
- Istituto di Anatomia Umana Normale, Università degli Studi di Pisa, Italy
| | | | | | | | | | | | | | | |
Collapse
|