1
|
Johnson W, Bergfeld WF, Belsito DV, Hill RA, Klaassen CD, Liebler DC, Marks JG, Shank RC, Slaga TJ, Snyder PW, Fiume M, Heldreth B. Safety Assessment of Polyol Phosphates as Used in Cosmetics. Int J Toxicol 2024; 43:78-107. [PMID: 39046084 DOI: 10.1177/10915818241259699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
The Expert Panel for Cosmetic Ingredient Safety (Panel) reviewed the safety of 10 polyol phosphates. Some of the possible functions in cosmetics that are reported for this ingredient group are chelating agents, oral care agents, and skin conditioning agents. The Panel reviewed relevant data relating to the safety of these ingredients under the intended conditions of use in cosmetic formulations, and concluded that Sodium Phytate, Phytic Acid, Phytin, and Trisodium Inositol Triphosphate are safe in cosmetics in the present practices of use and concentration described in the safety assessment. The Panel also concluded that the data are insufficient to determine the safety of the following 6 ingredients as used in cosmetics: Disodium Glucose Phosphate, Manganese Fructose Diphosphate, Sodium Mannose Phosphate, Trisodium Fructose Diphosphate, Xylityl Phosphate, and Zinc Fructose Diphosphate.
Collapse
Affiliation(s)
- Wilbur Johnson
- Cosmetic Ingredient Review Former Senior Scientific Analyst/Writer
| | | | | | - Ronald A Hill
- Expert Panel for Cosmetic Ingredient Safety Former Member
| | | | | | - James G Marks
- Expert Panel for Cosmetic Ingredient Safety Former Member
| | - Ronald C Shank
- Expert Panel for Cosmetic Ingredient Safety Former Member
| | | | | | | | | |
Collapse
|
2
|
Minamisawa H, Kojima Y, Aizawa M. Adsorption of Inositol Phosphate on Hydroxyapatite Powder with High Specific Surface Area. MATERIALS 2022; 15:ma15062176. [PMID: 35329627 PMCID: PMC8950381 DOI: 10.3390/ma15062176] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/10/2022] [Accepted: 03/12/2022] [Indexed: 02/04/2023]
Abstract
Chelate-setting calcium-phosphate cements (CPCs) have been developed using inositol phosphate (IP6) as a chelating agent. However, the compressive strength of the CPC fabricated from a commercially available hydroxyapatite (HAp) powder was approximately 10 MPa. In this study, we miniaturized HAp particles as a starting powder to improve the compressive strength of chelate-setting CPCs and examined the adsorption properties of IP6 onto HAp powders. An HAp powder with a specific surface area (SSA) higher than 200 m2/g (HApHS) was obtained by ultrasonic irradiation for 1 min in a wet synthesis process, greatly improving the SSA (214 m2/g) of the commercial powder without ultrasonic irradiation. The HApHS powder was found to be a B-type carbonate-containing HAp in which the phosphate groups in apatite were replaced by carbonate groups. Owing to the high SSA, the HApHS powder also showed high IP6 adsorption capacity. The adsorption phenomena of IP6 to our HApHS and commercially available Hap powders were found to follow the Freundlich and Langmuir models, respectively. We found that IP6 adsorbs on the HApHS powder by both physisorption and chemisorption. The fine HapHS powder with a high SSA is a novel raw powder material, expected to improve the compressive strength of chelate-setting CPCs.
Collapse
Affiliation(s)
- Hirogo Minamisawa
- Organization for the Strategic Coordination of Research and Intellectual Properties, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan;
| | - Yoshiyuki Kojima
- Department of Materials and Applied Chemistry, Faculty of Science and Engineering, Nihon University, 1-8, Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8308, Japan;
| | - Mamoru Aizawa
- Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
- Correspondence:
| |
Collapse
|
3
|
Seo YS, Lee G, Song S, Kim K, Cho M. Combinatorial treatment using citric acid, malic acid, and phytic acid for synergistical inactivation of foodborne pathogenic bacteria. KOREAN J CHEM ENG 2021. [DOI: 10.1007/s11814-021-0751-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4
|
Bui HL, Huang CJ. Tough Polyelectrolyte Hydrogels with Antimicrobial Property via Incorporation of Natural Multivalent Phytic Acid. Polymers (Basel) 2019; 11:E1721. [PMID: 31640149 PMCID: PMC6835581 DOI: 10.3390/polym11101721] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/14/2019] [Accepted: 10/16/2019] [Indexed: 01/08/2023] Open
Abstract
Tough and antimicrobial dual-crosslinked poly((trimethylamino)ethyl methacrylate chloride)-phytic acid hydrogel (pTMAEMA-PA) has been synthesized by adding a chemical crosslinker and docking a physical crosslinker of multivalent phytic acid into a cationic polyelectrolyte network. By increasing the loading concentration of PA, the tough hydrogel exhibits compressive stress of >1 MPa, along with high elasticity and fatigue-resistant properties. The enhanced mechanical properties of pTMAEMA-PA stem from the multivalent ion effect of PA via the formation of ion bridges within polyelectrolytes. In addition, a comparative study for a series of pTMAEMA-counterion complexes was conducted to elaborate the relationship between swelling ratio and mechanical strength. The study also revealed secondary factors, such as ion valency, ion specificity and hydrogen bond formation, holding crucial roles in tuning mechanical properties of the polyelectrolyte hydrogel. Furthermore, in bacteria attachment and disk diffusion tests, pTMAEMA-PA exhibits superior fouling resistance and antibacterial capability. The results reflect the fact that PA enables chelating strongly with divalent metal ions, hence, disrupting the outer membrane of bacteria, as well as dysfunction of organelles, DNA and protein. Overall, the work demonstrated a novel strategy for preparation of tough polyelectrolyte with antibacterial capability via docking PA to open up the potential use of PA in medical application.
Collapse
Affiliation(s)
- Hoang Linh Bui
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan 32023, Taiwan.
| | - Chun-Jen Huang
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan 32023, Taiwan.
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32023, Taiwan.
- R&D Center for Membrane Technology, Chung Yuan Christian University, Taoyuan 32023, Taiwan.
| |
Collapse
|
5
|
Inatsu Y, Weerakkody K, Bari ML, Hosotani Y, Nakamura N, Kawasaki S. The efficacy of combined (NaClO and organic acids) washing treatments in controlling Escherichia coli O157:H7, Listeria monocytogenes and spoilage bacteria on shredded cabbage and bean sprout. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.06.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
6
|
Kim NH, Rhee MS. Phytic Acid and Sodium Chloride Show Marked Synergistic Bactericidal Effects against Nonadapted and Acid-Adapted Escherichia coli O157:H7 Strains. Appl Environ Microbiol 2016; 82:1040-1049. [PMID: 26637600 PMCID: PMC4751840 DOI: 10.1128/aem.03307-15] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 11/20/2015] [Indexed: 02/06/2023] Open
Abstract
The synergistic antimicrobial effects of phytic acid (PA), a natural extract from rice bran, plus sodium chloride against Escherichia coli O157:H7 were examined. Exposure to NaCl alone at concentrations up to 36% (wt/wt) for 5 min did not reduce bacterial populations. The bactericidal effects of PA alone were much greater than those of other organic acids (acetic, citric, lactic, and malic acids) under the same experimental conditions (P < 0.05). Combining PA and NaCl under conditions that yielded negligible effects when each was used alone led to marked synergistic effects. For example, whereas 0.4% PA or 3 or 4% NaCl alone had little or no effect on cell viability, combining the two completely inactivated both nonadapted and acid-adapted cells, reducing their numbers to unrecoverable levels (>7-log CFU/ml reduction). Flow cytometry confirmed that PA disrupted the cell membrane to a greater extent than did other organic acids, although the cells remained viable. The combination of PA and NaCl induced complete disintegration of the cell membrane. By comparison, none of the other organic acids acted synergistically with NaCl, and neither did NaCl-HCl solutions at the same pH values as the test solutions of PA plus NaCl. These results suggest that PA has great potential as an effective bacterial membrane-permeabilizing agent, and we show that the combination is a promising alternative to conventional chemical disinfectants. These findings provide new insight into the utility of natural compounds as novel antimicrobial agents and increase our understanding of the mechanisms underlying the antibacterial activity of PA.
Collapse
Affiliation(s)
- Nam Hee Kim
- Department of Biotechnology, School of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Min Suk Rhee
- Department of Biotechnology, School of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| |
Collapse
|
7
|
Abstract
Inositol hexaphosphate (IP(6)) is a naturally occurring polyphosphorylated carbohydrate, abundantly present in many plant sources and in certain high-fiber diets, such as cereals and legumes. In addition to being found in plants, IP(6) is contained in almost all mammalian cells, although in much smaller amounts, where it is important in regulating vital cellular functions such as signal transduction, cell proliferation, and differentiation. For a long time IP(6) has been recognized as a natural antioxidant. Recently IP(6) has received much attention for its role in cancer prevention and control of experimental tumor growth, progression, and metastasis. In addition, IP(6) possesses other significant benefits for human health, such as the ability to enhance immune system, prevent pathological calcification and kidney stone formation, lower elevated serum cholesterol, and reduce pathological platelet activity. In this review we show the efficacy and discuss some of the molecular mechanisms that govern the action of this dietary agent. Exogenously administered IP(6) is rapidly taken up into cells and dephosphorylated to lower inositol phosphates, which further affect signal transduction pathways resulting in cell cycle arrest. A striking anticancer action of IP(6) was demonstrated in different experimental models. In addition to reducing cell proliferation, IP(6) also induces differentiation of malignant cells. Enhanced immunity and antioxidant properties also contribute to tumor cell destruction. Preliminary studies in humans show that IP(6) and inositol, the precursor molecule of IP(6), appear to enhance the anticancer effect of conventional chemotherapy, control cancer metastases, and improve quality of life. Because it is abundantly present in regular diet, efficiently absorbed from the gastrointestinal tract, and safe, IP(6) + inositol holds great promise in our strategies for cancer prevention and therapy. There is clearly enough evidence to justify the initiation of full-scale clinical trials in humans.
Collapse
Affiliation(s)
- Ivana Vucenik
- Department of Pathology, University of Maryland School of Medicine, MD 21201, USA.
| | | |
Collapse
|
8
|
Bari ML, Ukuku DO, Kawasaki T, Inatsu Y, Isshiki K, Kawamoto S. Combined efficacy of nisin and pediocin with sodium lactate, citric acid, phytic acid, and potassium sorbate and EDTA in reducing the Listeria monocytogenes population of inoculated fresh-cut produce. J Food Prot 2005; 68:1381-7. [PMID: 16013374 DOI: 10.4315/0362-028x-68.7.1381] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The inability of chlorine to completely inactivate human bacterial pathogens on whole and fresh-cut produce suggests a need for other antimicrobial washing treatments. Nisin (50 microg/ml) and pediocin (100 AU/ml) individually or in combination with sodium lactate (2%), potassium sorbate (0.02%), phytic acid (0.02%), and citric acid (10 mM) were tested as possible sanitizer treatments for reducing the population of Listeria monocytogenes on cabbage, broccoli, and mung bean sprouts. Cabbage, broccoli, and mung bean sprouts were inoculated with a five-strain cocktail of L. monocytogenes at 4.61, 4.34, and 4.67 log CFU/g, respectively. Inoculated produce was left at room temperature (25 degrees C) for up to 4 h before antimicrobial treatment. Washing treatments were applied to inoculated produce for 1 min, and surviving bacterial populations were determined. When tested alone, all compounds resulted in 2.20- to 4.35-log reductions of L. monocytogenes on mung bean, cabbage, and broccoli, respectively. The combination treatments nisin-phytic acid and nisin-pediocin-phytic acid caused significant (P < 0.05) reductions of L. monocytogenes on cabbage and broccoli but not on mung bean sprouts. Pediocin treatment alone or in combination with any of the organic acid tested was more effective in reducing L. monocytogenes populations than the nisin treatment alone. Although none of the combination treatments completely eliminated the pathogen on the produce, the results suggest that some of the treatments evaluated in this study can be used to improve the microbial safety of fresh-cut cabbage, broccoli, and mung bean sprouts.
Collapse
Affiliation(s)
- M L Bari
- National Food Research Institute, Food Hygiene Team, Kannondai-2-1-12, Tsukuba 305-8642, Japan
| | | | | | | | | | | |
Collapse
|
9
|
Affiliation(s)
- Brian Q Phillippy
- United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, New Orleans, LA 70124, USA
| |
Collapse
|
10
|
Fox CH, Eberl M. Phytic acid (IP6), novel broad spectrum anti-neoplastic agent: a systematic review. Complement Ther Med 2002; 10:229-34. [PMID: 12594974 DOI: 10.1016/s0965-2299(02)00092-4] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION Phytic acid or IP6 has been extensively studied in animals and is being promoted as an anti-cancer agent in health food stores. It is naturally found in legumes, wheat bran, and soy foods. It is believed to be the active ingredient that gives these substances their cancer fighting abilities. Proposed mechanisms of action include gene alteration, enhanced immunity, and anti-oxidant properties. METHODS A Medline search from 1966 to May 2002 using the keywords phytic acid and cancer, and limiting the search to the subheadings of therapeutic uses, prevention, and adverse effects revealed 28 studies. These studies were included in the review. RESULTS A great majority of the studies were done in animals and showed that phytic acid had anti-neoplastic properties in breast, colon, liver, leukemia, prostate, sarcomas, and skin cancer. There were no human studies. Side effects included chelation of multivalent cations, and an increase in bladder and renal papillomas. This increase in papilloma formation only occurred with the sodium salt of phytic acid. It did not occur with either the potassium or magnesium salts. CONCLUSIONS There is a large body of animal evidence to show that phytic acid may have a role in both the prevention and treatment of many forms of cancer. There is clearly enough evidence to justify the initiation of Phase I and Phase II clinical trials in humans.
Collapse
Affiliation(s)
- C H Fox
- Department of Family Medicine, State University of New York at Buffalo, ECMC, Clinical Center, Buffalo, 14215, USA.
| | | |
Collapse
|
11
|
|
12
|
Kitamura M, Konishi N, Kitahori Y, Fukushima Y, Yoshioka N, Hiasa Y. Promoting effect of monosodium aspartate, but not glycine, on renal pelvis and urinary bladder carcinogenesis in rat induced by N-butyl-N-(4-hydroxybutyl)nitrosamine. Toxicol Pathol 1996; 24:573-9. [PMID: 8923678 DOI: 10.1177/019262339602400506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Although the incidences were relatively low, hyperplasias of the renal pelvis and the urinary bladder have been observed in Fischer-344 (F-344) rats after both sodium aspartate and glycine treatments in long-term 2-yr bioassays. In the present study, the effects of these amino acids on development of N-butyl-N-(4-hydroxybutyl)nitrosamine (BBN)-initiated urinary lesions were investigated in male and female F-344/DuCrj rats. F-344 rats of both sexes, 6 wk old at the commencement, were given 0.05% BBN for 4 wk and then treated with one of the amino acids at a level of 5.0% in the drinking water for the following 36 wk. Proliferative lesions in the renal pelvis often associated with necrosis and mineralization were increased in the group treated with BBN followed by sodium aspartate, but not by glycine, in both sexes. The same group demonstrated higher incidences of urinary bladder tumors with increased urinary pH and sodium concentration and decreased creatinine and uric acid, but not accompanying crystallization. These results showed a clear promoting effect of sodium aspartate for urinary carcinogenesis in rats. The mechanisms of the effect on the renal pelvis and urinary bladder might be different.
Collapse
Affiliation(s)
- M Kitamura
- Second Department of Pathology, Nara Medical University, Japan
| | | | | | | | | | | |
Collapse
|
13
|
Abstract
Phytic acid (PA), a major phosphorus storage compound of most seeds and cereal grains, contributes about 1 to 7% of their dry weight. It may account for more than 70% of the total kernel phosphorus. PA has the strong ability to chelate multivalent metal ions, especially zinc, calcium, and iron. The binding can result in very insoluble salts that are poorly absorbed from the gastrointestinal tract, which results in poor bioavailability (BV) of minerals. Alternatively, the ability of PA to chelate minerals has been reported to have some protective effects, such as decreasing iron-mediated colon cancer risk and lowering serum cholesterol and triglycerides in experimental animals. Data from human studies are still lacking. PA is also considered to be a natural antioxidant and is suggested to have potential functions of reducing lipid peroxidation and as a preservative in foods. Finally, certain inositol phosphates, which may be derived from PA, have been noted to have a function in second messenger transduction systems. The potential nutritional significance of PA is discussed in this review.
Collapse
Affiliation(s)
- J R Zhou
- Division of Nutritional Sciences, University of Illinois, Urbana 61801, USA
| | | |
Collapse
|
14
|
Takaba K, Hirose M, Ogawa K, Hakoi K, Fukushima S. Modification of N-butyl-N-(4-hydroxybutyl)nitrosamine-initiated urinary bladder carcinogenesis in rats by phytic acid and its salts. Food Chem Toxicol 1994; 32:499-503. [PMID: 8045454 DOI: 10.1016/0278-6915(94)90105-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The effects of dietary phytic acid and its salts on the promotion stage of two-stage urinary bladder carcinogenesis were examined. Male F344 rats were initiated by exposure to 0.05% N-butyl-N-(4-hydroxybutyl)nitrosamine in the drinking water for 4 wk, and then treated with basal diet containing a 2% supplement of phytic acid (PA), phytic acid dodecasodium salt (Na-PA), phytic acid dodecapotassium salt (K-PA), phytic acid hexamagnesium salt n-hydrate (Mg-PA) or no added chemical for 32 wk. Na-PA significantly increased the development of preneoplastic and neoplastic lesions of the urinary bladder. K-PA also brought about a tendency for increase in papillomas, whereas Mg-PA and PA were without effect. Both Na-PA and K-PA caused elevation of urinary pH, and Na+ or K+ concentration, respectively. These results confirm the promoting activity of the sodium salt of phytic acid for urinary bladder carcinogenesis and indicate modulation by urinary components, as demonstrated by increases in urinary pH, and Na+ concentration.
Collapse
Affiliation(s)
- K Takaba
- First Department of Pathology, Nagoya City University Medical School, Japan
| | | | | | | | | |
Collapse
|