1
|
Hanschen FS. Acidification and tissue disruption affect glucosinolate and S-methyl-l-cysteine sulfoxide hydrolysis and formation of amines, isothiocyanates and other organosulfur compounds in red cabbage (Brassica oleracea var. capitata f. rubra). Food Res Int 2024; 178:114004. [PMID: 38309927 DOI: 10.1016/j.foodres.2024.114004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 02/05/2024]
Abstract
Cabbages are rich in sulfur-containing metabolites like glucosinolates (GLSs) and S-methyl-l-cysteine sulfoxide (SMCSO). Tissue disruption initiates hydrolysis of these compounds and bioactive volatile hydrolysis products such as isothiocyanates (ITCs), sulfides, and thiosulfinates are formed. However, nitriles, epithionitriles, or amines can also result from GLSs. Here, the influence of hydrolysis time, extent of tissue disruption (chopping vs. homogenization), and addition of lemon juice or vinegar on the outcome of enzymatic hydrolysis of GLSs and SMCSO was investigated in red cabbage. Chopping led to partial hydrolysis of GLSs, whereas homogenization completely degraded GLSs but only had a small effect on SMCSO. Homogenization increased amine formation from alkenyl and methylthioalkyl ITCs, but not from methylsulfinylalkyl ITCs. Acidification inhibited formation of products from SMCSO. Further, it reduced nitrile and epithionitrile formation and stopped amine formation, thereby increasing ITC levels. Therefore, acidification is a valuable mean to enhance ITC levels in fresh Brassica foods.
Collapse
Affiliation(s)
- Franziska S Hanschen
- Plant Quality and Food Security, Leibniz Institute of Vegetable and Ornamental Crops (IGZ) e.V., Theodor-Echtermeyer-Weg 1, 14979 Grossbeeren, Germany; Leibniz Institute of Vegetable and Ornamental Crops (IGZ) e. V., Theodor-Echtermeyer-Weg 1, 14979 Grossbeeren, Germany.
| |
Collapse
|
2
|
Andernach L, Witzel K, Hanschen FS. Effect of long-term storage on glucosinolate and S-methyl-l-cysteine sulfoxide hydrolysis in cabbage (Brassica oleracea var. capitata). Food Chem 2024; 430:136969. [PMID: 37531915 DOI: 10.1016/j.foodchem.2023.136969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/22/2023] [Accepted: 07/20/2023] [Indexed: 08/04/2023]
Abstract
Cabbages are good sources for glucosinolates and S-methyl-l-cysteine sulfoxide (SMCSO), precursors to bioactive volatile hydrolysis products such as isothiocyanates, sulfides and thiosulfinates. Often, white and red cabbages are stored at 0 °C for many months before being sold. Here, we investigated the effect of storage for up to eight months on glucosinolates, SMCSO and the formation of isothiocyanates and derived amines, (epithio)nitriles and volatile organosulfur compounds (VOSCs) in white and red cabbages. Further, the effect of storage on protein expression was evaluated. Overall, glucosinolates and well as SMCSO contents were stable during storage. While in white cabbage glucosinolate hydrolysis was not much affected, in red cabbage storage increased formation of isothiocyanates and methylthioalkylamines, which was linked with reduced epithiospecifier protein 1 abundance. Long-term storage reduced formation of VOSCs from SMCSO which correlated with decline in predicted cystine lyase. Therefore, storage maintains these phytonutrients and can increase formation of health-promoting isothiocyanates.
Collapse
Affiliation(s)
- Lars Andernach
- Plant Quality and Food Security, Leibniz Institute of Vegetable and Ornamental Crops (IGZ) e.V., Theodor-Echtermeyer-Weg 1, 14979 Grossbeeren, Germany
| | - Katja Witzel
- Plant-Microbe Systems, Leibniz Institute of Vegetable and Ornamental Crops (IGZ) e.V., Theodor-Echtermeyer-Weg 1, 14979 Grossbeeren, Germany
| | - Franziska S Hanschen
- Plant Quality and Food Security, Leibniz Institute of Vegetable and Ornamental Crops (IGZ) e.V., Theodor-Echtermeyer-Weg 1, 14979 Grossbeeren, Germany.
| |
Collapse
|
3
|
Hill CR, Haoci Liu A, McCahon L, Zhong L, Shafaei A, Balmer L, Lewis JR, Hodgson JM, Blekkenhorst LC. S-methyl cysteine sulfoxide and its potential role in human health: a scoping review. Crit Rev Food Sci Nutr 2023:1-14. [PMID: 37819533 DOI: 10.1080/10408398.2023.2267133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Higher intakes of cruciferous and allium vegetables are associated with a lower risk of cardiometabolic-related outcomes in observational studies. Whilst acknowledging the many healthy compounds within these vegetables, animal studies indicate that some of these beneficial effects may be partially mediated by S-methyl cysteine sulfoxide (SMCSO), a sulfur-rich, non-protein, amino acid found almost exclusively within cruciferous and alliums. This scoping review explores evidence for SMCSO, its potential roles in human health and possible mechanistic action. After systematically searching several databases (EMBASE, MEDLINE, SCOPUS, CINAHL Plus Full Text, Agricultural Science), we identified 21 original research articles meeting our inclusion criteria. These were limited primarily to animal and in vitro models, with 14/21 (67%) indicating favorable anti-hyperglycemic, anti-hypercholesterolemic, and antioxidant properties. Potential mechanisms included increased bile acid and sterol excretion, altered glucose- and cholesterol-related enzymes, and improved hepatic and pancreatic β-cell function. Raising antioxidant defenses may help mitigate the oxidative damage observed in these pathologies. Anticancer and antibacterial effects were also explored, along with one steroidogenic study. SMCSO is frequently overlooked as a potential mediator to the benefits of sulfur-rich vegetables. More research into the health benefits of SMCSO, especially for cardiometabolic and inflammatory-based pathology, is warranted. Human studies are especially needed.
Collapse
Affiliation(s)
- Caroline R Hill
- Nutrition and Health Innovation Research Institute, School of Medical and Health Science, Edith Cowan University, Royal Perth Hospital Research Foundation, Perth, Western Australia, Australia
| | - Alex Haoci Liu
- Nutrition and Health Innovation Research Institute, School of Medical and Health Science, Edith Cowan University, Royal Perth Hospital Research Foundation, Perth, Western Australia, Australia
- Medical School, The University of Western Australia, Perth, Western Australia, Australia
| | - Lyn McCahon
- Nutrition and Health Innovation Research Institute, School of Medical and Health Science, Edith Cowan University, Royal Perth Hospital Research Foundation, Perth, Western Australia, Australia
| | - Liezhou Zhong
- Nutrition and Health Innovation Research Institute, School of Medical and Health Science, Edith Cowan University, Royal Perth Hospital Research Foundation, Perth, Western Australia, Australia
| | - Armaghan Shafaei
- Centre for Integrative Metabolomics and Computational Biology, School of Science, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Lois Balmer
- Centre for Precision Health, School of Medical and Health Science, Edith Cowan University, Joondalup, Western Australia, Australia
- Centre for Diabetes Research, Harry Perkins Institute of Medical Research, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Joshua R Lewis
- Nutrition and Health Innovation Research Institute, School of Medical and Health Science, Edith Cowan University, Royal Perth Hospital Research Foundation, Perth, Western Australia, Australia
- Medical School, The University of Western Australia, Perth, Western Australia, Australia
- Centre for Kidney Research, Children's Hospital at Westmead School of Public Health, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Jonathan M Hodgson
- Nutrition and Health Innovation Research Institute, School of Medical and Health Science, Edith Cowan University, Royal Perth Hospital Research Foundation, Perth, Western Australia, Australia
- Medical School, The University of Western Australia, Perth, Western Australia, Australia
| | - Lauren C Blekkenhorst
- Nutrition and Health Innovation Research Institute, School of Medical and Health Science, Edith Cowan University, Royal Perth Hospital Research Foundation, Perth, Western Australia, Australia
- Medical School, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
4
|
Moreno-Ortega A, Pereira-Caro G, Ludwig IA, Motilva MJ, Moreno-Rojas JM. Bioavailability of Organosulfur Compounds after the Ingestion of Black Garlic by Healthy Humans. Antioxidants (Basel) 2023; 12:antiox12040925. [PMID: 37107300 PMCID: PMC10135770 DOI: 10.3390/antiox12040925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/03/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
The consumption of black garlic has been related to a decreased risk of many human diseases due to the presence of phytochemicals such as organosulfur compounds (OSCs). However, information on the metabolization of these compounds in humans is limited. By means of ultra-high-performance liquid chromatography coupled with high-resolution mass spectrometry (UHPLC-HRMS), this study aims to determine the OSCs and their metabolites excreted in urine 24 h after an acute intake of 20 g of black garlic by healthy humans. Thirty-three OSCs were identified and quantified, methiin (17,954 ± 6040 nmol), isoalliin (15,001 ± 9241 nmol), S-(2-carboxypropyl)-L-cysteine (8804 ± 7220 nmol) and S-propyl-L-cysteine (deoxypropiin) (7035 ± 1392 nmol) being the main ones. Also detected were the metabolites N-acetyl-S-allyl-L-cysteine (NASAC), N-acetyl-S-allyl-L-cysteine sulfoxide (NASACS) and N-acetyl-S-(2-carboxypropyl)-L-cysteine (NACPC), derived from S-allyl-L-cysteine (SAC), alliin and S-(2-carboxypropyl)-L-cysteine, respectively. These compounds are potentially N-acetylated in the liver and kidney. The total excretion of OSCs 24 h after the ingestion of black garlic was 64,312 ± 26,584 nmol. A tentative metabolic pathway has been proposed for OSCs in humans.
Collapse
Affiliation(s)
- Alicia Moreno-Ortega
- Department of Agroindustry and Food Quality, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo, Avda. Menéndez-Pidal, 14004 Córdoba, Spain
- Foods for Health Group, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Córdoba, Spain
| | - Gema Pereira-Caro
- Department of Agroindustry and Food Quality, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo, Avda. Menéndez-Pidal, 14004 Córdoba, Spain
- Foods for Health Group, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Córdoba, Spain
| | - Iziar A Ludwig
- Agrotecnio Center, XaRTA-TPV, Food Technology Department, Escola Tècnica Superior d'Enginyeria Agrària, University of Lleida, Avda. Alcalde Rovira Roure 191, 25198 Catalonia, Spain
| | - María-José Motilva
- Agrotecnio Center, XaRTA-TPV, Food Technology Department, Escola Tècnica Superior d'Enginyeria Agrària, University of Lleida, Avda. Alcalde Rovira Roure 191, 25198 Catalonia, Spain
| | - José Manuel Moreno-Rojas
- Department of Agroindustry and Food Quality, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo, Avda. Menéndez-Pidal, 14004 Córdoba, Spain
- Foods for Health Group, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Córdoba, Spain
| |
Collapse
|
5
|
Formation of volatile sulfur compounds and S-methyl-l-cysteine sulfoxide in Brassica oleracea vegetables. Food Chem 2022; 383:132544. [PMID: 35247727 DOI: 10.1016/j.foodchem.2022.132544] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 11/21/2022]
Abstract
Besides glucosinolates, Brassica vegetables accumulate sulfur-containing (+)-S-methyl-l-cysteine sulfoxide (SMCSO, methiin), mainly known from Allium vegetables. Such (+)-S-alk(en)yl-l-cysteine sulfoxides can degrade to volatile organosulfur compounds (VOSCs), which have been linked to health beneficial effects. In the present study, the accumulation of SMCSO and the formation of VOSCs was investigated in Brassica oleracea vegetables. SMCSO content of commercially available white and red cabbages was monitored over a three-month period and linked with the formation of VOSCs. S-Methyl methanethiosulfinate was the main VOSC released from SMCSO. Upon heating, it degraded to dimethyltrisulfide and dimethyldisulfide, which were less abundant in fresh homogenates. SMCSO made up approximately 1% of the dry matter of cabbages and the overall contents were similar in white and red cabbages (3.2-10.2 and 3.9-10.3 µmol/g fresh weight, respectively). Using proteome profiling it was shown that recovery of VOSCs correlated with abundance of two isoforms of cystine lyase.
Collapse
|
6
|
Kellingray L, Le Gall G, Doleman JF, Narbad A, Mithen RF. Effects of in vitro metabolism of a broccoli leachate, glucosinolates and S-methylcysteine sulphoxide on the human faecal microbiome. Eur J Nutr 2020; 60:2141-2154. [PMID: 33067661 PMCID: PMC8137612 DOI: 10.1007/s00394-020-02405-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 10/02/2020] [Indexed: 02/07/2023]
Abstract
Purpose Brassica are an important food source worldwide and are characterised by the presence of compounds called glucosinolates. Studies indicate that the glucosinolate derived bioactive metabolite sulphoraphane can elicit chemoprotective benefits on human cells. Glucosinolates can be metabolised in vivo by members of the human gut microbiome, although the prevalence of this activity is unclear. Brassica and Allium plants also contain S-methylcysteine sulphoxide (SMCSO), that may provide additional health benefits but its metabolism by gut bacteria is not fully understood. Methods We examined the effects of a broccoli leachate (BL) on the composition and function of human faecal microbiomes of five different participants under in vitro conditions. Bacterial isolates from these communities were then tested for their ability to metabolise glucosinolates and SMCSO. Results Microbial communities cultured in vitro in BL media were observed to have enhanced growth of lactic acid bacteria, such as lactobacilli, with a corresponding increase in the levels of lactate and short-chain fatty acids. Members of Escherichia isolated from these faecal communities were found to bioconvert glucosinolates and SMCSO to their reduced analogues. Conclusion This study uses a broccoli leachate to investigate the bacterial-mediated bioconversion of glucosinolates and SMCSO, which may lead to further products with additional health benefits to the host. We believe that this is the first study that shows the reduction of the dietary compound S-methylcysteine sulphoxide by bacteria isolated from human faeces. Electronic supplementary material The online version of this article (10.1007/s00394-020-02405-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lee Kellingray
- Food Innovation and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ UK
| | - Gwénaëlle Le Gall
- Analytical Sciences Unit, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ UK
| | - Joanne F. Doleman
- Food Innovation and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ UK
| | - Arjan Narbad
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ UK
| | - Richard F. Mithen
- Food Innovation and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ UK
| |
Collapse
|
7
|
Joller C, De Vrieze M, Moradi A, Fournier C, Chinchilla D, L’Haridon F, Bruisson S, Weisskopf L. S-methyl Methanethiosulfonate: Promising Late Blight Inhibitor or Broad Range Toxin? Pathogens 2020; 9:pathogens9060496. [PMID: 32580401 PMCID: PMC7350374 DOI: 10.3390/pathogens9060496] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/14/2020] [Accepted: 06/18/2020] [Indexed: 12/16/2022] Open
Abstract
(1) Background: S-methyl methanethiosulfonate (MMTS), a sulfur containing volatile organic compound produced by plants and bacterial species, has recently been described to be an efficient anti-oomycete agent with promising perspectives for the control of the devastating potato late blight disease caused by Phytophthora infestans. However, earlier work raised questions regarding the putative toxicity of this compound. To assess the suitability of MMTS for late blight control in the field, the present study thus aimed at evaluating the effect of MMTS on a wide range of non-target organisms in comparison to P. infestans. (2) Methods: To this end, we exposed P. infestans, as well as different pathogenic and non-pathogenic fungi, bacteria, the nematode Caenorhabditis elegans as well as the plant Arabidopsis thaliana to MMTS treatment and evaluated their response by means of in vitro assays. (3) Results: Our results showed that fungi (both mycelium and spores) tolerated MMTS better than the oomycete P. infestans, but that the compound nevertheless exhibited non-negligible toxic effects on bacteria, nematodes and plants. (4) Conclusions: We discuss the mode of action of MMTS and conclude that even though this compound might be too toxic for chemical application in the field, its strong anti-oomycete activity could still be exploited when naturally released at the site of infection by plant-associated microbes inoculated as biocontrol agents.
Collapse
Affiliation(s)
- Charlotte Joller
- Department of Biology, University of Fribourg, 1702 Fribourg, Switzerland; (C.J.); (M.D.V.); (A.M.); (D.C.); (F.L.); (S.B.)
| | - Mout De Vrieze
- Department of Biology, University of Fribourg, 1702 Fribourg, Switzerland; (C.J.); (M.D.V.); (A.M.); (D.C.); (F.L.); (S.B.)
| | - Aboubakr Moradi
- Department of Biology, University of Fribourg, 1702 Fribourg, Switzerland; (C.J.); (M.D.V.); (A.M.); (D.C.); (F.L.); (S.B.)
| | - Claudine Fournier
- Medical and Molecular Microbiology, University of Fribourg, 1702 Fribourg, Switzerland;
| | - Delphine Chinchilla
- Department of Biology, University of Fribourg, 1702 Fribourg, Switzerland; (C.J.); (M.D.V.); (A.M.); (D.C.); (F.L.); (S.B.)
| | - Floriane L’Haridon
- Department of Biology, University of Fribourg, 1702 Fribourg, Switzerland; (C.J.); (M.D.V.); (A.M.); (D.C.); (F.L.); (S.B.)
| | - Sebastien Bruisson
- Department of Biology, University of Fribourg, 1702 Fribourg, Switzerland; (C.J.); (M.D.V.); (A.M.); (D.C.); (F.L.); (S.B.)
| | - Laure Weisskopf
- Department of Biology, University of Fribourg, 1702 Fribourg, Switzerland; (C.J.); (M.D.V.); (A.M.); (D.C.); (F.L.); (S.B.)
- Correspondence:
| |
Collapse
|
8
|
Coode‐Bate J, Sivapalan T, Melchini A, Saha S, Needs PW, Dainty JR, Maicha J, Beasy G, Traka MH, Mills RD, Ball RY, Mithen RF. Accumulation of Dietary S-Methyl Cysteine Sulfoxide in Human Prostate Tissue. Mol Nutr Food Res 2019; 63:e1900461. [PMID: 31410992 PMCID: PMC6856681 DOI: 10.1002/mnfr.201900461] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/06/2019] [Indexed: 12/22/2022]
Abstract
SCOPE Observational studies have associated consumption of cruciferous vegetables with reduced risk of prostate cancer. This effect has been associated with the degradation products of glucosinolates-thioglycosides that accumulate within crucifers. The possible role of S-methyl cysteine sulfoxide, a metabolite that also accumulates in cruciferous vegetables, and its derivatives, in cancer prevention is relatively unexplored compared to glucosinolate derivatives. The hypothesis that consuming a broccoli soup results in the accumulation of sulfate (a SMCSO derivative) and other broccoli-derived metabolites in prostate tissue is tested. METHODS AND RESULTS Eighteen men scheduled for transperineal prostate biopsy were recruited into a 4-week parallel single blinded diet supplementation study (NCT02821728). Nine men supplemented their diet with three 300 mL portions of a broccoli soup each week for four weeks prior to surgery. Analyses of prostate biopsy tissues reveal no detectable levels of glucosinolates and derivatives. In contrast, SMCSO is detected in prostate tissues of the participants, with significantly higher levels in tissue of men in the supplementation arm. SMCSO was also found in blood and urine samples from a previous intervention study with the identical broccoli soup. CONCLUSION The consequences of SMCSO accumulation in prostate tissues and its potential role in prevention of prostate cancer remains to be investigated.
Collapse
Affiliation(s)
| | | | | | - Shikha Saha
- Quadram Institute BioscienceColney LaneNorwichNR4 7UQUK
| | - Paul W. Needs
- Quadram Institute BioscienceColney LaneNorwichNR4 7UQUK
| | | | | | - Gemma Beasy
- Quadram Institute BioscienceColney LaneNorwichNR4 7UQUK
| | | | - Robert D. Mills
- Department of UrologyNorfolk and Norwich University Hospitals NHS Foundation TrustNorwichUK
| | - Richard Y. Ball
- Norfolk and Waveney Cellular Pathology ServiceNorfolk and Norwich University Hospitals NHS Foundation TrustNorwichUK
| | - Richard F. Mithen
- Quadram Institute BioscienceColney LaneNorwichNR4 7UQUK
- The Liggins InstituteUniversity of AucklandNew Zealand
| |
Collapse
|
9
|
Yehya AH, Asif M, Tan YJ, Sasidharan S, Abdul Majid AM, Oon CE. Broad spectrum targeting of tumor vasculature by medicinal plants: An updated review. J Herb Med 2017. [DOI: 10.1016/j.hermed.2017.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
10
|
Edmands WMB, Gooderham NJ, Holmes E, Mitchell SC. S-Methyl-l-cysteine sulphoxide: the Cinderella phytochemical? Toxicol Res (Camb) 2013. [DOI: 10.1039/c2tx20030a] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
11
|
Scientific Opinion on Flavouring Group Evaluation 08, Revision 5 (FGE.08Rev5): Aliphatic and alicyclic mono‐, di‐, tri‐, and polysulphides with or without additional oxygenated functional groups from chemical groups 20 and 30. EFSA J 2012. [DOI: 10.2903/j.efsa.2012.2837] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
12
|
Scientific Opinion on Flavouring Group Evaluation 08, Revision 4 (FGE.08Rev4): Aliphatic and alicyclic mono-, di-, tri-, and polysulphides with or without additional oxygenated functional groups from chemical groups 20 and 30. EFSA J 2012. [DOI: 10.2903/j.efsa.2012.2455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
13
|
Scientific Opinion on Flavouring Group Evaluation 91, Revision 1 (FGE.91Rev1): Consideration of simple aliphatic and aromatic sulphides and thiols evaluated by JECFA (53rd and 68th meetings) structurally related to aliphatic and alicyclic mono-, di-, tri-. EFSA J 2011. [DOI: 10.2903/j.efsa.2011.2459] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
14
|
Edmands WMB, Beckonert OP, Stella C, Campbell A, Lake BG, Lindon JC, Holmes E, Gooderham NJ. Identification of Human Urinary Biomarkers of Cruciferous Vegetable Consumption by Metabonomic Profiling. J Proteome Res 2011; 10:4513-21. [DOI: 10.1021/pr200326k] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- William M. B. Edmands
- Biomolecular Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom
| | - Olaf P. Beckonert
- Biomolecular Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom
| | - Cinzia Stella
- Biomolecular Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom
| | - Alison Campbell
- Biomolecular Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom
| | - Brian G. Lake
- Leatherhead Food International, Leatherhead, KT22 7RY, United Kingdom
| | - John C. Lindon
- Biomolecular Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom
| | - Elaine Holmes
- Biomolecular Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom
| | - Nigel J. Gooderham
- Biomolecular Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom
| |
Collapse
|
15
|
Scientific Opinion on Flavouring Group Evaluation 8, Revision 3 (FGE.08Rev3): Aliphatic and alicyclic mono-, di-, tri-, and polysulphides with or without additional oxygenated functional groups from chemical groups 20 and 30. EFSA J 2011. [DOI: 10.2903/j.efsa.2011.1988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
16
|
Flavouring Group Evaluation 08 Rev2 (FGE.08 Rev2): Aliphatic and alicyclic mono-, di-, tri-, and polysulphides with or without additional oxygenated functional groups from chemical groups 20 and 30. EFSA J 2010. [DOI: 10.2903/j.efsa.2010.1408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
17
|
Flavouring Group Evaluation 91 (FGE.91): Consideration of simple aliphatic and aromatic sulphides and thiols evaluated by JECFA (53rd and 68th meetings) structurally related to aliphatic and alicyclic mono-, di-, tri-, and polysulphides with or without ad. EFSA J 2010. [DOI: 10.2903/j.efsa.2010.1337] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
18
|
Flavouring Group Evaluation 8, Revision 1 (FGE.08Rev1): Aliphatic and alicyclic mono-, di-, tri-, and polysulphides with or without additional oxygenated functional groups from chemical groups 20 and 30. EFSA J 2010. [DOI: 10.2903/j.efsa.2010.1021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
19
|
Nunn PB, Bell EA, Watson AA, Nash RJ. Toxicity of Non-protein Amino Acids to Humans and Domestic Animals. Nat Prod Commun 2010. [DOI: 10.1177/1934578x1000500329] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Non-protein amino acids are common in plants and are present in widely consumed animal feeds and human foods such as alfalfa ( Medicago sativa), which contains canavanine, and lentil ( Lens culinaris), which contains homoarginine. Some occur in wild species that are inadvertently harvested with crop species. Some nonprotein amino acids and metabolites can be toxic to humans, e.g. Lathyrus species contain a neurotoxic oxalyl-amino acid. Some potential toxins may be passed along a food chain via animal intermediates. The increased interest in herbal medicines in the Western countries will increase exposure to such compounds.
Collapse
Affiliation(s)
- Peter B. Nunn
- School of Pharmacy and Biomedical Sciences, St Michael's Building, University of Portsmouth, Portsmouth, PO1 2DT, UK
| | - E. Arthur Bell
- Formerly at the School of Biomedical Sciences, King's College London, WC2R 2LS, England, UK
| | - Alison A. Watson
- Phytoquest Limited, Aberystwyth University, Plas Gogerddan, Aberystwyth, Ceredigion, SY23 3EB, UK
| | - Robert J. Nash
- Phytoquest Limited, Aberystwyth University, Plas Gogerddan, Aberystwyth, Ceredigion, SY23 3EB, UK
| |
Collapse
|
20
|
Flavouring Group Evaluation 8 (FGE.08): Aliphatic and alicyclic mono‐, di‐, tri‐, and polysulphides with or without additional oxygenated functional groups from chemical group 20. EFSA J 2009. [DOI: 10.2903/j.efsa.2009.986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
21
|
Application (Reference EFSA‐GMO‐NL‐2008‐51) for the placing on the market of glyphosate tolerant genetically modified cotton GHB614, for food and feed uses, import and processing under Regulation (EC) No 1829/2003 from Bayer CropScience. EFSA J 2009. [DOI: 10.2903/j.efsa.2009.985] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
22
|
Holland HL, Brown FM, Johnson DV, Kerridge A, Mayne B, Turner CD, van Vliet AJ. Biocatalytic oxidation of S-alkylcysteine derivatives by chloroperoxidase and Beauveria species. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s1381-1177(02)00041-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
23
|
Asymmetric synthesis of both diastereomers of protected S-methyl-l-cysteine and S-n-propyl-l-cysteine sulphoxides. ACTA ACUST UNITED AC 2001. [DOI: 10.1016/s0957-4166(01)00268-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
Nakamura YK, Kawai K, Furukawa H, Matsuo T, Shimoi K, Tomita I, Nakamura Y. Suppressing effects of S-methyl methanethiosulfonate and diphenyl disulfide on mitomycin C-induced somatic mutation and recombination in Drosophila melanogaster and micronuclei in mice. Mutat Res 1997; 385:41-6. [PMID: 9372847 DOI: 10.1016/s0921-8777(97)00033-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
S-Methyl methanethiosulfonate (MMTS) and diphenyl disulfide (DPDS) are temporary enzyme-sulfhydryl blocking agents. They are naturally occurring phytoalexin-like and synthetic substances known to be very potent bio-antimutagens in Escherichia coli B/r WP2. In the present paper, the suppressing effects of MMTS on mitomycin C (MMC)-induced mutant wing spots in the somatic mutation and recombination test (SMART) of Drosophila melanogaster, and of MMTS and DPDS on MMC-induced micronucleated peripheral reticulocytes are described. MMTS consistently reduced the numbers of MMC-induced small single, large single and twin spots per wing at a dose of 10-1000 micrograms/vial, in a dose-dependent manner. MMTS reduced the number of twin spots per wing on the spontaneous mutation at the dose of 1000 micrograms/vial. MMTS and DPDS dose-dependently reduced the frequencies of MMC-induced micronucleated peripheral reticulocytes at a dose of 10-40, and 3-100 micrograms/kg, respectively. Our results confirmed that enzyme-sulfhydryl blocking agents, such as MMTS and DPDS, are effective antimutagens in vivo too.
Collapse
Affiliation(s)
- Y K Nakamura
- Laboratory of Health Science, School of Pharmaceutical Sciences, University of Shizuoka, Japan
| | | | | | | | | | | | | |
Collapse
|
25
|
Block E. Recent results in the organosulfur and organoselenium chemistry of genus Allium and Brassica plants. Relevance for cancer prevention. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1996; 401:155-69. [PMID: 8886134 DOI: 10.1007/978-1-4613-0399-2_13] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- E Block
- Department of Chemistry, State University of New York at Albany 12222, USA
| |
Collapse
|
26
|
Abstract
Sulfur-containing phytochemicals of two different kinds are present in all Brassica oleracea (Cruciferae) vegetables (cabbage, broccoli, etc.). They are glucosinolates (previously called thioglucosides) and S-methyl cysteine sulfoxide. These compounds, which are derived in plant tissue by amino acid biosynthesis, show quite different toxicological effects and appear to possess anticarcinogenic properties. Glucosinolates have been extensively studied since the mid-nineteenth century. They are present in plant foods besides Brassica vegetables with especially high levels in a number of seed meals fed to livestock. About 100 different kinds of glucosinolates are known to exist in the plant kingdom, but only about 10 are present in Brassica. The first toxic effects of isothiocyanates and other hydrolytic products from glucosinolates that were identified were goitre and a general inhibition of iodine uptake by the thyroid. Numerous studies have indicated that the hydrolytic products of at least three glucosinolates, 4-methyl-sulfinylbutyl (glucoraphanin), 2-phenylethyl (gluconasturtiin) and 3-indolylmethyl (glucobrassicin), have anticarcinogenic activity. Indole-3-carbinol, a metabolite of glucobrassicin, has shown inhibitory effects in studies of human breast and ovarian cancers. Kale poisoning, or a severe haemolytic anaemia, was discovered in cattle in Europe in the 1930s, but its link with the hydrolytic product of S-methyl cysteine sulfoxide was only shown about 35 years later. S-methyl cysteine sulfoxide and its metabolite methyl methane thiosulfinate were shown to inhibit chemically-induced genotoxicity in mice. Thus, the cancer chemopreventive effects of Brassica vegetables that have been shown in human and animal studies may be due to the presence of both types of sulfur-containing phytochemicals (i.e. certain glucosinolates and S-methyl cysteine sulfoxide).
Collapse
Affiliation(s)
- G S Stoewsand
- Department of Food Science and Technology, New York State Agricultural Experiment Station, Cornell University, Geneva 14456, USA
| |
Collapse
|