1
|
Paquet F, Leggett RW, Blanchardon E, Bailey MR, Gregoratto D, Smith T, Ratia G, Davesne E, Berkovski V, Harrison JD. Occupational Intakes of Radionuclides: Part 5. Ann ICRP 2022; 51:11-415. [PMID: 35414227 DOI: 10.1177/01466453211028755] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
2
|
Joh JS, Kang MY, Myong JP. Dose-Response Relationship between Environmental Exposure to Nickel and Pulmonary Function in the Korean General Population Aged 40 or Older. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18137016. [PMID: 34209104 PMCID: PMC8297347 DOI: 10.3390/ijerph18137016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/24/2021] [Accepted: 06/27/2021] [Indexed: 11/30/2022]
Abstract
Nickel is a well-known skin allergen; however, few studies to date have investigated the association between nickel exposure and lung function impairment. The present study, therefore, evaluated the relationship between blood nickel concentrations and lung function profiles in the Korean general population (n = 1098). Dose–response relationships between blood nickel quartiles and pulmonary function were assessed by sex in multivariate models, after adjustment for potentially confounding factors such as age, height, and smoking status. Quartiles of blood nickel concentrations were significantly associated with markers of pulmonary function in Korean men, such as forced expiratory volume in 1 second (FEV1) and forced expiratory flow 25–75% (FEF25–75%). Relative to the first quartile, the estimated coefficients (standard error (SE)) of blood nickel levels for FEV1 in the third and fourth quartiles of Korean men were −126.6 mL (59.1) and −138.5 mL (59.8), respectively (p < 0.05). Relative to the first quartile, the estimated coefficients (SE) of blood nickel levels for FEF25–75% in the second and fourth quartiles were −244.9 mL (109.5) and −266.8 mL (111.5), respectively (p < 0.05). Dose–response relationships were observed between quartiles of blood nickel concentrations and the pulmonary function markers FEV1 and FEF25–75% in Korean men aged 40 or older.
Collapse
Affiliation(s)
- Joon-Sung Joh
- Department of Internal Medicine, National Medical Center, Seoul 04564, Korea;
| | - Mo-Yeol Kang
- Department of Occupational and Environmental Medicine, Seoul St. Mary’s Hospital, College of Medicine, the Catholic University of Korea, Seoul 06591, Korea;
| | - Jun-Pyo Myong
- Department of Occupational and Environmental Medicine, Seoul St. Mary’s Hospital, College of Medicine, the Catholic University of Korea, Seoul 06591, Korea;
- Correspondence: ; Tel.: +82-2-2258-6267
| |
Collapse
|
3
|
Efremenko AY, Campbell JL, Dodd DE, Oller AR, Clewell HJ. Time- and concentration-dependent genomic responses of the rat airway to inhaled nickel subsulfide. Toxicol Appl Pharmacol 2014; 279:441-454. [PMID: 24952340 DOI: 10.1016/j.taap.2014.06.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 05/27/2014] [Accepted: 06/06/2014] [Indexed: 01/16/2023]
Abstract
OBJECTIVE To provide insights into the mode of action for Ni3S2 lung carcinogenicity by examining gene expression changes in target cells after inhalation exposure. METHODS Gene expression changes were determined in micro-dissected lung broncho-alveolar cells from Fischer 344 rats following inhalation of Ni3S2 at 0.0, 0.04, 0.08, 0.15, and 0.60 mg/m(3) (0.03, 0.06, 0.11, and 0.44 mgNi/m(3)) for one and four weeks (6h/day, 5 days/week). RESULTS Broncho-alveolar lavage fluid evaluation and lung histopathology provided evidence of inflammation only at the two highest concentrations, which were similar to those tested in the 2-year bioassay. The number of statistically significant up- and down-regulated genes decreased markedly from one to four weeks of exposure, suggesting adaptation. Cell signal pathway enrichment at both time-points primarily reflected responses to toxicity, including inflammatory and proliferative signaling. While proliferative signaling was up-regulated at both time points, some inflammatory signaling reversed from down-regulation at 1 week to up-regulation at 4 weeks. CONCLUSIONS These results support a mode of action for Ni3S2 carcinogenicity driven by chronic toxicity, inflammation and proliferation, leading to mis-replication, rather than by direct genotoxicity. Benchmark dose (BMD) analysis identified the lowest pathway transcriptional BMD exposure concentration as 0.026 mgNi/m(3), for apoptosis/survival signaling. When conducted on the basis of lung Ni concentration the lowest pathway BMD was 0.64 μgNi/g lung, for immune/inflammatory signaling. IMPLICATIONS These highly conservative BMDs could be used to derive a point of departure in a nonlinear risk assessment for Ni3S2 toxicity and carcinogenicity.
Collapse
Affiliation(s)
- A Y Efremenko
- The Hamner Institutes for Health Sciences, 6 Davis Drive, Research Triangle Park, NC 27709, USA.
| | - J L Campbell
- The Hamner Institutes for Health Sciences, 6 Davis Drive, Research Triangle Park, NC 27709, USA
| | - D E Dodd
- The Hamner Institutes for Health Sciences, 6 Davis Drive, Research Triangle Park, NC 27709, USA
| | - A R Oller
- NiPERA, Inc., 2525 Meridian Parkway, Suite 240, Durham, NC 27713, USA
| | - H J Clewell
- The Hamner Institutes for Health Sciences, 6 Davis Drive, Research Triangle Park, NC 27709, USA
| |
Collapse
|
4
|
Goodman JE, Prueitt RL, Thakali S, Oller AR. The nickel ion bioavailability model of the carcinogenic potential of nickel-containing substances in the lung. Crit Rev Toxicol 2010; 41:142-74. [DOI: 10.3109/10408444.2010.531460] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
5
|
Goodman JE, Prueitt RL, Dodge DG, Thakali S. Carcinogenicity assessment of water-soluble nickel compounds. Crit Rev Toxicol 2009; 39:365-417. [PMID: 19514913 DOI: 10.1080/10408440902762777] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
IARC is reassessing the human carcinogenicity of nickel compounds in 2009. To address the inconsistencies among results from studies of water-soluble nickel compounds, we conducted a weight-of-evidence analysis of the relevant epidemiological, toxicological, and carcinogenic mode-of-action data. We found the epidemiological evidence to be limited, in that some, but not all, data suggest that exposure to soluble nickel compounds leads to increased cancer risk in the presence of certain forms of insoluble nickel. Although there is no evidence that soluble nickel acts as a complete carcinogen in animals, there is limited evidence that suggests it may act as a tumor promoter. The mode-of-action data suggest that soluble nickel compounds will not be able to cause genotoxic effects in vivo because they cannot deliver sufficient nickel ions to nuclear sites of target cells. Although the mode-of-action data suggest several possible non-genotoxic effects of the nickel ion, it is unclear whether soluble nickel compounds can elicit these effects in vivo or whether these effects, if elicited, would result in tumor promotion. The mode-of-action data equally support soluble nickel as a promoter or as not being a causal factor in carcinogenesis at all. The weight of evidence does not indicate that soluble nickel compounds are complete carcinogens, and there is only limited evidence that they could act as tumor promoters.
Collapse
Affiliation(s)
- Julie E Goodman
- Gradient Corporation, 20 University Road, Cambridge, MA 02138, USA.
| | | | | | | |
Collapse
|
6
|
Seagrave J, Dunaway S, McDonald JD, Mauderly JL, Hayden P, Stidley C. RESPONSES OF DIFFERENTIATED PRIMARY HUMAN LUNG EPITHELIAL CELLS TO EXPOSURE TO DIESEL EXHAUST AT AN AIR-LIQUID INTERFACE. Exp Lung Res 2009; 33:27-51. [PMID: 17364910 DOI: 10.1080/01902140601113088] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In vitro responses of potential target cell types to air pollutants under physiological conditions may be useful in understanding the health effects of air pollution exposure. The study evaluated responses of human primary airway epithelial cells to diesel exhaust (DE). Cultures of cells from 3 donors, differentiated by culture on membranes with the apical surfaces exposed to the atmosphere, were exposed to filtered air or DE. Some exposure-related effects were similar among donors, whereas others were affected by the donor, consistent with human population heterogeneity. This model may be useful for mechanistic and comparative toxicology studies.
Collapse
|
7
|
Seagrave J, McDonald JD, Reed MD, Seilkop SK, Mauderly JL. Responses to Subchronic Inhalation of Low Concentrations of Diesel Exhaust and Hardwood Smoke Measured in Rat Bronchoalveolar Lavage Fluid. Inhal Toxicol 2008; 17:657-70. [PMID: 16087572 DOI: 10.1080/08958370500189529] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Air pollution exposure is associated with adverse health effects, but the causal components and mechanisms are unclear. We compared effects of daily exposure for 6 mo to diesel exhaust (DE) or hardwood smoke (HWS) at 4 concentrations between 30 and 1000 microg/(3) of total particulate matter, or filtered air, in male and female rats. Lung lavage fluid was assayed for toxicity indicators, cytokines, and glutathione. Statistical analyses included pairwise comparisons with control and exposure-related trends, modeled using techniques that facilitated evaluation of nonlinear exposure effects. Lactate dehydrogenase increased with exposure concentration in DE-exposed females, but in other groups, low exposure concentrations caused increases while higher concentrations had less effect. Total protein in the HWS-exposed males and females followed similar patterns. Alkaline phosphatase increased in DE-exposed females, but decreased in HWS-exposed males and females. Beta-Glucuronidase decreased in HWS- and DE-exposed males, but HWS-exposed females showed decreases at low exposure concentrations and weak increases at higher exposure concentrations. Macrophage inflammatory protein-2 decreased in HWS-exposed males and females and DE-exposed females. Tumor necrosis factor-alpha levels decreased in DE-exposed females and males, but HWS-exposed males showed small increases. DE did not affect total glutathione in either gender, but HWS decreased glutathione in females, while in males, increases at low exposure concentrations but not at higher exposure levels were observed. Thus, these two combustion emissions differentially affect lung responses, with gender affecting response patterns. Furthermore, effects may be nonmonotonic functions of exposure levels, with maximal responses in environmentally or occupationally relevant exposure ranges.
Collapse
Affiliation(s)
- JeanClare Seagrave
- Lovelace Respiratory Research Institute, Albuquerque, New Mexico 87108, USA.
| | | | | | | | | |
Collapse
|
8
|
Salnikow K, Zhitkovich A. Genetic and epigenetic mechanisms in metal carcinogenesis and cocarcinogenesis: nickel, arsenic, and chromium. Chem Res Toxicol 2008; 21:28-44. [PMID: 17970581 PMCID: PMC2602826 DOI: 10.1021/tx700198a] [Citation(s) in RCA: 566] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chronic exposure to nickel(II), chromium(VI), or inorganic arsenic (iAs) has long been known to increase cancer incidence among affected individuals. Recent epidemiological studies have found that carcinogenic risks associated with chromate and iAs exposures were substantially higher than previously thought, which led to major revisions of the federal standards regulating ambient and drinking water levels. Genotoxic effects of Cr(VI) and iAs are strongly influenced by their intracellular metabolism, which creates several reactive intermediates and byproducts. Toxic metals are capable of potent and surprisingly selective activation of stress-signaling pathways, which are known to contribute to the development of human cancers. Depending on the metal, ascorbate (vitamin C) has been found to act either as a strong enhancer or suppressor of toxic responses in human cells. In addition to genetic damage via both oxidative and nonoxidative (DNA adducts) mechanisms, metals can also cause significant changes in DNA methylation and histone modifications, leading to epigenetic silencing or reactivation of gene expression. In vitro genotoxicity experiments and recent animal carcinogenicity studies provided strong support for the idea that metals can act as cocarcinogens in combination with nonmetal carcinogens. Cocarcinogenic and comutagenic effects of metals are likely to stem from their ability to interfere with DNA repair processes. Overall, metal carcinogenesis appears to require the formation of specific metal complexes, chromosomal damage, and activation of signal transduction pathways promoting survival and expansion of genetically/epigenetically altered cells.
Collapse
Affiliation(s)
- Konstantin Salnikow
- Konstantin Salnikow, National Cancer Institute, Bldg. 538, Room 205 E, Frederick, MD 21702, Phone: 301-846-5623, Fax: 301-846-5946, E-mail:
| | - Anatoly Zhitkovich
- Anatoly Zhitkovich, Brown University, Center for Genomics and Proteomics, Department of Pathology and Laboratory Medicine, 70 Ship Street, Providence RI 02912, Phone: 401-863-2912, Fax: 401-863-9008, E-mail:
| |
Collapse
|
9
|
Berge SR, Skyberg K. Radiographic evidence of pulmonary fibrosis and possible etiologic factors at a nickel refinery in Norway. JOURNAL OF ENVIRONMENTAL MONITORING : JEM 2003; 5:681-8. [PMID: 12948249 DOI: 10.1039/b209623b] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Animal studies have shown that nickel compounds may induce pulmonary fibrosis, but so far only limited documentation in humans has been available. Radiographs of 1046 workers in a nickel refinery in Norway were read blindly and independently by three NIOSH certified B-readers, according to the ILO standards. Pulmonary fibrosis (PF) was defined as a median reading of ILO score > or = 1/0 and following this criterion, 47 cases (4.5%) were identified. In logistic regression models, controlling for age and smoking, there was evidence of increased risk of PF with cumulative exposure to soluble nickel or sulfidic nickel (p = 0.04 for both). For metallic nickel a p-value of 0.07 was found. For soluble nickel there was a dose-response trend for 4 categories of cumulated exposure. In the group with the highest cumulative exposure to soluble nickel (low exposure as reference), the crude odds ratio for PF was 4.34 (95% CI 1.75-10.77). The risk adjusted for age, smoking, asbestos and sulfidic nickel was 2.24 (0.82-6.16), with a dose-response trend. The corresponding figures for sulfidic nickel were 5.06 (1.70-15.09, crude) and 2.04 (0.54-7.70, adjusted for age, smoking, asbestos and soluble nickel). However, the dose-response trend was less clear for sulfidic nickel. Controlling for estimated asbestos exposure at the refinery tended to increase the odds ratios of soluble and sulfidic nickel. This study indicates that in addition to age and smoking exposure to soluble and sulfidic nickel compounds are risk factors of PF in humans. Since the number of cases identified in this study is small and undetected confounders may have been present, further studies in other cohorts are appropriate.
Collapse
Affiliation(s)
- Steinar R Berge
- Medical Department, Falconbridge Nikkelverk A/S, Serviceboks 604, N-4606 Kristiansand, Norway.
| | | |
Collapse
|
10
|
Prows DR, McDowell SA, Aronow BJ, Leikauf GD. Genetic susceptibility to nickel-induced acute lung injury. CHEMOSPHERE 2003; 51:1139-1148. [PMID: 12718980 DOI: 10.1016/s0045-6535(02)00710-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Human exposure to insoluble and soluble nickel compounds is extensive. Besides wide usage in many industries, nickel compounds are contained in cigarette smoke and, in low levels, in ambient particulate matter. Soluble nickel particulate, especially nickel sulfate (NiSO(4)), has been associated with acute lung injury. To begin identifying genes controlling susceptibility to NiSO(4), mean survival times (MSTs) of eight inbred mouse strains were determined after aerosol exposure. Whereas A/J (A) mice were sensitive, C57BL/6J (B6) mice survived nearly twice as long (resistant). Their offspring were similarly resistant, demonstrating heritability as a dominant trait. Quantitative trait locus (QTL) analysis of backcross mice generated from these strains identified a region on chromosome 6 significantly linked to survival time. Regions on chromosomes 1 and 12 were suggestive of linkage and regions on chromosomes 8, 9, and 16 contributed to the response. Haplotype analysis demonstrated that QTLs on chromosomes 6, 9, 12, and 16 could explain the MST difference between the parental strains. To complement QTL analysis results, cDNA microarray analysis was assessed following NiSO(4) exposure of A and B6 mice. Significant expression changes were identified in one or both strains for >100 known genes. Closer evaluation of these changes revealed a temporal pattern of increased cell proliferation, extracellular matrix repair, hypoxia, and oxidative stress, followed by diminished surfactant proteins. Certain expressed sequence tags clustered with known genes, suggesting possible co-regulation and novel roles in pulmonary injury. Together, results from QTL and microarray analyses of nickel-induced acute lung injury survival allowed us to generate a short list of candidate genes.
Collapse
Affiliation(s)
- Daniel R Prows
- Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267-0056, USA.
| | | | | | | |
Collapse
|
11
|
Cobben NA, Drent M, De Vries J, Wouters EF, Van Dieijen-Visser MP, Henderson RF. Serum beta-glucuronidase activity in a population of ex-coalminers. Clin Biochem 1999; 32:659-64. [PMID: 10638950 DOI: 10.1016/s0009-9120(99)00070-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND The aim of this study was to investigate whether BGD activity is of additional value in the assessment of pulmonary inflammation caused by coal dust exposure. DESIGN AND METHODS Ex-coalminers were included in this study. Forty-eight healthy male subjects, without a relevant medical history, were used as controls. RESULTS In ex-coalminers serum BGD activity was higher compared to the control group. Moreover, ex-coalminers with a normal chest radiograph and normal serum LDH demonstrated elevated serum BGD compared to the control group. However, no relation was found in the total group of ex-coalminers between serum BGD activity and pulmonary function parameters. CONCLUSIONS Our study adds in vivo human evidence to the already existing animal data that BGD is a potential biomarker useful in monitoring pulmonary inflammation caused by coal dust exposure.
Collapse
Affiliation(s)
- N A Cobben
- Department of Pulmonology, University Hospital Maastricht, The Netherlands
| | | | | | | | | | | |
Collapse
|
12
|
Cobben NA, Drent M, Van Dieijen-Visser MP, Mulder PG, Wouters EF, Henderson RF. Usefulness of monitoring beta-glucuronidase in pleural effusions. Clin Biochem 1999; 32:653-8. [PMID: 10638949 DOI: 10.1016/s0009-9120(99)00072-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND The objective of the study was to evaluate the additional value of beta-glucuronidase (BGD), a lysosomal enzyme in the analysis of transudative and exsudative pleural effusions, especially between malignant and non-malignant effusions. DESIGN AND METHODS Pleural fluid samples obtained from four respective diagnostic groups: transudates parapneumonic effusions, malignant effusions or pleuritis carcinomatosa, and empyema were evaluated. RESULTS Beta-glucuronidase was significantly different between transudative and exsudative effusions (p<0.001) as well as between parapneumonic and malignant effusions (p<0.03), parapneumonic effusions and empyema (p<0.002), and malignant and empyema (p<0.002), respectively. Logistic regression analysis yielded a weak discrimination between the parapneumonic and malignant groups. CONCLUSIONS Beta-glucuronidase activity differed between pleural effusions of various origin. However, including BGD in the biochemical work-up of pleural effusions did not reveal discriminatory value in the assessment of the classification of these effusions.
Collapse
Affiliation(s)
- N A Cobben
- Department of Pulmonology, University Hospital Maastricht, The Netherlands
| | | | | | | | | | | |
Collapse
|
13
|
Abstract
Experimental data from inhalation studies in rats were used to develop mathematical models of deposition, clearance, and retention kinetics for inhaled Ni compounds (high-temperature [green] NiO, Ni3S2, and NiSO4*6H2O) in the rat lung. For deposition, an updated version of an earlier model (Yu & Xu, 1986) was used in this study. Three major mechanisms of airway deposition-impaction, sedimentation, and diffusion-were considered in the deposition model. In the development of a clearance model, a single compartment model in the lung was used and a general assumption was made that the clearance of the insoluble and moderately soluble nickel compounds (high-temperature [green] NiO and Ni3S2, respectively) depends highly on the volume of retained particles in the lungs. For the highly soluble nickel compound (NiSO4 *6H2O), the clearance rate coefficient was assumed to depend on the retained particle mass and total alveolar surface. The retention half-time, however, was found to increase with the lung burden for high-temperature (green) NiO and NiSO4*6H2O particles but decrease with the lung burden for Ni3S2 particles.
Collapse
Affiliation(s)
- T H Hsieh
- Department of Mechanical and Aerospace Engineering, State University of New York at Buffalo, Amherst, NY 14260, USA
| | | | | |
Collapse
|