1
|
Lou Z, Mu C, Corpstein CD, Li T. In vivo deposition of poorly soluble drugs. Adv Drug Deliv Rev 2024; 211:115358. [PMID: 38851590 DOI: 10.1016/j.addr.2024.115358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/12/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
Administered drug molecules, whether dissolved or solubilized, have the potential to precipitate and accumulate as solid forms in tissues and cells within the body. This phase transition can significantly impact the pharmacokinetics of treatment. It is thus crucial to gain an understanding of how drug solubility/permeability, drug formulations and routes of administration affect in vivo behaviors of drug deposition. This review examines literature reports on the drug deposition in tissues and cells of poorly water-soluble drugs, as well as underlying physical mechanisms that lead to precipitation. Our work particularly highlights drug deposition in macrophages and the subcellular fate of precipitated drugs. We also propose a tissue permeability-based classification framework to evaluate precipitation potentials of poorly soluble drugs in major organs and tissues. The impact on pharmacokinetics is further discussed and needs to be considered in developing drug delivery systems. Finally, bioimaging techniques that are used to examine aggregated states and the intracellular trafficking of absorbed drugs are summarized.
Collapse
Affiliation(s)
- Zhaohuan Lou
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Zhejiang, Hangzhou 310053, China; Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47906, USA
| | - Chaofeng Mu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Zhejiang, Hangzhou 310053, China
| | - Clairissa D Corpstein
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47906, USA
| | - Tonglei Li
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47906, USA.
| |
Collapse
|
2
|
Gould S, Templin MV. Off target toxicities and links with physicochemical properties of medicinal products, including antibiotics, oligonucleotides, lipid nanoparticles (with cationic and/or anionic charges). Data review suggests an emerging pattern. Toxicol Lett 2023; 384:14-29. [PMID: 37454775 DOI: 10.1016/j.toxlet.2023.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Toxicology is an essential part of any drug development plan. Circumnavigating the risk of failure because of a toxicity issue can be a challenge, and failure in late development is extremely costly. To identify potential risks, it requires more than just understanding the biological target. The toxicologist needs to consider a compound's structure, it's physicochemical properties (including the impact of the overall formulation), as well as the biological target (e.g., receptor interactions). Understanding the impact of the physicochemical properties can be used to predict potential toxicities in advance by incorporating key endpoints in early screening strategies and/or used to compare toxicity profiles across lead candidates. This review discussed the risks of off-target and/or non-specific toxicities that may be associated with the physicochemical properties of compounds, especially those carrying dominant positive or negative charges, including amphiphilic small molecules, peptides, oligonucleotides and lipids/liposomes/lipid nanoparticles. The latter of which are being seen more and more in drug development, including the recent Covid pandemic, where mRNA and lipid nanoparticle technology is playing more of a role in vaccine development. The translation between non-clinical and clinical data is also considered, questioning how a physicochemical driven toxicity may be more universal across species, which means that such toxicity may be reassuringly translatable between species and as such, this information may also be considered as a support to the 3 R's, particularly in the early screening stages of a drug development plan.
Collapse
|
3
|
Pedro L, Rudewicz PJ. Analysis of Live Single Cells by Confocal Microscopy and High-Resolution Mass Spectrometry to Study Drug Uptake, Metabolism, and Drug-Induced Phospholipidosis. Anal Chem 2020; 92:16005-16015. [PMID: 33280372 DOI: 10.1021/acs.analchem.0c03534] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The analysis of large numbers of cells from a population results in information that does not reflect differences in cell phenotypes. Individual variations in cellular drug uptake, metabolism, and response to drug treatment may have profound effects on cellular survival and lead to the development of certain disease states, drug persistence, and resistance. Herein, we present a method that combines live cell confocal microscopy imaging with high-resolution mass spectrometry to achieve absolute cell quantification of the drug amiodarone (AMIO) and its major metabolite, N-desethylamiodarone (NDEA), in single liver cells (HepG2 and HepaRG cells). The method uses a prototype system that integrates a confocal microscope with an XYZ stage robot to image and automatically sample selected cells from a sample compartment, which is kept under growth conditions, with nanospray tips. Besides obtaining the distributions of AMIO and NDEA cell concentrations across a population of individual cells, as well as variabilities in drug metabolism, the effect of these on phospholipidosis and cell morphology was studied. The method was suited to identify subpopulations of cells that metabolized less drug and to correlate cell drug concentrations with cell phospholipid content, cell volume, sphericity, and other cell phenotypic features. Using principal component analysis (PCA), the treated cells could be clearly distinguished from vehicle control cells (0 μM AMIO) and HepaRG cells from HepG2 cells. The potential of using multidimensional and multimodal information collected from single cells to build predictive models for cell classification is demonstrated.
Collapse
Affiliation(s)
- Liliana Pedro
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Patrick J Rudewicz
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| |
Collapse
|
4
|
Hoffman E, Murnane D, Hutter V. Investigating the Suitability of High Content Image Analysis as a Tool to Assess the Reversibility of Foamy Alveolar Macrophage Phenotypes In Vitro. Pharmaceutics 2020; 12:pharmaceutics12030262. [PMID: 32183061 PMCID: PMC7150967 DOI: 10.3390/pharmaceutics12030262] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/03/2020] [Accepted: 03/11/2020] [Indexed: 01/19/2023] Open
Abstract
Many potential inhaled medicines fail during development due to the induction of a highly vacuolated or “foamy” alveolar macrophage phenotype response in pre-clinical studies. There is limited understanding if this response to an inhaled stimulus is adverse or adaptive, and additionally if it is a transient or irreversible process. The aim of this study was to evaluate whether high content image analysis could distinguish between different drug-induced foamy macrophage phenotypes and to determine the extent of the reversibility of the foamy phenotypes by assessing morphological changes over time. Alveolar-like macrophages derived from the human monocyte cell line U937 were exposed for 24 h to compounds known to induce a foamy macrophage phenotype (amiodarone, staurosporine) and control compounds that are not known to cause a foamy macrophage phenotype in vitro (fluticasone and salbutamol). Following drug stimulation, the cells were rested in drug-free media for the subsequent 24 or 48 h. Cell morphometric parameters (cellular and nuclear area, vacuoles numbers and size) and phospholipid content were determined using high content image analysis. The foamy macrophage recovery was dependent on the mechanism of action of the inducer compound. Amiodarone toxicity was associated with phospholipid accumulation and morphometric changes were reversed when the stimulus was removed from culture environment. Conversely cells were unable to recover from exposure to staurosporine which initiates the apoptosis pathway. This study shows that high content analysis can discriminate between different phenotypes of foamy macrophages and may contribute to better decision making in the process of new drug development.
Collapse
|
5
|
Hickey MJ, Lindqvist J, Ha YH, Andersson H, Elmore CS. Synthesis of di-docosahexaenoyl (C22:6)-bis(monoacylglycerol) phosphate in unlabelled and C-13 labelled forms for use as a biomarker of drug induced phospholipidosis. J Labelled Comp Radiopharm 2019; 62:695-706. [DOI: 10.1002/jlcr.3714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 02/18/2019] [Indexed: 11/12/2022]
Affiliation(s)
- Michael J. Hickey
- Early Chemical Development, Pharmaceutical Sciences, IMED Biotech Unit; AstraZeneca; Cambridge UK
| | - Johnny Lindqvist
- Translational Biomarker & Bioanalysis, Drug Safety and Metabolism, IMED Biotech Unit; AstraZeneca; Gothenburg Sweden
| | - Young- Hwan Ha
- Radio Labeling Division, Small Molecule Unit; Curachem, Inc; Korea
| | - Håkan Andersson
- Translational Biomarker & Bioanalysis, Drug Safety and Metabolism, IMED Biotech Unit; AstraZeneca; Gothenburg Sweden
| | - Charles S. Elmore
- Early Chemical Development, Pharmaceutical Sciences, IMED Biotech Unit; AstraZeneca; Gothenburg Sweden
| |
Collapse
|
6
|
Vonderfecht SL, Stone ML, Eversole RR, Yancey MF, Schuette MR, Duncan BA, Ware JA. Myopathy Related to Administration of a Cationic Amphiphilic Drug and the Use of Multidose Drug Distribution Analysis to Predict its Occurrence. Toxicol Pathol 2016; 32:318-25. [PMID: 15204973 DOI: 10.1080/01926230490431763] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Many cationic amphiphilic (phospholipidosis-inducing) drugs (CADs) accumulate in tissues following repeated dosing in preclinical models, and this is sometimes associated with dose-limiting toxicities. Plasma drug levels cannot be used to estimate tissue accumulation of CADs since it occurs in tissues despite stabilization of plasma levels. Severe myopathy was found in skeletal muscles of rats during the initial safety evaluation of a dopamine D3 receptor antagonist, PNU-177864, and was associated with phospholipidosis in numerous tissues. The myopathy was observed only when plasma levels of PNU-177864 remained essentially constant throughout the 24-hour dosing period. A repeat dose drug distribution study using whole body autoradiography demonstrated that drug-related material did not accumulate in skeletal muscle or other tissues following repeated doses at levels considered within the therapeutic range and showing toxicokinetic profiles acceptable for further development. These observations provided support for the continued development of and longer-term toxicity studies with this candidate compound.
Collapse
Affiliation(s)
- Steven L Vonderfecht
- Worldwide Safety Sciences, Pfizer Global Research and Development, Pfizer Inc., Kalamazoo, Michigan 49007, USA.
| | | | | | | | | | | | | |
Collapse
|
7
|
Dickson CJ, Hornak V, Velez-Vega C, McKay DJJ, Reilly J, Sandham DA, Shaw D, Fairhurst RA, Charlton SJ, Sykes DA, Pearlstein RA, Duca JS. Uncoupling the Structure-Activity Relationships of β2 Adrenergic Receptor Ligands from Membrane Binding. J Med Chem 2016; 59:5780-9. [PMID: 27239696 DOI: 10.1021/acs.jmedchem.6b00358] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Ligand binding to membrane proteins may be significantly influenced by the interaction of ligands with the membrane. In particular, the microscopic ligand concentration within the membrane surface solvation layer may exceed that in bulk solvent, resulting in overestimation of the intrinsic protein-ligand binding contribution to the apparent/measured affinity. Using published binding data for a set of small molecules with the β2 adrenergic receptor, we demonstrate that deconvolution of membrane and protein binding contributions allows for improved structure-activity relationship analysis and structure-based drug design. Molecular dynamics simulations of ligand bound membrane protein complexes were used to validate binding poses, allowing analysis of key interactions and binding site solvation to develop structure-activity relationships of β2 ligand binding. The resulting relationships are consistent with intrinsic binding affinity (corrected for membrane interaction). The successful structure-based design of ligands targeting membrane proteins may require an assessment of membrane affinity to uncouple protein binding from membrane interactions.
Collapse
Affiliation(s)
- Callum J Dickson
- Computer-Aided Drug Discovery, Global Discovery Chemistry, Novartis Institutes for BioMedical Research , 100 Technology Square, Cambridge, Massachusetts 02139, United States
| | - Viktor Hornak
- Computer-Aided Drug Discovery, Global Discovery Chemistry, Novartis Institutes for BioMedical Research , 100 Technology Square, Cambridge, Massachusetts 02139, United States
| | - Camilo Velez-Vega
- Computer-Aided Drug Discovery, Global Discovery Chemistry, Novartis Institutes for BioMedical Research , 100 Technology Square, Cambridge, Massachusetts 02139, United States
| | - Daniel J J McKay
- Computer-Aided Drug Discovery, Global Discovery Chemistry, Novartis Institutes for BioMedical Research , 100 Technology Square, Cambridge, Massachusetts 02139, United States
| | - John Reilly
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research , 100 Technology Square, Cambridge, Massachusetts 02139, United States
| | - David A Sandham
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research , 100 Technology Square, Cambridge, Massachusetts 02139, United States
| | - Duncan Shaw
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research , 100 Technology Square, Cambridge, Massachusetts 02139, United States
| | - Robin A Fairhurst
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Novartis Pharma AG , Werk Klybeck, Postfach, CH-4002 Basel, Switzerland
| | - Steven J Charlton
- Cell Signalling Research Group, School of Life Sciences, University of Nottingham, Queen's Medical Centre , Nottingham NG7 2UH, U.K
| | - David A Sykes
- Cell Signalling Research Group, School of Life Sciences, University of Nottingham, Queen's Medical Centre , Nottingham NG7 2UH, U.K
| | - Robert A Pearlstein
- Computer-Aided Drug Discovery, Global Discovery Chemistry, Novartis Institutes for BioMedical Research , 100 Technology Square, Cambridge, Massachusetts 02139, United States
| | - Jose S Duca
- Computer-Aided Drug Discovery, Global Discovery Chemistry, Novartis Institutes for BioMedical Research , 100 Technology Square, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
8
|
Lenhard SC, Lev M, Webster LO, Peterson RA, Goulbourne CN, Miller RT, Jucker BM. Hepatic Phospholipidosis Is Associated with Altered Hepatobiliary Function as Assessed by Gadoxetate Dynamic Contrast–enhanced Magnetic Resonance Imaging. Toxicol Pathol 2015; 44:51-60. [DOI: 10.1177/0192623315608509] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
To determine if amiodarone induces hepatic phospholipidosis (PLD) sufficient to detect changes in hepatobiliary transporter function as assessed by gadoxetate dynamic contrast–enhanced magnetic resonance imaging (DCE-MRI), rats were orally dosed with vehicle (1% methyl cellulose) or amiodarone (300 mg/kg/day) for 7 consecutive days. Gadoxetate DCE-MRI occurred at baseline, day 7, and following a 2-week washout of amiodarone. At day 7, the gadoxetate washout rate was significantly decreased compared to the vehicle group. Blood chemistry analysis revealed no significant changes in liver enzymes (alanine aminotransferase [ALT]/aspartate aminotransferase [AST]/alkaline phosphatase [ALP]), bilirubin, or bile acids between vehicle or amiodarone groups. Hepatic PLD was confirmed in all rats treated with amiodarone at day 7 by transmission electron microscopy. Following the 2-week washout, there was no ultrastructural evidence of hepatic PLD in rats and the gadoxetate washout rate returned to baseline levels. This is the first study to show the application of gadoxetate DCE-MRI to detect hepatobiliary functional changes associated with PLD and offer a potential new technique with clinical utility in patients suspected of having PLD. These results also suggest PLD itself has functional consequences on hepatobiliary function in the absence of biomarkers of toxicity, given the cause/effect relationship between PLD and function has not been fully established.
Collapse
Affiliation(s)
- Stephen C. Lenhard
- Preclinical and Translational Imaging, GlaxoSmithKline, King of Prussia, Pennsylvania, USA
- Laboratory Animal Sciences, GlaxoSmithKline, King of Prussia, Pennsylvania, USA
| | - Mally Lev
- Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, King of Prussia, Pennsylvania, USA
| | - Lindsey O. Webster
- Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, Research Triangle Park, North Carolina, USA
| | - Richard A. Peterson
- Safety Assessment, GlaxoSmithKline, Research Triangle Park, North Carolina, USA
| | | | - Richard T. Miller
- Laboratory Animal Sciences, GlaxoSmithKline, King of Prussia, Pennsylvania, USA
| | - Beat M. Jucker
- Preclinical and Translational Imaging, GlaxoSmithKline, King of Prussia, Pennsylvania, USA
- Laboratory Animal Sciences, GlaxoSmithKline, King of Prussia, Pennsylvania, USA
| |
Collapse
|
9
|
Min KA, Zhang X, Yu JY, Rosania GR. Computational approaches to analyse and predict small molecule transport and distribution at cellular and subcellular levels. Biopharm Drug Dispos 2013; 35:15-32. [PMID: 24218242 DOI: 10.1002/bdd.1879] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 10/15/2013] [Accepted: 11/01/2013] [Indexed: 12/31/2022]
Abstract
Quantitative structure-activity relationship (QSAR) studies and mechanistic mathematical modeling approaches have been independently employed for analysing and predicting the transport and distribution of small molecule chemical agents in living organisms. Both of these computational approaches have been useful for interpreting experiments measuring the transport properties of small molecule chemical agents, in vitro and in vivo. Nevertheless, mechanistic cell-based pharmacokinetic models have been especially useful to guide the design of experiments probing the molecular pathways underlying small molecule transport phenomena. Unlike QSAR models, mechanistic models can be integrated from microscopic to macroscopic levels, to analyse the spatiotemporal dynamics of small molecule chemical agents from intracellular organelles to whole organs, well beyond the experiments and training data sets upon which the models are based. Based on differential equations, mechanistic models can also be integrated with other differential equations-based systems biology models of biochemical networks or signaling pathways. Although the origin and evolution of mathematical modeling approaches aimed at predicting drug transport and distribution has occurred independently from systems biology, we propose that the incorporation of mechanistic cell-based computational models of drug transport and distribution into a systems biology modeling framework is a logical next step for the advancement of systems pharmacology research.
Collapse
Affiliation(s)
- Kyoung Ah Min
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | | | | |
Collapse
|
10
|
Differential cytotoxicity responses by dog and rat hepatocytes to phospholipogenic treatments. J Toxicol 2013; 2013:956404. [PMID: 23577025 PMCID: PMC3610344 DOI: 10.1155/2013/956404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Accepted: 01/28/2013] [Indexed: 11/18/2022] Open
Abstract
Dog and rat hepatocytes were treated with phospholipogenics to identify the more sensitive species and to determine whether lysosomal or mitochondrial changes were the primary cause of cytotoxicity. Endpoints included cell death, lysosome membrane integrity, mitochondrial membrane polarization, and fluorescent phospholipid (NBD-PE). Dog cells exhibited lower survival IC50 values than did rat cells with all phospholipogenic treatments and exhibited a lower capacity to accumulate NBD-PE in 4 of 5 phospholipogenic test conditions. The lysosomal modulator Bafilomycin A1 (Baf) rescued dog cells from cytotoxicity caused by 3 phospholipogenic 5HT1b antagonists and hydroxychloroquine, but not fluoxetine, and rescued rat cells from hydroxychloroquine and NMTMB, a 5HT1b antagonist. Following NMTMB treatment, rat mitochondrial membrane hyperpolarization was observed at modestly cytotoxic concentrations and depolarization at the highest concentration. At the highest test concentration, lysosomal loss of acridine orange occurred by 30 min, mitochondrial polarity changes by 1 hr, and NBD-PE accumulation by 2 hr, respectively. Baf shifted mitochondrial polarity from a depolarized state to a hyperpolarized state. These data demonstrate that (a) dog hepatocytes were generally less capable of mounting an adaptive, protective phospholipidotic response than rat hepatocytes, (b) effects on mitochondria and survival were preventable by lysosomal protection, and (c) destabilizing changes in both organelles are involved causally in cytotoxicity.
Collapse
|
11
|
Mesens N, Desmidt M, Verheyen GR, Starckx S, Damsch S, De Vries R, Verhemeldonck M, Van Gompel J, Lampo A, Lammens L. Phospholipidosis in rats treated with amiodarone: serum biochemistry and whole genome micro-array analysis supporting the lipid traffic jam hypothesis and the subsequent rise of the biomarker BMP. Toxicol Pathol 2012; 40:491-503. [PMID: 22291062 DOI: 10.1177/0192623311432290] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
To provide mechanistic insight in the induction of phospholipidosis and the appearance of the proposed biomarker di-docosahexaenoyl (C22:6)-bis(monoacylglycerol) phosphate (BMP), rats were treated with 150 mg/kg amiodarone for 12 consecutive days and analyzed at three different time points (day 4, 9, and 12). Biochemical analysis of the serum revealed a significant increase in cholesterol and phospholipids at the three time points. Bio-analysis on the serum and urine detected a time-dependent increase in BMP, as high as 10-fold compared to vehicle-treated animals on day 12. Paralleling these increases, micro-array analysis on the liver of treated rats identified cholesterol biosynthesis and glycerophospholipid metabolism as highly modulated pathways. This modulation indicates that during phospholipidosis-induction interactions take place between the cationic amphiphilic drug and phospholipids at the level of BMP-rich internal membranes of endosomes, impeding cholesterol sorting and leading to an accumulation of internal membranes, converting into multilamellar bodies. This process shows analogy to Niemann-Pick disease type C (NPC). Whereas the NPC-induced lipid traffic jam is situated at the cholesterol sorting proteins NPC1 and NPC2, the amiodarone-induced traffic jam is thought to be located at the BMP level, demonstrating its role in the mechanism of phospholipidosis-induction and its significance for use as a biomarker.
Collapse
Affiliation(s)
- Natalie Mesens
- Genetic and Exploratory Toxicology, Drug Safety Sciences, Janssen Pharmaceutical Companies of Johnson & Johnson, 2340 Beerse, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Baik J, Rosania GR. Molecular imaging of intracellular drug-membrane aggregate formation. Mol Pharm 2011; 8:1742-9. [PMID: 21800872 DOI: 10.1021/mp200101b] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Clofazimine is a lipophilic antibiotic with an extremely long pharmacokinetic half-life associated with the appearance of crystal-like drug inclusions, in vivo. Here, we studied how clofazimine accumulates inside cells in the presence of supersaturating, extracellular concentrations of the drug (in the range of physiological drug concentrations). Based on a combination of molecular imaging, biochemical analysis and electron microscopy techniques, clofazimine mass increased inside cells in vitro, over a period of several days, with discrete clofazimine inclusions forming in the cytoplasm. These inclusions grew in size, number and density, as long as the drug-containing medium was replenished. With Raman confocal microscopy, clofazimine's spectral signature in these inclusions resembled that of amorphous clofazimine precipitates and was unlike that of clofazimine crystals. Additional experiments revealed that clofazimine first accumulated in mitochondria, with ensuing changes in mitochondrial structure and function. In turn, the degenerating organelles coalesced, fused with each other and condensed to form prominent drug-membrane aggregates (dubbed autophagosome-like drug inclusions or "aldis"). Like clofazimine, it is possible that intracellular drug-membrane aggregate formation is a common phenomenon underlying the reported phenotypic effects of many other small molecule drugs.
Collapse
Affiliation(s)
- Jason Baik
- Department of Pharmaceutical Sciences, University of Michigan College of Pharmacy, 428 Church Street, Ann Arbor, Michigan 48109, United States
| | | |
Collapse
|
13
|
Abstract
![]()
Phospholipidosis is an adverse effect caused by numerous cationic amphiphilic drugs and can affect many cell types. It is characterized by the excess accumulation of phospholipids and is most reliably identified by electron microscopy of cells revealing the presence of lamellar inclusion bodies. The development of phospholipidosis can cause a delay in the drug development process, and the importance of computational approaches to the problem has been well documented. Previous work on predictive methods for phospholipidosis showed that state of the art machine learning methods produced the best results. Here we extend this work by looking at a larger data set mined from the literature. We find that circular fingerprints lead to better models than either E-Dragon descriptors or a combination of the two. We also observe very similar performance in general between Random Forest and Support Vector Machine models.
Collapse
Affiliation(s)
- Robert Lowe
- Unilever Centre for Molecular Science Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | | | | |
Collapse
|
14
|
Yang Y, Dahly-Vernon AJ, Blomme EA, Lai-Zhang J, Kempf DJ, Marsh KC, Harrington YA, Nye SH, Evans DL, Roman RJ, Jacob HJ, Waring JF. Liver transcriptomic changes associated with ritonavir-induced hyperlipidemia in sensitive and resistant strains of rats. Vet J 2010; 185:75-82. [DOI: 10.1016/j.tvjl.2010.04.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Evaluation of amiodarone-induced phospholipidosis by in vitro system of 3D cultured rat hepatocytes in gel entrapment. Biochem Eng J 2010. [DOI: 10.1016/j.bej.2009.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Kuroda Y, Saito M. Prediction of phospholipidosis-inducing potential of drugs by in vitro biochemical and physicochemical assays followed by multivariate analysis. Toxicol In Vitro 2010; 24:661-8. [DOI: 10.1016/j.tiv.2009.09.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2008] [Revised: 09/04/2009] [Accepted: 09/22/2009] [Indexed: 10/20/2022]
|
17
|
Chatman LA, Morton D, Johnson TO, Anway SD. A strategy for risk management of drug-induced phospholipidosis. Toxicol Pathol 2010; 37:997-1005. [PMID: 20008549 DOI: 10.1177/0192623309352496] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Drug-induced phospholipidosis (PL) is an excessive accumulation of phospholipids and drug in lysosomes. Phospholipidosis signals a change in cell membrane integrity and accumulation of intracellular drug or metabolite in tissues. The sensitivity and susceptibility of preclinical models to detect PL vary with therapeutic agents, and PL is expected to be reversible after discontinuation of drug treatment. The prevailing scientific opinion is that PL by itself is not adverse; however, some regulatory authorities consider PL to be adverse because a small number of chemicals are able to cause PL and concurrent organ toxicity. Until a greater understanding of PL emerges, a well-thought-out risk management strategy for PL will increase confidence in safety and improve selection and development of new drugs. This paper provides a tiered approach to risk management of drug-induced PL. It begins with use of in silico and in vitro tools to design and select compounds with reduced potential to produce PL. Early in vivo studies in two species are used to better characterize potential for toxicity and PL. Finally, routine risk management tools (i.e., translational biomarkers, assessment of reversibility) are used to support confidence in safety of compounds that induce PL in animals.
Collapse
Affiliation(s)
- Linda A Chatman
- Pathology Department, Drug Safety Research and Development, Pfizer, Inc., Groton, CT, USA.
| | | | | | | |
Collapse
|
18
|
Moussavian MR, Kollmar O, Schmidt M, Scheuer C, Wagner M, Slotta JE, Gronow G, Justinger C, Menger MD, Schilling MK. Amiodarone pretreatment of organ donors exerts anti-oxidative protection but induces excretory dysfunction in liver preservation and reperfusion. Liver Transpl 2009; 15:763-75. [PMID: 19562710 DOI: 10.1002/lt.21757] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The continuous shortage of organs necessitates the use of marginal organs from donors with various diseases, including arrhythmia-associated cardiac failure. One of the most frequently used anti-arrhythmic drugs is amiodarone (AM), which is given in particular in emergency situations. Apart from its anti-arrhythmic actions, AM provides anti-oxidative properties in cardiomyocytes. Thus, we were interested in whether AM donor pretreatment affects the organ quality and function of livers procured for preservation and transplantation. Donor rats were pretreated with AM (5 mg/kg of body weight) 10 minutes before flush-out of the liver with a cold (4 degrees C) histidine-tryptophan-ketoglutarate solution (n = 8). Livers were then stored for 24 hours at 4 degrees C before ex situ reperfusion with a 37 degrees C Krebs-Henseleit solution for 60 minutes in a nonrecirculating system. At the end of reperfusion, tissue samples were taken for histology and Western blot analysis. Animals with vehicle only (0.9% NaCl) served as ischemia/reperfusion controls (n = 8). Additionally, livers of untreated animals (n = 8) not subjected to 24 hours of cold ischemia served as sham controls. AM pretreatment effectively attenuated lipid peroxidation, stress protein expression, and apoptotic cell death. This was indicated by an AM-mediated reduction of malondialdehyde, heme oxygenase-1, and caspase-3 activation. However, AM treatment also induced mitochondrial damage and hepatocellular excretory dysfunction, as indicated by a significantly increased glutamate dehydrogenase concentration in the effluate and decreased bile production. In conclusion, AM donor pretreatment exerts anti-oxidative actions in liver preservation and reperfusion. However, these protective AM actions are counteracted by an induction of mitochondrial damage and hepatocellular dysfunction. Accordingly, AM pretreatment of donors for anti-arrhythmic therapy should be performed with caution.
Collapse
|
19
|
Delaney J, Neville WA, Swain A, Miles A, Leonard MS, Waterfield CJ. Phenylacetylglycine, a putative biomarker of phospholipidosis: Its origins and relevance to phospholipid accumulation using amiodarone treated rats as a model. Biomarkers 2008; 9:271-90. [PMID: 15764292 DOI: 10.1080/13547500400018570] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Amiodarone was given to male Sprague-Dawley rats at a dose of 150 mg kg(-1) day(-1) for 7 consecutive days to induce phospholipidosis in the lungs of treated rats. Amiodarone was given alone or concurrently with phenobarbitone. Animals given amiodarone had raised total phospholipid in serum, lung and lymphocytes, and elevated lyso(bis)phosphatidic acid (LBPA) in all tissues. Urinary and plasma phenylacetylglycine (PAG) and hepatic portal:aortal phenylacetate (PA) ratio were increased, whereas hepatic phenylalanine hydroxylase (PAH) activity and plasma phenylalanine:tyrosine ratio were not affected. Phenobarbitone treatment increased hepatic total P450 content and induced 7-pentoxyresorufin O-dealkylatian (PROD) activity, as expected, but had no effect on any other biochemical parameter. Plasma amiodarone concentration was reduced in rats co-administered both drugs and phospholipid accumulation in target tissues was attenuated compared with rats treated with amiodarone alone. However, phenobarbitone co-administration failed to alter the magnitude of response with regards to urinary PAG excretion and plasma concentration of its precursors after amiodarone treatment. Increased intestinal absorption of PAG precursors probably resulted in the raised urinary PAG after amiodarone treatment. Urinary PAG correlated weakly with serum, lymphocyte and lung phospholipids. However, urinary PAG excretion was similar in rats dosed solely with amiodarone or in combination with phenobarbitone, despite the fact that the degree of phospholipid accumulation was far less in rats given the combined treatment. Nevertheless, urinary PAG was raised only in animals exhibiting abnormal phospholipid accumulation in target tissues and may thus be useful as a surrogate biomarker for phospholipidosis.
Collapse
Affiliation(s)
- Jane Delaney
- Safety Assessment, GlaxoSmithKline, Ware SG12 0DP, UK
| | | | | | | | | | | |
Collapse
|
20
|
Bhandari N, Figueroa DJ, Lawrence JW, Gerhold DL. Phospholipidosis Assay in HepG2 Cells and Rat or Rhesus Hepatocytes Using Phospholipid Probe NBD-PE. Assay Drug Dev Technol 2008; 6:407-19. [PMID: 18537465 DOI: 10.1089/adt.2007.119] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
21
|
Nonoyama T, Fukuda R. Drug-induced Phospholipidosis -Pathological Aspects and Its Prediction. J Toxicol Pathol 2008. [DOI: 10.1293/tox.21.9] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
| | - Ryo Fukuda
- Development Research Center, Takeda Pharmaceutical Company Limited
| |
Collapse
|
22
|
Reasor MJ, Hastings KL, Ulrich RG. Drug-induced phospholipidosis: issues and future directions. Expert Opin Drug Saf 2006; 5:567-83. [PMID: 16774494 DOI: 10.1517/14740338.5.4.567] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Numerous drugs containing a cationic amphiphilic structure are capable of inducing phospholipidosis in cells under conditions of in vivo administration or ex vivo incubation. The principal characteristics of this condition include the reversible accumulation of polar phospholipids in association with the development of unicentric or multicentric lamellated bodies within cells. There is an abundance of data providing an understanding of potential mechanisms for the induction of phospholipidosis; however, the process is likely to be complex and may differ from one drug to another. The functional consequences of the presence of this condition on cellular or tissue function are not well understood. The general consensus is that the condition is an adaptive response rather than a toxicological manifestation; however, additional studies to examine this question are needed. Until this issue is resolved, concerns about phospholipidosis will continue to exist at regulatory agencies. Procedures for the screening of potential phospholipogenic candidate compounds are available. In contrast, a clear need exists for the identification of valid biomarkers to assess the development of phospholipidosis in preclinical and clinical studies.
Collapse
Affiliation(s)
- Mark J Reasor
- Robert C Byrd Health Sciences Center of West Virginia University, Department of Physiology and Pharmacology, P.O. Box 9229, Morgantown, WV 26506, USA.
| | | | | |
Collapse
|
23
|
Kasahara T, Tomita K, Murano H, Harada T, Tsubakimoto K, Ogihara T, Ohnishi S, Kakinuma C. Establishment of an In Vitro High-Throughput Screening Assay for Detecting Phospholipidosis-Inducing Potential. Toxicol Sci 2005; 90:133-41. [PMID: 16338956 DOI: 10.1093/toxsci/kfj067] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Excessive accumulation of phospholipids results in phospholipidosis (PL), which may interfere with cellular functions, leading to acute or chronic disease or even death. Electron-microscopic detection of cytoplasmic lamellar bodies is often used as a diagnostic criterion of PL, but a faster, more convenient procedure is required for high-throughput assay of the PL-inducing potential of candidate drugs. We have developed a 96-well microplate cell-culture method for detecting PL, using a phosphatidylcholine-conjugated dye (NBD-PC) and a fluoro-microplate reader. The fluorescence intensity due to NBD-PC was normalized to that of Hoechst33342, used as an indicator of cell number, to obtain the amount of NBD-PC taken up per living cell. To select a suitable cell type, we examined the PL-detection sensitivity of five cell lines, as well as human and rat primary hepatocyte cultures, with five cationic amphiphilic drugs (CAD) as PL inducers and a negative control compound. The cell lines CHO-K1 and CHL/IU gave the best results. The NBD-PC uptake per CHO-K1 cell showed a high correlation with the pathological score of PL for 24 compounds, including PL-positive and negative compounds. This high-throughput screening assay for PL-inducing potential (HTS-PL assay) offers high sensitivity and accuracy, and it allows simultaneous determination of cytotoxicity.
Collapse
Affiliation(s)
- Toshihiko Kasahara
- Pharmaceutical Research Center, Mochida Pharmaceutical Company Limited, Shizuoka, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Reasor MJ, Kacew S. Drug-induced phospholipidosis: are there functional consequences? Exp Biol Med (Maywood) 2001; 226:825-30. [PMID: 11568304 DOI: 10.1177/153537020122600903] [Citation(s) in RCA: 209] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Phospholipidosis induced by drugs with a cationic amphiphilic structure is a generalized condition in humans and animals that is characterized by an intracellular accumulation of phospholipids and the concurrent development of concentric lamellar bodies. The primary mechanism responsible for the development of phospholipidosis is an inhibition of lysosomal phospholipase activity by the drugs. While the biochemical and ultrastructural features of the condition have been well characterized, much less effort has been directed toward understanding whether the condition has adverse effects on the organism. While there are a few cationic amphiphilic drugs that have been reported to cause phospholipidosis in humans, the principal concern with this condition is in the pharmaceutical industry during preclinical testing. While this class of drugs should technically be referred to as cationic lipophilic, the term cationic amphiphilic is widely used and recognized in this field, and for this reason, the terminology cationic amphiphilic drugs (CADs) will be employed in this Minireview. The aim of this Minireview is to provide an evaluation of the state of knowledge on the functional consequences of CAD-induced phospholipidosis.
Collapse
Affiliation(s)
- M J Reasor
- Department of Physiology, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA.
| | | |
Collapse
|
25
|
Waring JF, Jolly RA, Ciurlionis R, Lum PY, Praestgaard JT, Morfitt DC, Buratto B, Roberts C, Schadt E, Ulrich RG. Clustering of hepatotoxins based on mechanism of toxicity using gene expression profiles. Toxicol Appl Pharmacol 2001; 175:28-42. [PMID: 11509024 DOI: 10.1006/taap.2001.9243] [Citation(s) in RCA: 295] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Microarray technology, which allows one to quantitate the expression of thousands of genes simultaneously, has begun to have a major impact on many different areas of drug discovery and development. The question remains of whether microarray analysis and gene expression signature profiles can be applied to the field of toxicology. To date, there are very few published studies showing the use of microarrays in toxicology and important questions remain regarding the predictability and accuracy of applying gene expression profiles to toxicology. To begin to address these questions, we have treated rats with 15 different known hepatotoxins, including allyl alcohol, amiodarone, Aroclor 1254, arsenic, carbamazepine, carbon tetrachloride, diethylnitrosamine, dimethylformamide, diquat, etoposide, indomethacin, methapyrilene, methotrexate, monocrotaline, and 3-methylcholanthrene. These agents cause a variety of hepatocellular injuries including necrosis, DNA damage, cirrhosis, hypertrophy, and hepatic carcinoma. Gene expression analysis was done on RNA from the livers of treated rats and was compared against vehicle-treated controls. The gene expression results were clustered and compared to the histopathology findings and clinical chemistry values. Our results show strong correlation between the histopathology, clinical chemistry, and gene expression profiles induced by the agents. In addition, genes were identified whose regulation correlated strongly with effects on clinical chemistry parameters. Overall, the results suggest that microarray assays may prove to be a highly sensitive technique for safety screening of drug candidates and for the classification of environmental toxins.
Collapse
Affiliation(s)
- J F Waring
- Department of Cellular and Molecular Toxicology, Abbott Laboratories, Abbott Park, Illinois 60064-6104, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Kacew S, Reasor MJ, Ruben Z. Cationic lipophilic drugs: mechanisms of action, potential consequences, and reversibility. Drug Metab Rev 1997; 29:355-68. [PMID: 9187525 DOI: 10.3109/03602539709037588] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- S Kacew
- Department of Pharmacology, University of Ottawa, Canada
| | | | | |
Collapse
|