1
|
Yang YZ, Ding S, Liu XY, Tang JJ, Wang Y, Sun F, Xu C, Tan BC. EMP32 is required for the cis-splicing of nad7 intron 2 and seed development in maize. RNA Biol 2020; 18:499-509. [PMID: 32936708 DOI: 10.1080/15476286.2020.1817267] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Pentatricopeptide repeat (PPR) proteins play an important role in post-transcriptional regulation of mitochondrial gene expression. Functions of many PPR proteins and their roles in plant growth and development remain unknown. Through characterization of an empty pericarp32 (emp32) mutant, we identified the function of Emp32 in mitochondrial intron splicing and seed development in maize. The loss-of-function mutant emp32 shows embryo lethality with severely arrested embryo and endosperm development, and over-expression of Emp32 rescues the embryo-lethality. EMP32 is a P-type PPR protein targeted to mitochondria. Loss of function in Emp32 dramatically decreases the splicing efficiency of nad7 intron 2, while complementation of Emp32 restores the splicing efficiency. Although nad7 intron 2 is partially spliced in the wild type, over-expression of Emp32 does not increase the splicing efficiency. The splicing deficiency of nad7 intron 2 blocks the assembly of mitochondrial complex I and dramatically reduces its activity, which may explain the embryo-lethality in emp32. In addition to the one copy of nad7 in the maize mitochondrial genome, we identified one to six copies of nad7 in the nuclear genomes in different maize inbred lines. These copies appear not to be expressed. Together, our results revealed that the P-type PPR protein EMP32 is required for the cis-splicing of nad7 intron 2 and seed development in maize.
Collapse
Affiliation(s)
- Yan-Zhuo Yang
- Key Lab of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Shuo Ding
- Key Lab of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Xin-Yuan Liu
- Key Lab of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Jiao-Jiao Tang
- Key Lab of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Yong Wang
- Key Lab of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Feng Sun
- Key Lab of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Chunhui Xu
- Key Lab of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Bao-Cai Tan
- Key Lab of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| |
Collapse
|
2
|
Aljarba NH, Al-Anazi MR, Shafeai MI, Rudiny FH, Bin Dajem SM, Alothaid H, Darraj M, Alkahtani S, Alghamdi J, Al-Ahdal MN, Al-Qahtani AA. Interleukin-22 Polymorphisms in Plasmodium falciparum-Infected Malaria Patients. Mediators Inflamm 2020; 2020:5193723. [PMID: 32148440 PMCID: PMC7049855 DOI: 10.1155/2020/5193723] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/29/2019] [Accepted: 01/27/2020] [Indexed: 02/07/2023] Open
Abstract
Background and Objectives. Malaria infection, caused by Plasmodium falciparum, is the most lethal and frequently culminates in severe clinical complications. Interleukin-22 (IL-22) has been implicated in several diseases including malaria. The objective of this study was to investigate the role of IL-22 gene polymorphisms in P. falciparum infection. Material and Methods. Ten single-nucleotide polymorphisms (SNPs), rs976748, rs1179246, rs2046068, rs1182844, rs2227508, rs2227513, rs2227478, rs2227481, rs2227491, and rs2227483, of IL-22 gene were genotyped through PCR-based assays of 250 P. falciparum infection. IL-22 gene promoter activity. RESULTS We found that the rs2227481 TT genotype (odds ratio 0.254, confidence interval = 0.097-0.663, P. P. falciparum infection. P. P. P. P. CONCLUSION The study suggests that IL-22 polymorphisms in rs2227481 and rs2227483 could contribute to protection against P. falciparum infection. IL-22 gene promoter activity.
Collapse
Affiliation(s)
- Nada H. Aljarba
- Biology Department, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mashael R. Al-Anazi
- Department of Infection and Immunity, Research Centre, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | | | | | - Saad M. Bin Dajem
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Hani Alothaid
- Department of Basic Sciences, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha, Saudi Arabia
| | - Majid Darraj
- Department of Internal Medicine, College of Medicine, Jazan University, Jazan, Saudi Arabia
| | - Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Jahad Alghamdi
- The Saudi Biobank, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Mohammed N. Al-Ahdal
- Department of Infection and Immunity, Research Centre, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
- Department of Microbiology and Immunology, Alfaisal University, School of Medicine, Riyadh, Saudi Arabia
| | - Ahmed A. Al-Qahtani
- Department of Infection and Immunity, Research Centre, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
- Department of Microbiology and Immunology, Alfaisal University, School of Medicine, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Pentatricopeptide repeat protein MID1 modulates nad2 intron 1 splicing and Arabidopsis development. Sci Rep 2020; 10:2008. [PMID: 32029763 PMCID: PMC7005036 DOI: 10.1038/s41598-020-58495-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 01/15/2020] [Indexed: 12/13/2022] Open
Abstract
As one of the best-studied RNA binding proteins in plant, pentatricopeptide repeats (PPRs) protein are mainly targeted to mitochondria and/or chloroplasts for RNA processing to regulate the biogenesis and function of the organelles, but its molecular mechanism and role in development remain to be further revealed. Here, we identified a mitochondria-localized P-type small PPR protein, MITOCHONDRION-MEDIATED GROWTH DEFECT 1 (MID1) that is crucial for Arabidopsis development. Mutation in MID1 causes retarded embryo development and stunted plant growth with defects in cell expansion and proliferation. Molecular experiments showed that MID1 is required for the splicing of the nad2 intron 1 in mitochondria. Consistently, mid1 plants display significant reduction in the abundance and activity of mitochondrial respiration complex I, accompanied by abnormal mitochondrial morphology and energy metabolism. Furthermore, MID1 is associated with other trans-factors involved in NICOTINAMIDE ADENINE DINUCLEOTIDE HYDROGEN (NADH) DEHYDROGENASE SUBUNIT 2 (nad2) intron 1 splicing, and interacts directly with itself and MITOCHONDRIAL STABILITY FACTOR 1 (MTSF1). This suggests that MID1 most likely functions as a dimer for nad2 intron 1 splicing. Together, we characterized a novel PPR protein MID1 for nad2 intron 1 splicing.
Collapse
|
4
|
Yang F, Yang S, Liu J, Pang X, Shi F, Qin H, Wang J, Tang R. Impact of RTN4 gene polymorphism and its plasma level on susceptibility to nasopharyngeal carcinoma: A case-control study. Medicine (Baltimore) 2019; 98:e17831. [PMID: 31764777 PMCID: PMC6882562 DOI: 10.1097/md.0000000000017831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The RTN4 gene plays a role in the development and progression of cancer. This case-control study aimed to investigate the association between the RTN4 gene polymorphism and its plasma level with the risk of nasopharyngeal carcinoma (NPC) in a Chinese population.RTN4 gene polymorphisms (rs2920891, rs17046583, rs117465650, rs10496040, and rs2588519) in 220 patients with NPC and 300 healthy controls were analyzed using Snapshot single-nucleotide polymorphism genotyping assays. The plasma level of RTN4 was measured using the enzyme-linked immunosorbent assay.The allele frequencies of RTN4 gene polymorphisms showed no significant difference between the patients and controls (P > .05). Nevertheless, the rs2920891 polymorphism in a dominant model (A/C+C/C) and codominant model (A/C) was significantly associated with the susceptibility to NPC (P = .017, odds ratio [OR] = 1.54, 95% confidence interval [CI] = 1.08-2.21 and P = .034, OR = 1.64, 95% CI = 1.13-2.38, respectively). The plasma level of RTN4 was significantly higher in patients with NPC in comparison with the controls (P < .001). Furthermore, we observed that patients with NPC carrying the rs2920891 A/C+C/C genotype had a higher RTN4 level than those carrying the A/A genotype (P < .001).Our findings indicated that the rs2920891 polymorphism may be associated with increased susceptibility to NPC, possibly by increasing plasma RTN4.
Collapse
Affiliation(s)
- Fenglian Yang
- Youjiang Medical University for Nationalities, Baise
| | | | - Jin Liu
- Department of Otorhinolaryngology
| | | | - Feng Shi
- Department of Reproductive Medicine
| | | | | | - Renguang Tang
- Department of Blood Transfusion, Youjiang Medical University for Nationalities Affiliated Hospital, Baise, China
| |
Collapse
|
5
|
Wang R, Zeng Y, Qin H, Lu Y, Huang H, Lei M, Tan T, Huang Y, Luo H, Lan Y, Wei Y. Association of interleukin 22 gene polymorphisms and serum IL-22 level with risk of systemic lupus erythematosus in a Chinese population. Clin Exp Immunol 2018; 193:143-151. [PMID: 29603203 PMCID: PMC6046499 DOI: 10.1111/cei.13133] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2018] [Indexed: 01/12/2023] Open
Abstract
The aim of this study was to investigate the association between the single-nucleotide polymorphisms (SNPs) of the interleukin 22 (IL-22) gene and systemic lupus erythematosus (SLE) in a Chinese population. Three IL-22 SNPs (rs2227485, rs2227513 and rs2227491) were genotyped using SNaPshot SNP genotyping assays and identified by sequencing in 314 SLE patients and 411 healthy controls. The IL-22 level of serum was assessed by enzyme-linked immunosorbent assay (ELISA) kits. Data were analysed by spss version 17.0 software. We found that rs2227513 was associated with an increased risk of SLE [AG versus AA: adjusted odds ratio (aOR) = 2·24, 95% confidence interval (CI) = 1·22-4·12, P = 0·010; G versus· A: adjusted OR = 2·18, 95% CI = 1·20-3·97, P = 0·011]. Further analysis in patients with SLE showed that the AG genotype and G allele were associated with an increased risk of renal disorder in SLE (G versus A: aOR = 3·09, 95% CI = 1·30-7·33, P = 0·011; AG versus· AA: aOR = 3·25, 95% CI = 1·35-7·85, P = 0·009). In addition, the concentration of IL-22 was significantly lower in the rs2227513 AG genotype compared with AA genotype (P = 0·028). These results suggest that rs2227513 polymorphism might contribute to SLE susceptibility, probably by decreasing the expression of IL-22.
Collapse
Affiliation(s)
- R. Wang
- Clinical Medical School, Youjiang Medical University for NationalitiesBaiseGuangxiChina
- Department of Laboratory Medicinethe Affiliated Hospital of Youjiang Medical University for NationalitiesBaiseGuangxiChina
| | - Y.‐L. Zeng
- Department of Laboratory Medicinethe Affiliated Hospital of Youjiang Medical University for NationalitiesBaiseGuangxiChina
| | - H.‐M. Qin
- Clinical Medical School, Youjiang Medical University for NationalitiesBaiseGuangxiChina
- Department of Laboratory Medicinethe Affiliated Hospital of Youjiang Medical University for NationalitiesBaiseGuangxiChina
| | - Y.‐L. Lu
- Clinical Medical School, Youjiang Medical University for NationalitiesBaiseGuangxiChina
- Department of Laboratory Medicinethe Affiliated Hospital of Youjiang Medical University for NationalitiesBaiseGuangxiChina
| | - H.‐T. Huang
- Clinical Medical School, Youjiang Medical University for NationalitiesBaiseGuangxiChina
- Department of Laboratory Medicinethe Affiliated Hospital of Youjiang Medical University for NationalitiesBaiseGuangxiChina
| | - M. Lei
- Clinical Medical School, Youjiang Medical University for NationalitiesBaiseGuangxiChina
- Department of Laboratory Medicinethe Affiliated Hospital of Youjiang Medical University for NationalitiesBaiseGuangxiChina
| | - T. Tan
- Clinical Medical School, Youjiang Medical University for NationalitiesBaiseGuangxiChina
- Department of Laboratory Medicinethe Affiliated Hospital of Youjiang Medical University for NationalitiesBaiseGuangxiChina
| | - Y.‐Y. Huang
- Clinical Medical School, Youjiang Medical University for NationalitiesBaiseGuangxiChina
- Department of Laboratory Medicinethe Affiliated Hospital of Youjiang Medical University for NationalitiesBaiseGuangxiChina
| | - H.‐C. Luo
- Department of Laboratory Medicinethe Affiliated Hospital of Youjiang Medical University for NationalitiesBaiseGuangxiChina
| | - Y. Lan
- Department of Dermatologythe Affiliated Hospital of Youjiang Medical University for NationalitiesBaiseGuangxiChina
| | - Y.‐S. Wei
- Department of Laboratory Medicinethe Affiliated Hospital of Youjiang Medical University for NationalitiesBaiseGuangxiChina
| |
Collapse
|
6
|
Hu J, Li Y, Chen L, Yang Z, Zhao G, Wang Y, Cheng J, Zhao J, Peng Y. Impact of IL-22 gene polymorphism on human immunodeficiency virus infection in Han Chinese patients. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2016; 49:872-878. [PMID: 25556046 DOI: 10.1016/j.jmii.2014.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 09/10/2014] [Accepted: 09/30/2014] [Indexed: 01/21/2023]
Abstract
BACKGROUND/PURPOSE To analyze the polymorphism of the IL-22 gene in Han Chinese patients and to evaluate the influence of IL-22 polymorphism on human immunodeficiency virus (HIV) infection. METHODS IL-22 gene polymorphism was analyzed in 73 blood samples from healthy participants. The influence of the genotype and allele distribution of three single nucleotide polymorphisms (rs2227484, rs2227485, and rs2227513) of IL-22 on HIV infection was evaluated in 619 HIV seropositive patients and 619 healthy controls. To determine the association between the rs2227513 genotype and IL-22 levels in plasma, we randomly selected 29 HIV seropositive blood samples and 15 healthy blood samples and measured the levels of IL-22. RESULTS Nine single nucleotide polymorphism loci of the IL-22 gene were found (rs2227484, rs2227485, rs2227491, rs2227508, rs2227513, rs1179249, rs1179250, rs1179251, and rs1182844). Stratified analysis (by sex) showed a higher association of HIV infection and the A/G genotype and G allele at rs2227513 in women, but not in men (A/G genotype odds ratio = 5.24, 95% confidence interval = 1.13-24.27; allele G odds ratio = 5.27, 95% confidence interval 1.15-24.23). The rs2227513 A/G genotype was also associated with significantly higher levels of plasma IL-22, regardless of whether the patient was HIV seropositive or seronegative. CONCLUSION Our results suggest that IL-22 production in blood might act as a pathogenic factor in HIV infection.
Collapse
Affiliation(s)
- Jun Hu
- Department of Life Sciences, Sun Yat-Sen University, Guangzhou, China; Shenzhen Center for Disease Control and Prevention, Shenzhen, China; Department of Science in Botany, Jilin University, Changchun, China
| | - Yi Li
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Lin Chen
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Zhengrong Yang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Guanglu Zhao
- Shenzhen Center for Chronic Disease Control, Shenzhen, China
| | - Yushu Wang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jinquan Cheng
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Jin Zhao
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China.
| | - Ying Peng
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
7
|
Soma A. Circularly permuted tRNA genes: their expression and implications for their physiological relevance and development. Front Genet 2014; 5:63. [PMID: 24744771 PMCID: PMC3978253 DOI: 10.3389/fgene.2014.00063] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 03/12/2014] [Indexed: 12/02/2022] Open
Abstract
A number of genome analyses and searches using programs that focus on the RNA-specific bulge-helix-bulge (BHB) motif have uncovered a wide variety of disrupted tRNA genes. The results of these analyses have shown that genetic information encoding functional RNAs is described in the genome cryptically and is retrieved using various strategies. One such strategy is represented by circularly permuted tRNA genes, in which the sequences encoding the 5′-half and 3′-half of the specific tRNA are separated and inverted on the genome. Biochemical analyses have defined a processing pathway in which the termini of tRNA precursors (pre-tRNAs) are ligated to form a characteristic circular RNA intermediate, which is then cleaved at the acceptor-stem to generate the typical cloverleaf structure with functional termini. The sequences adjacent to the processing site located between the 3′-half and the 5′-half of pre-tRNAs potentially form a BHB motif, which is the dominant recognition site for the tRNA-intron splicing endonuclease, suggesting that circularization of pre-tRNAs depends on the splicing machinery. Some permuted tRNAs contain a BHB-mediated intron in their 5′- or 3′-half, meaning that removal of an intron, as well as swapping of the 5′- and 3′-halves, are required during maturation of their pre-tRNAs. To date, 34 permuted tRNA genes have been identified from six species of unicellular algae and one archaeon. Although their physiological significance and mechanism of development remain unclear, the splicing system of BHB motifs seems to have played a key role in the formation of permuted tRNA genes. In this review, current knowledge of circularly permuted tRNA genes is presented and some unanswered questions regarding these species are discussed.
Collapse
Affiliation(s)
- Akiko Soma
- Graduate School of Horticulture, Chiba University Matsudo, Japan
| |
Collapse
|
8
|
Nagy V, Pirakitikulr N, Zhou KI, Chillón I, Luo J, Pyle AM. Predicted group II intron lineages E and F comprise catalytically active ribozymes. RNA (NEW YORK, N.Y.) 2013; 19:1266-1278. [PMID: 23882113 PMCID: PMC3753933 DOI: 10.1261/rna.039123.113] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 06/12/2013] [Indexed: 06/02/2023]
Abstract
Group II introns are self-splicing, retrotransposable ribozymes that contribute to gene expression and evolution in most organisms. The ongoing identification of new group II introns and recent bioinformatic analyses have suggested that there are novel lineages, which include the group IIE and IIF introns. Because the function and biochemical activity of group IIE and IIF introns have never been experimentally tested and because these introns appear to have features that distinguish them from other introns, we set out to determine if they were indeed self-splicing, catalytically active RNA molecules. To this end, we transcribed and studied a set of diverse group IIE and IIF introns, quantitatively characterizing their in vitro self-splicing reactivity, ionic requirements, and reaction products. In addition, we used mutational analysis to determine the relative role of the EBS-IBS 1 and 2 recognition elements during splicing by these introns. We show that group IIE and IIF introns are indeed distinct active intron families, with different reactivities and structures. We show that the group IIE introns self-splice exclusively through the hydrolytic pathway, while group IIF introns can also catalyze transesterifications. Intriguingly, we observe one group IIF intron that forms circular intron. Finally, despite an apparent EBS2-IBS2 duplex in the sequences of these introns, we find that this interaction plays no role during self-splicing in vitro. It is now clear that the group IIE and IIF introns are functional ribozymes, with distinctive properties that may be useful for biotechnological applications, and which may contribute to the biology of host organisms.
Collapse
Affiliation(s)
- Vivien Nagy
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA
| | - Nathan Pirakitikulr
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA
| | - Katherine Ismei Zhou
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Isabel Chillón
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| | - Jerome Luo
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Anna Marie Pyle
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
9
|
Furukawa K, Abe H, Tamura Y, Yoshimoto R, Yoshida M, Tsuneda S, Ito Y. Fluorescence Detection of Intron Lariat RNA with Reduction-Triggered Fluorescent Probes. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201104425] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
10
|
Furukawa K, Abe H, Tamura Y, Yoshimoto R, Yoshida M, Tsuneda S, Ito Y. Fluorescence detection of intron lariat RNA with reduction-triggered fluorescent probes. Angew Chem Int Ed Engl 2011; 50:12020-3. [PMID: 22021091 DOI: 10.1002/anie.201104425] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 09/22/2011] [Indexed: 11/08/2022]
Affiliation(s)
- Kazuhiro Furukawa
- Nano Medical Engineering Laboratory, RIKEN Advanced Science Institute, 2-1, Hirosawa, Wako-Shi, Saitama, 351-0198, Japan
| | | | | | | | | | | | | |
Collapse
|
11
|
Li CF, Costa M, Bassi G, Lai YK, Michel F. Recurrent insertion of 5'-terminal nucleotides and loss of the branchpoint motif in lineages of group II introns inserted in mitochondrial preribosomal RNAs. RNA (NEW YORK, N.Y.) 2011; 17:1321-1335. [PMID: 21613530 PMCID: PMC3138568 DOI: 10.1261/rna.2655911] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 04/01/2011] [Indexed: 05/30/2023]
Abstract
A survey of sequence databases revealed 10 instances of subgroup IIB1 mitochondrial ribosomal introns with 1 to 33 additional nucleotides inserted between the 5' exon and the consensus sequence at the intron 5' end. These 10 introns depart further from the IIB1 consensus in their predicted domain VI structure: In contrast to its basal helix and distal GNRA terminal loop, the middle part of domain VI is highly variable and lacks the bulging A that serves as the branchpoint in lariat formation. In vitro experiments using two closely related IIB1 members inserted at the same ribosomal RNA site in the basidiomycete fungi Grifola frondosa and Pycnoporellus fulgens revealed that both ribozymes are capable of efficient self-splicing. However, whereas the Grifola intron was excised predominantly as a lariat, the Pycnoporellus intron, which possesses six additional nucleotides at the 5' end, yielded only linear products, consistent with its predicted domain VI structure. Strikingly, all of the introns with 5' terminal insertions lack the EBS2 exon-binding site. Moreover, several of them are part of the small subset of group II introns that encode potentially functional homing endonucleases of the LAGLIDADG family rather than reverse transcriptases. Such coincidences suggest causal relationships between the shift to DNA-based mobility, the loss of one of the two ribozyme sites for binding the 5' exon, and the exclusive use of hydrolysis to initiate splicing.
Collapse
MESH Headings
- Base Sequence
- Basidiomycota/genetics
- Basidiomycota/metabolism
- Grifola/genetics
- Introns/genetics
- Molecular Sequence Data
- Mutagenesis, Insertional/genetics
- Mutagenesis, Insertional/physiology
- Nucleic Acid Conformation
- Nucleotides/genetics
- Pycnoporus/genetics
- RNA/genetics
- RNA Precursors/chemistry
- RNA Precursors/genetics
- RNA Splicing
- RNA, Catalytic/chemistry
- RNA, Catalytic/genetics
- RNA, Catalytic/metabolism
- RNA, Fungal/chemistry
- RNA, Fungal/genetics
- RNA, Mitochondrial
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/genetics
Collapse
Affiliation(s)
- Cheng-Fang Li
- Centre de Génétique Moléculaire du C.N.R.S., 91190 Gif-sur-Yvette, France
- Department of Life Science and Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan 30013
| | - Maria Costa
- Centre de Génétique Moléculaire du C.N.R.S., 91190 Gif-sur-Yvette, France
| | - Gurminder Bassi
- Centre de Génétique Moléculaire du C.N.R.S., 91190 Gif-sur-Yvette, France
| | - Yiu-Kay Lai
- Department of Life Science and Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan 30013
| | - François Michel
- Centre de Génétique Moléculaire du C.N.R.S., 91190 Gif-sur-Yvette, France
| |
Collapse
|
12
|
Linking the branchpoint helix to a newly found receptor allows lariat formation by a group II intron. EMBO J 2011; 30:3040-51. [PMID: 21712813 DOI: 10.1038/emboj.2011.214] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 06/03/2011] [Indexed: 11/08/2022] Open
Abstract
Like spliceosomal introns, the ribozyme-containing group II introns are excised as branched, lariat structures: a 2'-5' bond is created between the first nucleotide of the intron and an adenosine in domain VI, a component which is missing from available crystal structures of the ribozyme. Comparative sequence analysis, modelling and nucleotide substitutions point to the existence, and probable location, of a specific RNA receptor for the section of domain VI that lies just distal to the branchpoint adenosine. By designing oligonucleotides that tether domain VI to this novel binding site, we have been able to specifically activate lariat formation in an engineered, defective group II ribozyme. The location of the newly identified receptor implies that prior to exon ligation, the distal part of domain VI undergoes a major translocation, which can now be brought under control by the system of anchoring oligonucleotides we have developed. Interestingly, these oligonucleotides, which link the branchpoint helix and the binding site for intron nucleotides 3-4, may be viewed as counterparts of U2-U6 helix III in the spliceosome.
Collapse
|
13
|
Mattick JS. Deconstructing the dogma: a new view of the evolution and genetic programming of complex organisms. Ann N Y Acad Sci 2009; 1178:29-46. [PMID: 19845626 DOI: 10.1111/j.1749-6632.2009.04991.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Since the birth of molecular biology it has been generally assumed that most genetic information is transacted by proteins, and that RNA plays an intermediary role. This led to the subsidiary assumption that the vast tracts of noncoding sequences in the genomes of higher organisms are largely nonfunctional, despite the fact that they are transcribed. These assumptions have since become articles of faith, but they are not necessarily correct. I propose an alternative evolutionary history whereby developmental and cognitive complexity has arisen by constructing sophisticated RNA-based regulatory networks that interact with generic effector complexes to control gene expression patterns and the epigenetic trajectories of differentiation and development. Environmental information can also be conveyed into this regulatory system via RNA editing, especially in the brain. Moreover, the observations that RNA-directed epigenetic changes can be inherited raises the intriguing question: has evolution learnt how to learn?
Collapse
Affiliation(s)
- John S Mattick
- Institute for Molecular Bioscience, The University of Queensland, St Lucia QLD 4072, Australia.
| |
Collapse
|
14
|
Affiliation(s)
- D Bhattacharya
- University of Iowa, Department of Biological Sciences, Biology Building, Iowa City, Iowa 52242-1324, USA
| |
Collapse
|
15
|
Evolution of reduced and compact chloroplast genomes (cpDNAs) in gnetophytes: selection toward a lower-cost strategy. Mol Phylogenet Evol 2009; 52:115-24. [PMID: 19166950 DOI: 10.1016/j.ympev.2008.12.026] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Revised: 12/30/2008] [Accepted: 12/31/2008] [Indexed: 11/22/2022]
Abstract
The cpDNA of Welwitschia mirabilis (the only species of Welwitschiales) was recently reported to be the most reduced and compact among photosynthetic land plants. However, cpDNAs of the other two gnetophyte lineages (viz. Ephedrales and Gnetales) have not yet been studied. It remains unclear what underlining mechanisms have downsized the cpDNA. To pin down major factors for cpDNA reduction and compaction in gnetophytes, we have determined 4 complete cpDNAs, including one from each of the 3 gnetophyte orders, Ephedra equisetina, Gnetum parvifolium, and W. mirabilis, and one from the non-Pinus Pinaceae, Keteleeria davidiana. We report that the cpDNAs of E. equisetina (109,518bp) and G.parvifolium (114,914bp) are not only smaller but more compact than that of W. mirabilis (118,919bp). The gnetophyte cpDNAs have commonly lost at least 18 genes that are retained in other seed plants. Furthermore, they have significantly biased usages of AT-rich codons and shorter introns and intergenic spaces, which are largely due to more deletions at inter-operon than intra-operon spaces and removal of segment sequences rather than single-nucleotides. We show that the reduced gnetophyte cpDNAs clearly resulted from selection for economy by deletions of genes and non-coding sequences, which then led to the compactness and the accelerated substitution rates. The smallest C-values in gnetophyte nuclear DNAs and the competitive or resource-poor situations encountered by gnetophytes further suggest a critical need for an economic strategy.
Collapse
|
16
|
Chien MF, Huang CC, Kusano T, Endo G. Facilities for transcription and mobilization of an exon-less bacterial group II intron nested in transposon TnMERI1. Gene 2008; 408:164-71. [DOI: 10.1016/j.gene.2007.10.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Revised: 10/17/2007] [Accepted: 10/24/2007] [Indexed: 10/22/2022]
|
17
|
Groisman EA, Cromie MJ, Shi Y, Latifi T. A Mg2+-responding RNA that controls the expression of a Mg2+ transporter. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2007; 71:251-8. [PMID: 17381304 DOI: 10.1101/sqb.2006.71.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Mg2+ is the most abundant divalent cation in biological systems. It is required for ATP-mediated enzymatic reactions and as a stabilizer of ribosomes and membranes. The enteric bacterium Salmonella enterica serovar Typhimurium harbors three Mg2+ transporters and a regulatory system-termed PhoP/PhoQ-whose activity is regulated by the extracytoplasmic levels of Mg2+. We have determined that expression of the PhoP-activated Mg2+ transporter MgtA is also controlled by its 5'-untranslated region (5'UTR). The 5'UTR of the mgtA gene can adopt different stem-loop structures depending on the Mg2+ levels, which determine whether transcription reads through into the mgtA-coding region or stops within the 5'UTR. This makes the mgtA 5'UTR the first example of a cation-responding riboswitch. The initiation of mgtA transcription responds to extracytoplasmic Mg2+, and its elongation into the coding region to cytoplasmic Mg2+, which provides a singular example where the same ligand is sensed in different cellular compartments to regulate disparate steps in gene transcription. The PhoP-activated Mg2+ transporter mgtB is also regulated by Mg2+ in a strain lacking the Mg2+ sensor PhoQ, suggesting the presence of additional Mg2+-responding devices.
Collapse
Affiliation(s)
- E A Groisman
- Department of Molecular Microbiology, Washington University School of Medicine, Howard Hughes Medical Institute, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
18
|
Wang Z, Yuan Z, Xiang L, Shao J, Węgrzyn G. tRNA-dependent cleavage of the ColE1 plasmid-encoded RNA I. MICROBIOLOGY-SGM 2007; 152:3467-3476. [PMID: 17159198 DOI: 10.1099/mic.0.29134-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Effects of tRNA(Ala)(UGC) and its derivative devoid of the 3'-ACCA motif [tRNA(Ala)(UGC)DeltaACCA] on the cleavage of the ColE1-like plasmid-derived RNA I were analysed in vivo and in vitro. In an amino-acid-starved relA mutant, in which uncharged tRNAs occur in large amounts, three products of specific cleavage of RNA I were observed, in contrast to an otherwise isogenic relA(+) host. Overexpression of tRNA(Ala)(UGC), which under such conditions occurs in Escherichia coli mostly in an uncharged form, induced RNA I cleavage and resulted in an increase in ColE1-like plasmid DNA copy number. Such effects were not observed during overexpression of the 3'-ACCA-truncated tRNA(Ala)(UGC). Moreover, tRNA(Ala)(UGC), but not tRNA(Ala)(UGC)DeltaACCA, caused RNA I cleavage in vitro in the presence of MgCl(2). These results strongly suggest that tRNA-dependent RNA I cleavage occurs in ColE1-like plasmid-bearing E. coli, and demonstrate that tRNA(Ala)(UGC) participates in specific degradation of RNA I in vivo and in vitro. This reaction is dependent on the presence of the 3'-ACCA motif of tRNA(Ala)(UGC).
Collapse
MESH Headings
- Bacteriocin Plasmids/genetics
- Base Sequence
- Blotting, Northern
- Coenzymes/pharmacology
- DNA, Bacterial/biosynthesis
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Magnesium Chloride/pharmacology
- Models, Biological
- Molecular Sequence Data
- RNA Stability
- RNA, Antisense/genetics
- RNA, Antisense/metabolism
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Catalytic/metabolism
- RNA, Transfer, Ala/metabolism
Collapse
Affiliation(s)
- Zhijun Wang
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca 14853, NY, USA
- Key Laboratory of Medical Molecular Virology, Shanghai Medical College, Fudan University, 200032, Shanghai, People's Republic of China
| | - Zhenghong Yuan
- Key Laboratory of Medical Molecular Virology, Shanghai Medical College, Fudan University, 200032, Shanghai, People's Republic of China
| | - Li Xiang
- Key Laboratory of Medical Molecular Virology, Shanghai Medical College, Fudan University, 200032, Shanghai, People's Republic of China
| | - Junjie Shao
- Key Laboratory of Medical Molecular Virology, Shanghai Medical College, Fudan University, 200032, Shanghai, People's Republic of China
| | - Grzegorz Węgrzyn
- Department of Genetics and Marine Biotechnology, Institute of Oceanology, Polish Academy of Sciences, Św. Wojciecha 5, 81-347 Gdynia, Poland
- Department of Molecular Biology, University of Gdańsk, 80-822, Gdańsk, Poland
| |
Collapse
|
19
|
Wang Y, Silverman SK. Experimental tests of two proofreading mechanisms for 5'-splice site selection. ACS Chem Biol 2006; 1:316-24. [PMID: 17163761 DOI: 10.1021/cb6001569] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Self-splicing group II intron RNAs catalyze a two-step process in which the intron is excised as a lariat by two successive phosphodiester exchange reactions. The reversibility of the first step has been hypothesized to act as a proofreading mechanism for improper 5'-splice site selection. However, without synthetic access to mis-spliced RNAs, this hypothesis could not be tested. Here, we used a deoxyribozyme to synthesize several branched RNAs that are derived from the ai5gamma group II intron and mis-spliced at the 5'-splice site. Unlike the correctly spliced ai5gamma RNAs, the mis-spliced RNAs are observed not to undergo the reverse of the first step. This is well-controlled negative evidence against the hypothesis that first-step reversibility is a proofreading mechanism for 5'-splice site selection. In a reaction equivalent either to the hydrolytic first step of splicing or to the hydrolytic reverse of the second step of splicing, a mis-spliced 5'-exon can be "trimmed" to its proper length by the corresponding mis-spliced intron, and in one case, the trimmed 5'-exon was observed to proceed correctly through the second step of splicing. These findings are the first direct evidence that this second proofreading mechanism can occur with a group II intron RNA that is mis-spliced at the 5'-splice site. On the basis of the likely structural and evolutionary relationship between group II introns and the spliceosome, we suggest that this second proofreading mechanism may be operative in the spliceosome.
Collapse
Affiliation(s)
- Yangming Wang
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | | |
Collapse
|
20
|
Cromie MJ, Shi Y, Latifi T, Groisman EA. An RNA sensor for intracellular Mg(2+). Cell 2006; 125:71-84. [PMID: 16615891 DOI: 10.1016/j.cell.2006.01.043] [Citation(s) in RCA: 219] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2005] [Revised: 11/23/2005] [Accepted: 01/05/2006] [Indexed: 01/17/2023]
Abstract
Most RNA molecules require Mg(2+) for their structure and enzymatic properties. Here we report the first example of an RNA serving as sensor for cytoplasmic Mg(2+). We establish that expression of the Mg(2+) transporter MgtA of Salmonella enterica serovar Typhimurium is controlled by its 5' untranslated region (5'UTR). We show that the 5'UTR of the mgtA gene can adopt different stem-loop structures depending on the Mg(2+) levels, which determine whether transcription reads through into the mgtA coding region or stops within the 5'UTR. We could recapitulate the Mg(2+)-regulated transcription using a defined in vitro transcription system with RNA polymerase as the only protein component. The initiation of mgtA transcription responds to extracytoplasmic Mg(2+) and its elongation into the coding region to cytoplasmic Mg(2+), providing a singular example in which the same ligand is sensed in different cellular compartments to regulate disparate steps in gene transcription.
Collapse
MESH Headings
- 5' Untranslated Regions/chemistry
- 5' Untranslated Regions/genetics
- 5' Untranslated Regions/metabolism
- Adenosine Triphosphatases/genetics
- Bacterial Proteins/genetics
- Biosensing Techniques/methods
- Conserved Sequence/genetics
- Cytoplasm/chemistry
- Gene Expression Regulation, Bacterial
- Magnesium/analysis
- Magnesium/metabolism
- Magnesium/pharmacology
- Membrane Transport Proteins/genetics
- Models, Genetic
- Mutation/genetics
- Nucleic Acid Conformation/drug effects
- Open Reading Frames/genetics
- Phylogeny
- Promoter Regions, Genetic/genetics
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Regulatory Sequences, Nucleic Acid/genetics
- Ribonucleases/metabolism
- Terminator Regions, Genetic/genetics
- Transcription, Genetic/drug effects
Collapse
Affiliation(s)
- Michael J Cromie
- Howard Hughes Medical Institute, Department of Molecular Microbiology, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8230, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
21
|
Khan AU. Ribozyme: A clinical tool. Clin Chim Acta 2006; 367:20-7. [PMID: 16426595 DOI: 10.1016/j.cca.2005.11.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2005] [Revised: 11/18/2005] [Accepted: 11/22/2005] [Indexed: 01/15/2023]
Abstract
Catalytic RNAs (ribozymes) are capable of specifically cleaving RNA molecules, a property that enables them to act as potential antiviral and anti-cancer agents, as well as powerful tools for functional genomic studies. Recently, ribozymes have been used successfully to inhibit gene expression in a variety of biological systems in vitro and in vivo. Phase I clinical trials using ribozyme gene therapy to treat AIDS patients have been conducted. Despite initial success, there are many areas that require further investigation. These include stability of ribozymes in cells and designing highly active ribozymes in vivo, identification of target sequence sites and co-localization of ribozymes and substrates, and their delivery to specific tissues and maintenance of its stable long-term expression. This review gives a brief introduction to ribozyme structure, catalysis and its potential applications in biological systems as therapeutic agents.
Collapse
Affiliation(s)
- Asad U Khan
- Interdisciplinary Biotechnology unit, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
22
|
Zelin E, Wang Y, Silverman SK. Adenosine is inherently favored as the branch-site RNA nucleotide in a structural context that resembles natural RNA splicing. Biochemistry 2006; 45:2767-71. [PMID: 16503631 PMCID: PMC2515823 DOI: 10.1021/bi052499l] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We previously used in vitro selection to identify the 7S11 deoxyribozyme, which catalyzes formation of 2',5'-branched RNA using a branch-site adenosine nucleophile and a 5'-triphosphate electrophile. An unanswered question is whether the use of branch-site adenosine is inherently preferred or a chance event during the particular selection experiment. Here we have found that deoxyribozymes newly selected to use uridine as the branch-site RNA nucleotide in a structural context that resembles natural RNA splicing instead prefer a branch-site adenosine, although adenosine was never available during the selection itself. Our results support a chemical basis for nature's choice of the branch-site nucleotide, which is almost always adenosine in group II introns and the spliceosome.
Collapse
Affiliation(s)
- Elena Zelin
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | | | | |
Collapse
|
23
|
Abstract
We describe a general and efficient two-step strategy for lariat RNA synthesis. In the first step, a deoxyribozyme synthesizes 2',5'-branched RNA. In the second step, T4 RNA ligase closes the loop that completes the lariat. The loop-closure reaction can form either a natural or unnatural lariat isomer, depending on which of the two 3'-termini of the branched RNA reacts with the lone 5'-end. We demonstrate two approaches to control formation of either lariat isomer. In conjunction with other routes for lariat RNA synthesis, the two-step strategy described here will facilitate biochemical studies that require lariat RNAs of varying nucleotide sequence.
Collapse
Affiliation(s)
- Yangming Wang
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA
| | | |
Collapse
|
24
|
Kosaraju P, Pulakat L, Gavini N. Analysis of the genome of Azotobacter vinelandii revealed the presence of two genetically distinct group II introns on the chromosome. Genetica 2005; 124:107-15. [PMID: 16134325 DOI: 10.1007/s10709-004-2923-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Azotobacter vinelandii belongs to the y subdivision of eubacteria and has one of the highest respiratory rates. It is considered to be among the probable progenitors of mitochondria. Group II introns were originally identified on organelle genomes. Analysis of the A. vinelandii genome for the presence of group II introns using a deduced group II intron consensus sequence identified two putative introns. The first intron (AVI) which was found to be inserted in the groEL, an essential gene, was already characterized. Our study identified another group II intron (AV2) in A. vinelandii genome. This intron is inserted in a mobile genetic element, similar to most of the group II introns in bacteria, which in this case is a transposase like gene, tnpAl. This putative TnpAl protein is 52% identical to TnpA, the transposase of bacteriophage Lambda, and 85% identical to TnpAl of Pseudomonas stutzeri. Sequence analysis showed that this intron encodes a reverse transcriptase (RT) like motif in domain IV, similar to other group II introns. The RT of this intron open reading frame (ORF) is 53% homologous with that of AVI intron and 66% homologous with that of Pseudomonas putida (Tn5041c) intron. Secondary structure analysis showed that this intron has the typical sub-group IIB1 structure, but the EBS2-IBS2 interaction appears to be missing. Using the RNA generated by in vitro transcription of the intron sequence with its flanking exons, in vitro splicing experiments were performed. It was found that the AV2 intron is functional, despite of lacking the EBS2-IBS2 interaction that plays a role in exon recognition.
Collapse
Affiliation(s)
- Padma Kosaraju
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, USA
| | | | | |
Collapse
|
25
|
Coppins RL, Silverman SK. A deoxyribozyme that forms a three-helix-junction complex with its RNA substrates and has general RNA branch-forming activity. J Am Chem Soc 2005; 127:2900-7. [PMID: 15740125 DOI: 10.1021/ja044881b] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We recently used in vitro selection to identify 7S11, a deoxyribozyme that synthesizes 2',5'-branched RNA. The 7S11 DNA enzyme mediates the nucleophilic attack of an adenosine 2'-hydroxyl group at a 5'-triphosphate, forming 2',5'-branched RNA in a reaction that resembles the first step of in vivo RNA splicing. Here, we describe 7S11 characterization experiments that have two important implications for nucleic acid chemistry and biochemistry. First, on the basis of a comprehensive analysis of its substrate sequence requirements, 7S11 is shown to be generally applicable for the synthesis of a wide range of 2',5'-branched RNAs. Strict substrate sequence requirements are found at the two RNA nucleotides that directly form the branched linkage, and these requirements correspond to those nucleotides found most commonly at these two positions in natural spliced RNAs. Outside of these two nucleotides, most substrate sequences are tolerated with useful ligation activity, although rates and yields vary. Because chemical synthesis approaches to branched RNA are extremely limited in scope, the deoxyribozyme-based route using 7S11 will enable many experiments that require branched RNA. Second, comprehensive nucleotide covariation experiments demonstrate that 7S11 and its RNA substrates adopt a three-helix-junction structure in which the branch-site nucleotide is located at the intersection of the three helices. Because many natural ribozymes have multi-helix junctions, 7S11 is an interesting model system for catalytic nucleic acids.
Collapse
Affiliation(s)
- Rebecca L Coppins
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | | |
Collapse
|
26
|
Vanácová S, Yan W, Carlton JM, Johnson PJ. Spliceosomal introns in the deep-branching eukaryote Trichomonas vaginalis. Proc Natl Acad Sci U S A 2005; 102:4430-5. [PMID: 15764705 PMCID: PMC554003 DOI: 10.1073/pnas.0407500102] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Eukaryotes have evolved elaborate splicing mechanisms to remove introns that would otherwise destroy the protein-coding capacity of genes. Nuclear premRNA splicing requires sequence motifs in the intron and is mediated by a ribonucleoprotein complex, the spliceosome. Here we demonstrate the presence of a splicing apparatus in the protist Trichomonas vaginalis and show that RNA motifs found in yeast and metazoan introns are required for splicing. We also describe the first introns in this deep-branching lineage. The positions of these introns are often conserved in orthologous genes, indicating they were present in a common ancestor of trichomonads, yeast, and metazoa. All examined T. vaginalis introns have a highly conserved 12-nt 3' splice-site motif that encompasses the branch point and is necessary for splicing. This motif is also found in the only described intron in a gene from another deep-branching eukaryote, Giardia intestinalis. These studies demonstrate the conservation of intron splicing signals across large evolutionary distances, reveal unexpected motif conservation in deep-branching lineages that suggest a simplified mechanism of splicing in primitive unicellular eukaryotes, and support the presence of introns in the earliest eukaryote.
Collapse
Affiliation(s)
- Stepánka Vanácová
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
27
|
Valadkhan S, Manley JL. Characterization of the catalytic activity of U2 and U6 snRNAs. RNA (NEW YORK, N.Y.) 2003; 9:892-904. [PMID: 12810922 PMCID: PMC1370455 DOI: 10.1261/rna.5440303] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2003] [Accepted: 04/18/2003] [Indexed: 05/20/2023]
Abstract
Removal of introns from pre-messenger RNAs in eukaryotes is carried out by the spliceosome, an assembly of a large number of proteins and five small nuclear RNAs (snRNAs). We showed previously that an in vitro transcribed and assembled base-paired complex of U2 and U6 snRNA segments catalyzes a reaction that resembles the first step of splicing. Upon incubation with a short RNA oligonucleotide containing the consensus sequence of the pre-mRNA branch site, the U2/U6 complex catalyzed a reaction between the 2' OH of a bulged adenosine and a phosphate in the catalytically important AGC triad of U6, leading to the formation of an X-shaped product, RNA X, apparently linked by an unusual phosphotriester bond. Here we characterize this splicing-related reaction further, showing that RNA X formation is an equilibrium reaction, and that the low yield of the reaction likely reflects an unfavorable equilibrium coefficient. Consistent with a phosphotriester linkage, RNA X is highly alkali-sensitive, but only mildly acid-sensitive. We also show that mutations in the AGC sequence of U6 can have significant effects on RNA X formation, further extending the similarities between splicing and RNA X formation. We also demonstrate that pseudouridylation of U2 enhances RNA X formation, and that U6 snRNA purified from nuclear extracts is capable of forming RNA X. Our data suggest that the ability to form RNA X might be an intrinsic property of spliceosomal snRNAs.
Collapse
Affiliation(s)
- Saba Valadkhan
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | |
Collapse
|
28
|
Abstract
Branched RNA molecules with a 2',5'-phosphodiester linkage are important biochemical intermediates. Lariat RNA is a particular type of branched RNA that is formed during intron splicing in vivo. Synthesis of branched and lariat RNA is challenging, and there are few general approaches that are applicable in vitro. Here we report the identification of divalent metal-dependent deoxyribozymes (DNA enzymes) that synthesize branched and lariat RNA. In vitro selection was used to obtain deoxyribozymes that selectively join an internal RNA 2'-hydroxyl with a 5'-terminal triphosphate in a convenient "binding arms" format. At least 85% yield of 2',5'-branched RNA is obtained at 37 degrees C and 20 mM Mn2+, pH 7.5 in </=30 min, and for some DNA enzymes in as little as 2 min (kobs approximately 0.1-2 min-1). This represents a rate enhancement of up to 5 million-fold over the background reaction. Lariat RNA is also synthesized by the new deoxyribozymes, which have significant potential as generalizable reagents for the practical preparation of branched and lariat RNA. Because nucleic acid enzymes apparently create branched RNA in nature (e.g., group II introns and the spliceosome), the new deoxyribozymes are of substantial mechanistic interest as well as practical importance.
Collapse
Affiliation(s)
- Yangming Wang
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | | |
Collapse
|
29
|
Schäfer B, Gan L, Perlman PS. Reverse transcriptase and reverse splicing activities encoded by the mobile group II intron cobI1 of fission yeast mitochondrial DNA. J Mol Biol 2003; 329:191-206. [PMID: 12758069 DOI: 10.1016/s0022-2836(03)00441-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Mobile group II introns encode multidomain proteins with maturase activity involved in splicing and reverse transcriptase (RT) and (often) endonuclease activities involved in intron mobility. These activities are present in a ribonucleoprotein complex that contains the excised intron RNA and the intron-encoded protein. Here, we report biochemical studies of the protein encoded by the group IIA1 intron in the cob gene of fission yeast Schizosaccharomyces pombe mitochondria (cobI1). RNP particle fractions from the wild-type fission yeast strain with cobI1 in its mtDNA have RT activity even without adding an exogenous primer. Characterization of the cDNA products of such reactions showed a strong preference for excised intron RNA as template. Two main regions for initiation of cDNA synthesis were mapped within the intron, one near the DIVa putative high-affinity binding site for the intron-encoded protein and the other near domain VI. Adding exogenous primers complementary to cob exon 2 sequences near the intron/exon boundary stimulated RT activity but mainly for pre-mRNA rather than mRNA templates. Further in vitro experiments demonstrated that cobI1 RNA in RNP particle fractions can reverse splice into double-stranded DNA substrates containing the intron homing site. Target DNA primed reverse transcription was not detected unless a DNA target was used that was already nicked in the antisense strand of exon 2. This study shows that S.pombe cobI1 encodes RNP particles that have most of the biochemical activities needed for it to be a retroelement. Interestingly, it appears to lack an endonuclease activity, suggesting that the active homing exhibited by this intron in crosses may differ somewhat from that of the better-characterized introns.
Collapse
Affiliation(s)
- Bernd Schäfer
- Department of Biology IV (Microbiology), Aachen Technical University, Germany.
| | | | | |
Collapse
|
30
|
Toro N. Bacteria and Archaea Group II introns: additional mobile genetic elements in the environment. Environ Microbiol 2003; 5:143-51. [PMID: 12588294 DOI: 10.1046/j.1462-2920.2003.00398.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Self-splicing group II introns are present in the organelles of lower eukaryotes, plants and Bacteria and have been found recently in Archaea. It is generally accepted that group II introns originated in bacteria before spreading to mitochondria and chloroplasts. These introns are thought to be related to the progenitors of spliceosomal introns. Group II introns are also mobile genetic elements. In bacteria, they appear to spread using either other mobile genetic elements or low-expression regions as target sites. Bacteria and Archaea genome sequence annotations have revealed the diversity of group II intron classes and that they are involved in vertical and horizontal inheritance.
Collapse
Affiliation(s)
- Nicolás Toro
- Grupo de Ecología Genética, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008, Granada, Spain.
| |
Collapse
|
31
|
|
32
|
Abstract
Self-splicing introns are rarely found in bacteria and bacteriophages. They are classified into group I and II according to their structural features and splicing mechanisms. While the group I introns are occasionally found in protein-coding regions of phage genomes and in several tRNA genes of cyanobacteria and proteobacteria, they had not been found in protein-coding regions of bacterial genomes. Here we report a group I intron in the recA gene of Bacillus anthracis which was initially found by DNA sequencing as an intervening sequence (IVS). By using reverse transcriptase PCR, the IVS was shown to be removable from the recA precursor mRNA for RecA that was being translated in E. coli. The splicing was visualized in vitro with labeled free GTP, indicating that it is a group I intron, which is also implied by its predicted secondary structure. The RecA protein of B. anthracis expressed in E. coli was functional in its ability to complement a recA defect. When recA-negative E. coli cells were irradiated with UV, the Bacillus RecA reduced the UV susceptibility of the recA mutant, regardless of the presence of intron.
Collapse
Affiliation(s)
- Minsu Ko
- National Creative Research Initiative Center for Behavioral Genetics, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Yusong-Ku, Taejon 305-701, Republic of Korea
| | | | | |
Collapse
|
33
|
Mattick JS. Non-coding RNAs: the architects of eukaryotic complexity. EMBO Rep 2001; 2:986-91. [PMID: 11713189 PMCID: PMC1084129 DOI: 10.1093/embo-reports/kve230] [Citation(s) in RCA: 536] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2001] [Revised: 09/10/2001] [Accepted: 09/11/2001] [Indexed: 11/14/2022] Open
Abstract
Around 98% of all transcriptional output in humans is non-coding RNA. RNA-mediated gene regulation is widespread in higher eukaryotes and complex genetic phenomena like RNA interference, co-suppression, transgene silencing, imprinting, methylation, and possibly position-effect variegation and transvection, all involve intersecting pathways based on or connected to RNA signaling. I suggest that the central dogma is incomplete, and that intronic and other non-coding RNAs have evolved to comprise a second tier of gene expression in eukaryotes, which enables the integration and networking of complex suites of gene activity. Although proteins are the fundamental effectors of cellular function, the basis of eukaryotic complexity and phenotypic variation may lie primarily in a control architecture composed of a highly parallel system of trans-acting RNAs that relay state information required for the coordination and modulation of gene expression, via chromatin remodeling, RNA-DNA, RNA-RNA and RNA-protein interactions. This system has interesting and perhaps informative analogies with small world networks and dataflow computing.
Collapse
Affiliation(s)
- J S Mattick
- ARC Special Research Centre for Functional and Applied Genomics, Institute for Molecular Bioscience, University of Queensland, Brisbane 4072, Australia.
| |
Collapse
|
34
|
Doherty EA, Doudna JA. Ribozyme structures and mechanisms. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 2001; 30:457-75. [PMID: 11441810 DOI: 10.1146/annurev.biophys.30.1.457] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The past few years have seen exciting advances in understanding the structure and function of catalytic RNA. Crystal structures of several ribozymes have provided detailed insight into the folds of RNA molecules. Models of other biologically important RNAs have been constructed based on structural, phylogenetic, and biochemical data. However, many questions regarding the catalytic mechanisms of ribozymes remain. This review compares the structures and possible catalytic mechanisms of four small self-cleaving RNAs: the hammerhead, hairpin, hepatitis delta virus, and in vitro-selected lead-dependent ribozymes. The organization of these small catalysts is contrasted to that of larger ribozymes, such as the group I intron.
Collapse
Affiliation(s)
- E A Doherty
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA.
| | | |
Collapse
|
35
|
Abstract
Group II introns have attracted considerable attention as ribozymes, mobile genetic elements and possible progenitors of nuclear spliceosomal introns. Major advances in understanding their catalytic structure and dispersal strategies have recently come from several model mitochondrial and bacterial self-splicing introns. In Nature, this family of introns shows wide variation in both features and behaviour, and this review includes a focus on the diversity of evolutionary pathways taken.
Collapse
Affiliation(s)
- L Bonen
- Biology Dept, University of Ottawa, 30 Marie Curie St, Ottawa, Canada K1N 6N5.
| | | |
Collapse
|
36
|
Abstract
The past few years have seen exciting advances in understanding the structure and function of catalytic RNA. Crystal structures of several ribozymes have provided detailed insight into the folds of RNA molecules. Models of other biologically important RNAs have been constructed based on structural, phylogenetic, and biochemical data. However, many questions regarding the catalytic mechanisms of ribozymes remain. This review compares the structures and possible catalytic mechanisms of four small self-cleaving RNAs: the hammerhead, hairpin, hepatitis delta virus, and in vitro-selected lead-dependent ribozymes. The organization of these small catalysts is contrasted to that of larger ribozymes, such as the group I intron.
Collapse
Affiliation(s)
- E A Doherty
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA.
| | | |
Collapse
|
37
|
Abstract
Group II introns are large catalytic RNA molecules that act as mobile genetic elements. They were initially identified in the organelle genomes of lower eukaryotes and plants, and it has been suggested that they are the progenitors of nuclear spliceosomal introns. Group II self-splicing introns were shown to be present in bacteria in 1993, since when the various bacterial genome sequencing projects have led to a significant increase in the number of group II intron sequences present in databases. However, few of these introns have been characterized, and most were identified on the basis of their intron-encoded protein (IEP), with little data available concerning their ribozyme/RNA structure. Their frequency in prokaryotes is also unknown. We attempt here to provide a first comprehensive review of bacterial group II introns based on recent genome sequencing data and mechanistic studies.
Collapse
Affiliation(s)
- F Martínez-Abarca
- Grupo de Ecología Genética, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Profesor Albareda 1, 18008 Granada, Spain
| | | |
Collapse
|
38
|
Costa M, Michel F, Westhof E. A three-dimensional perspective on exon binding by a group II self-splicing intron. EMBO J 2000; 19:5007-18. [PMID: 10990464 PMCID: PMC314214 DOI: 10.1093/emboj/19.18.5007] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We have used chemical footprinting, kinetic dissection of reactions and comparative sequence analysis to show that in self-splicing introns belonging to subgroup IIB, the sites that bind the 5' and 3' exons are connected to one another by tertiary interactions. This unanticipated arrangement, which contrasts with the direct covalent linkage that prevails in the other major subdivision of group II (subgroup IIA), results in a unique three-dimensional architecture for the complex between the exons, their binding sites and intron domain V. A key feature of the modeled complex is the presence of several close contacts between domain V and one of the intron-exon pairings. These contacts, whose existence is supported by hydroxyl radical footprinting, provide a structural framework for the known role of domain V in catalysis and its recently demonstrated involvement in binding of the 5' exon.
Collapse
Affiliation(s)
- M Costa
- Center for Molecular Biology of RNA, Sinsheimer Laboratories, University of California at Santa Cruz, Santa Cruz, CA 95064, USA
| | | | | |
Collapse
|
39
|
Huang CC, Narita M, Yamagata T, Itoh Y, Endo G. Structure analysis of a class II transposon encoding the mercury resistance of the Gram-positive Bacterium bacillus megaterium MB1, a strain isolated from minamata bay, Japan. Gene 1999; 234:361-9. [PMID: 10395910 DOI: 10.1016/s0378-1119(99)00184-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
A unique transposon was found in the chromosome of Bacillus megaterium MB1, a Gram-positive bacterium isolated from mercury-polluted sediments of Minamata Bay, Japan. The transposon region of a 14.5kb DNA fragment was amplified by PCR using a single PCR primer designed from the nucleotide sequence of an inverted repeat of class II transposons. The molecular analysis revealed that the PCR-amplified DNA fragment encodes a transposition module similar to that of Tn21. The transposon also encodes a broad-spectrum mercury resistance region having a restriction endonuclease map identical to that of Bacillus cereus RC607, a strain isolated from Boston Harbor, USA. The result of a phylogenetic analysis of the amino acid sequence of putative resolvase of the transposon showed that the transposon is phylogenetically closer to the transposons of Gram-positive bacteria than those of Gram-negative bacteria. Besides the transposition module and mer operon, the transposon encodes a mobile genetic element of bacterial group II introns between the resolvase gene and mer operon. The intron, however, does not intervene in any exon gene. The discovery of this newly found combination of the complex mobile elements may offer a clue to understanding the horizontal dissemination of broad-spectrum mercury resistance among microbes.
Collapse
Affiliation(s)
- C C Huang
- Japan Science and Technology Corporation, 4-1-8 Honcho, Kawaguchi, Saitama-ken 332-0012, Japan
| | | | | | | | | |
Collapse
|
40
|
Abstract
Ribozymes, or catalytic RNAs, were discovered a little more than 15 years ago. They are found in the organelles of plants and lower eukaryotes, in amphibians, in prokaryotes, in bacteriophages, and in viroids and satellite viruses that infect plants. An example is also known of a ribozyme in hepatitis delta virus, a serious human pathogen. Additional ribozymes are bound to be found in the future, and it is tempting to regard the RNA component(s) of various ribonucleoprotein complexes as the catalytic engine, while the proteins serve as mere scaffolding--an unheard-of notion 15 years ago! In nature, ribozymes are involved in the processing of RNA precursors. However, all the characterized ribozymes have been converted, with some clever engineering, into RNA enzymes that can cleave or modify targeted RNAs (or even DNAs) without becoming altered themselves. While their success in vitro is unquestioned, ribozymes are increasingly used in vivo as valuable tools for studying and regulating gene expression. This review is intended as a brief introduction to the characteristics of the different identified ribozymes and their properties.
Collapse
Affiliation(s)
- N K Tanner
- Département de Biochimie Médicale, Centre Médical Universitaire, Geneva, Switzerland.
| |
Collapse
|
41
|
Costa M, Michel F. Tight binding of the 5' exon to domain I of a group II self-splicing intron requires completion of the intron active site. EMBO J 1999; 18:1025-37. [PMID: 10022844 PMCID: PMC1171194 DOI: 10.1093/emboj/18.4.1025] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Group II self-splicing requires the 5' exon to form base pairs with two stretches of intronic sequence (EBS1 and EBS2) which also bind the DNA target during retrotransposition of the intron. We have used dimethyl sulfate modification of bases to obtain footprints of the 5' exon on intron Pl.LSU/2 from the mitochondrion of the alga Pylaiella littoralis, as well as on truncated intron derivatives. Aside from the EBS sites, which are part of the same subdomain (ID) of ribozyme secondary structure, three distant adenines become either less or more sensitive to modification in the presence of the exon. Unexpectedly, one of these adenines in subdomain IC1 is footprinted only in the presence of the distal helix of domain V, which is involved in catalysis. While the loss of that footprint is accompanied by a 100-fold decrease in the affinity for the exon, both protection from modification and efficient binding can be restored by a separate domain V transcript, whose binding results in its own, concise footprint on domains I and III. Possible biological implications of the need for the group II active site to be complete in order to observe high-affinity binding of the 5' exon to domain I are discussed.
Collapse
Affiliation(s)
- M Costa
- Centre de Génétique Moléculaire du CNRS, 91190 Gif-sur-Yvette, France.
| | | |
Collapse
|
42
|
Famulok M, Jenne A. Catalysis Based on Nucleic Acid Structures. IMPLEMENTATION AND REDESIGN OF CATALYTIC FUNCTION IN BIOPOLYMERS 1999. [DOI: 10.1007/3-540-48990-8_4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
43
|
Schmidt U, Maue I, Lehmann K, Belcher SM, Stahl U, Perlman PS. Mutant alleles of the MRS2 gene of yeast nuclear DNA suppress mutations in the catalytic core of a mitochondrial group II intron. J Mol Biol 1998; 282:525-41. [PMID: 9737920 DOI: 10.1006/jmbi.1998.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous studies show that some yeast strains carrying point mutations of domain 5 that block splicing of a mitochondrial group II intron yield spontaneous revertants in which splicing is partially restored by dominant mutations of nuclear genes. Here we cloned and sequenced the suppressor allele of one such gene, and found it to be a missense mutation of the MRS2 gene (MRS2-L232F). The MRS2 gene was first implicated in group II intron splicing by the finding that overexpression of the wild-type gene weakly suppresses the splicing defect of a mutation of another intron. Tetrad analysis showed that independently isolated suppressors of two other domain 5 mutations are also allelles of the MRS2 gene and DNA sequencing identified a new missense mutation in each strain (MRS2-T230I and MRS2-L213M). All three suppressor mutations cause a temperature-sensitive respiration defect that is dominant negative in heterozygous diploids, but those strains splice the mutant intron at the elevated temperature. The three mutations are in a domain of the protein that is likely to be a helix-turn-helix region, so that effects of the mutations on protein-protein interactions may contribute to these phenotypes. These mutations suppress the splicing defect of many, but not all, of the available splicing defective mutations of aI5gamma, including mutations of several intron domains. Protein and RNA blot experiments show that the level of the protein encoded by the MRS2 gene, but not the mRNA, is elevated by these mutations. Interestingly, overexpression of the wild-type protein restores much lower levels of splicing than were obtained with similar elevated levels of the mutated Mrs2 proteins. The splicing phenotypes of these strains suggest a direct role for Mrs2 protein on group II intron splicing, but an indirect effect is not yet ruled out.
Collapse
Affiliation(s)
- U Schmidt
- Department of Microbiology and Genetics, University of Technology, Berlin, D-13355, Germany.
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
The number of RNA molecules that have novel catalytic activities has dramatically increased during the past two years. This ribozymic boom is not due to the discovery of additional examples of natural ribozymes but rather to the development of artificial ribozymes isolated by in vitro selection and evolution techniques. The structural and functional complexities of these artificial ribozymes, however, do not match those of the larger natural ribozymes. The understanding of both RNA structure and catalysis performed by natural and artificial ribozymes paves the way for the creation of RNA molecules that are able to efficiently catalyze more complex reactions.
Collapse
Affiliation(s)
- L Jaeger
- UPR 9002, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France.
| |
Collapse
|