1
|
Zheng Q, Luo X, Huang Y, Ke SJ, Liu ZJ. The Complete Mitogenome of Apostasia fujianica Y.Li & S.Lan and Comparative Analysis of Mitogenomes across Orchidaceae. Int J Mol Sci 2024; 25:8151. [PMID: 39125719 PMCID: PMC11311346 DOI: 10.3390/ijms25158151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Apostasia fujianica belongs to the genus Apostasia and is part of the basal lineage in the phylogenetic tree of the Orchidaceae. Currently, there are only ten reported complete mitochondrial genomes in orchids, which greatly hinders the understanding of mitochondrial evolution in Orchidaceae. Therefore, we assembled and annotated the mitochondrial genome of A. fujianica, which has a length of 573,612 bp and a GC content of 44.5%. We annotated a total of 44 genes, including 30 protein-coding genes, 12 tRNA genes, and two rRNA genes. We also performed relative synonymous codon usage (RSCU) analysis, repeat sequence analysis, intergenomic transfer (IGT) analysis, and Ka/Ks analysis for A. fujianica and conducted RNA editing site analysis on the mitochondrial genomes of eight orchid species. We found that most protein-coding genes are under purifying selection, but nad6 is under positive selection, with a Ka/Ks value of 1.35. During the IGT event in A. fujianica's mitogenome, the trnN-GUU, trnD-GUC, trnW-CCA, trnP-UGG, and psaJ genes were identified as having transferred from the plastid to the mitochondrion. Compared to other monocots, the family Orchidaceae appears to have lost the rpl10, rpl14, sdh3, and sdh4 genes. Additionally, to further elucidate the evolutionary relationships among monocots, we constructed a phylogenetic tree based on the complete mitogenomes of monocots. Our study results provide valuable data on the mitogenome of A. fujianica and lay the groundwork for future research on genetic variation, evolutionary relationships, and breeding of Orchidaceae.
Collapse
Affiliation(s)
- Qinyao Zheng
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaoting Luo
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ye Huang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shi-Jie Ke
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
2
|
Wee CC, Nor Muhammad NA, Subbiah VK, Arita M, Nakamura Y, Goh HH. Mitochondrial genome of Garcinia mangostana L. variety Mesta. Sci Rep 2022; 12:9480. [PMID: 35676406 PMCID: PMC9177603 DOI: 10.1038/s41598-022-13706-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/26/2022] [Indexed: 11/27/2022] Open
Abstract
Fruits of Garcinia mangostana L. (mangosteen) are rich in nutrients with xanthones found in the pericarp having great pharmaceutical potential. Mangosteen variety Mesta is only found in Malaysia, which tastes sweeter than the common Manggis variety in Southeast Asia. In this study, we report the complete mitogenome of G. mangostana L. variety Mesta with a total sequence length of 371,235 bp of which 1.7% could be of plastid origin. The overall GC content of the mitogenome is 43.8%, comprising 29 protein-coding genes, 3 rRNA genes, and 21 tRNA genes. Repeat and tandem repeat sequences accounted for 5.8% and 0.15% of the Mesta mitogenome, respectively. There are 333 predicted RNA-editing sites in Mesta mitogenome. These include the RNA-editing events that generated the start codon of nad1 gene and the stop codon of ccmFC gene. Phylogenomic analysis using both maximum likelihood and Bayesian analysis methods showed that the mitogenome of mangosteen variety Mesta was grouped under Malpighiales order. This is the first complete mitogenome from the Garcinia genus for future evolutionary studies.
Collapse
Affiliation(s)
- Ching-Ching Wee
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
- Biotechnology Research Institute, Universiti Malaysia Sabah, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Nor Azlan Nor Muhammad
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Vijay Kumar Subbiah
- Biotechnology Research Institute, Universiti Malaysia Sabah, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Masanori Arita
- National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
| | | | - Hoe-Han Goh
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia.
| |
Collapse
|
3
|
Dalla Costa TP, Silva MC, de Santana Lopes A, Gomes Pacheco T, de Oliveira JD, de Baura VA, Balsanelli E, Maltempi de Souza E, de Oliveira Pedrosa F, Rogalski M. The plastome of Melocactus glaucescens Buining & Brederoo reveals unique evolutionary features and loss of essential tRNA genes. PLANTA 2022; 255:57. [PMID: 35113261 DOI: 10.1007/s00425-022-03841-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
The plastome of Melocactus glaucescens shows unique rearrangements, IR expansion, and unprecedented gene losses in Cactaceae. Our data indicate tRNA import from the cytosol to the plastids in this species. Cactaceae represents one of the richest families in keystone species of arid and semiarid biomes. This family shows various specific features comprehending morphology, anatomy, and metabolism, which allow them to grow under unfavorable environmental conditions. The subfamily Cactoideae contains the most divergence of species, which are highly variable in growth habit and morphology. This subfamily includes the endangered species Melocactus glaucescens (tribe Cereeae), which is a cactus endemic to the biome Caatinga in Brazil. Aiming to analyze the plastid evolution and develop molecular markers, we sequenced and analyzed in detail the plastome of M. glaucescens. Our analyses revealed that the M. glaucescens plastome is the most divergent among the species of the family Cactaceae sequenced so far. We characterized here unique rearrangements, expanded IRs containing an unusual set of genes, and several gene losses. Some genes related to the ndh complex were lost during the plastome evolution, while others have lost their functionality. Additionally, the loss of three tRNA genes (trnA-UGC, trnV-UAC, and trnV-GAC) suggests tRNA import from the cytosol to the plastids in M. glaucescens. Moreover, we identified high gene divergence, several putative positive signatures, and possible unique RNA-editing sites. Furthermore, we mapped 169 SSRs in the plastome of M. glaucescens, which are helpful to access the genetic diversity of natural populations and conservation strategies. Finally, our data provide new insights into the evolution of plastids in Cactaceae, which is an outstanding lineage adapted to extreme environmental conditions and a notorious example of the atypical evolution of plastomes.
Collapse
Affiliation(s)
- Tanara P Dalla Costa
- Laboratório de Fisiologia Molecular de Plantas, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Maria C Silva
- Laboratório de Fisiologia Molecular de Plantas, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Amanda de Santana Lopes
- Laboratório de Fisiologia Molecular de Plantas, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Túlio Gomes Pacheco
- Laboratório de Fisiologia Molecular de Plantas, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - José D de Oliveira
- Laboratório de Fisiologia Molecular de Plantas, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Valter A de Baura
- Núcleo de Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Eduardo Balsanelli
- Núcleo de Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Emanuel Maltempi de Souza
- Núcleo de Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Fábio de Oliveira Pedrosa
- Núcleo de Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Marcelo Rogalski
- Laboratório de Fisiologia Molecular de Plantas, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil.
| |
Collapse
|
4
|
Tarasenko TA, Klimenko ES, Tarasenko VI, Koulintchenko MV, Dietrich A, Weber-Lotfi F, Konstantinov YM. Plant mitochondria import DNA via alternative membrane complexes involving various VDAC isoforms. Mitochondrion 2021; 60:43-58. [PMID: 34303006 DOI: 10.1016/j.mito.2021.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/17/2021] [Accepted: 07/19/2021] [Indexed: 12/23/2022]
Abstract
Mitochondria possess transport mechanisms for import of RNA and DNA. Based on import into isolated Solanum tuberosum mitochondria in the presence of competitors, inhibitors or effectors, we show that DNA fragments of different size classes are taken up into plant organelles through distinct channels. Alternative channels can also be activated according to the amount of DNA substrate of a given size class. Analyses of Arabidopsis thaliana knockout lines pointed out a differential involvement of individual voltage-dependent anion channel (VDAC) isoforms in the formation of alternative channels. We propose several outer and inner membrane proteins as VDAC partners in these pathways.
Collapse
Affiliation(s)
- Tatiana A Tarasenko
- Siberian Institute of Plant Physiology and Biochemistry, SB RAS, 132 Lermontov St, Irkutsk 664033, Russia
| | - Ekaterina S Klimenko
- Siberian Institute of Plant Physiology and Biochemistry, SB RAS, 132 Lermontov St, Irkutsk 664033, Russia
| | - Vladislav I Tarasenko
- Siberian Institute of Plant Physiology and Biochemistry, SB RAS, 132 Lermontov St, Irkutsk 664033, Russia
| | - Milana V Koulintchenko
- Siberian Institute of Plant Physiology and Biochemistry, SB RAS, 132 Lermontov St, Irkutsk 664033, Russia.
| | - André Dietrich
- Institut de Biologie Moléculaire des Plantes, CNRS and Université de Strasbourg, 12 Rue du Général Zimmer, 67084 Strasbourg, France
| | - Frédérique Weber-Lotfi
- Institut de Biologie Moléculaire des Plantes, CNRS and Université de Strasbourg, 12 Rue du Général Zimmer, 67084 Strasbourg, France
| | - Yuri M Konstantinov
- Siberian Institute of Plant Physiology and Biochemistry, SB RAS, 132 Lermontov St, Irkutsk 664033, Russia; Irkutsk State University, 1 Karl Marx St, Irkutsk 664003, Russia
| |
Collapse
|
5
|
Ehrlich R, Davyt M, López I, Chalar C, Marín M. On the Track of the Missing tRNA Genes: A Source of Non-Canonical Functions? Front Mol Biosci 2021; 8:643701. [PMID: 33796548 PMCID: PMC8007984 DOI: 10.3389/fmolb.2021.643701] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/02/2021] [Indexed: 01/31/2023] Open
Abstract
Cellular tRNAs appear today as a diverse population of informative macromolecules with conserved general elements ensuring essential common functions and different and distinctive features securing specific interactions and activities. Their differential expression and the variety of post-transcriptional modifications they are subject to, lead to the existence of complex repertoires of tRNA populations adjusted to defined cellular states. Despite the tRNA-coding genes redundancy in prokaryote and eukaryote genomes, it is surprising to note the absence of genes coding specific translational-active isoacceptors throughout the phylogeny. Through the analysis of different releases of tRNA databases, this review aims to provide a general summary about those “missing tRNA genes.” This absence refers to both tRNAs that are not encoded in the genome, as well as others that show critical sequence variations that would prevent their activity as canonical translation adaptor molecules. Notably, while a group of genes are universally missing, others are absent in particular kingdoms. Functional information available allows to hypothesize that the exclusion of isodecoding molecules would be linked to: 1) reduce ambiguities of signals that define the specificity of the interactions in which the tRNAs are involved; 2) ensure the adaptation of the translational apparatus to the cellular state; 3) divert particular tRNA variants from ribosomal protein synthesis to other cellular functions. This leads to consider the “missing tRNA genes” as a source of putative non-canonical tRNA functions and to broaden the concept of adapter molecules in ribosomal-dependent protein synthesis.
Collapse
Affiliation(s)
- Ricardo Ehrlich
- Biochemistry-Molecular Biology, Faculty of Science, Universidad de la República, Montevideo, Uruguay.,Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Marcos Davyt
- Biochemistry-Molecular Biology, Faculty of Science, Universidad de la República, Montevideo, Uruguay
| | - Ignacio López
- Biochemistry-Molecular Biology, Faculty of Science, Universidad de la República, Montevideo, Uruguay
| | - Cora Chalar
- Biochemistry-Molecular Biology, Faculty of Science, Universidad de la República, Montevideo, Uruguay
| | - Mónica Marín
- Biochemistry-Molecular Biology, Faculty of Science, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
6
|
Zhao N, Grover CE, Chen Z, Wendel JF, Hua J. Intergenomic gene transfer in diploid and allopolyploid Gossypium. BMC PLANT BIOLOGY 2019; 19:492. [PMID: 31718541 PMCID: PMC6852956 DOI: 10.1186/s12870-019-2041-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 09/20/2019] [Indexed: 05/03/2023]
Abstract
BACKGROUND Intergenomic gene transfer (IGT) between nuclear and organellar genomes is a common phenomenon during plant evolution. Gossypium is a useful model to evaluate the genomic consequences of IGT for both diploid and polyploid species. Here, we explore IGT among nuclear, mitochondrial, and plastid genomes of four cotton species, including two allopolyploids and their model diploid progenitors (genome donors, G. arboreum: A2 and G. raimondii: D5). RESULTS Extensive IGT events exist for both diploid and allotetraploid cotton (Gossypium) species, with the nuclear genome being the predominant recipient of transferred DNA followed by the mitochondrial genome. The nuclear genome has integrated 100 times more foreign sequences than the mitochondrial genome has in total length. In the nucleus, the integrated length of chloroplast DNA (cpDNA) was between 1.87 times (in diploids) to nearly four times (in allopolyploids) greater than that of mitochondrial DNA (mtDNA). In the mitochondrion, the length of nuclear DNA (nuDNA) was typically three times than that of cpDNA. Gossypium mitochondrial genomes integrated three nuclear retrotransposons and eight chloroplast tRNA genes, and incorporated chloroplast DNA prior to divergence between the diploids and allopolyploid formation. For mitochondrial chloroplast-tRNA genes, there were 2-6 bp conserved microhomologies flanking their insertion sites across distantly related genera, which increased to 10 bp microhomologies for the four cotton species studied. For organellar DNA sequences, there are source hotspots, e.g., the atp6-trnW intergenic region in the mitochondrion and the inverted repeat region in the chloroplast. Organellar DNAs in the nucleus were rarely expressed, and at low levels. Surprisingly, there was asymmetry in the survivorship of ancestral insertions following allopolyploidy, with most numts (nuclear mitochondrial insertions) decaying or being lost whereas most nupts (nuclear plastidial insertions) were retained. CONCLUSIONS This study characterized and compared intracellular transfer among nuclear and organellar genomes within two cultivated allopolyploids and their ancestral diploid cotton species. A striking asymmetry in the fate of IGTs in allopolyploid cotton was discovered, with numts being preferentially lost relative to nupts. Our results connect intergenomic gene transfer with allotetraploidy and provide new insight into intracellular genome evolution.
Collapse
Affiliation(s)
- Nan Zhao
- Laboratory of Cotton Genetics, Genomics and Breeding /Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education / Key Laboratory of Crop Heterosis and Utilization of Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
| | - Corrinne E. Grover
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA 50011 USA
| | - Zhiwen Chen
- Laboratory of Cotton Genetics, Genomics and Breeding /Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education / Key Laboratory of Crop Heterosis and Utilization of Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
| | - Jonathan F. Wendel
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA 50011 USA
| | - Jinping Hua
- Laboratory of Cotton Genetics, Genomics and Breeding /Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education / Key Laboratory of Crop Heterosis and Utilization of Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
7
|
Aguirre-Dugua X, Castellanos-Morales G, Paredes-Torres LM, Hernández-Rosales HS, Barrera-Redondo J, Sánchez-de la Vega G, Tapia-Aguirre F, Ruiz-Mondragón KY, Scheinvar E, Hernández P, Aguirre-Planter E, Montes-Hernández S, Lira-Saade R, Eguiarte LE. Evolutionary Dynamics of Transferred Sequences Between Organellar Genomes in Cucurbita. J Mol Evol 2019; 87:327-342. [PMID: 31701178 DOI: 10.1007/s00239-019-09916-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 10/28/2019] [Indexed: 12/12/2022]
Abstract
Twenty-nine DNA regions of plastid origin have been previously identified in the mitochondrial genome of Cucurbita pepo (pumpkin; Cucurbitaceae). Four of these regions harbor homolog sequences of rbcL, matK, rpl20-rps12 and trnL-trnF, which are widely used as molecular markers for phylogenetic and phylogeographic studies. We extracted the mitochondrial copies of these regions based on the mitochondrial genome of C. pepo and, along with published sequences for these plastome markers from 13 Cucurbita taxa, we performed phylogenetic molecular analyses to identify inter-organellar transfer events in the Cucurbita phylogeny and changes in their nucleotide substitution rates. Phylogenetic reconstruction and tree selection tests suggest that rpl20 and rbcL mitochondrial paralogs arose before Cucurbita diversification whereas the mitochondrial matK and trnL-trnF paralogs emerged most probably later, in the mesophytic Cucurbita clade. Nucleotide substitution rates increased one order of magnitude in all the mitochondrial paralogs compared to their original plastid sequences. Additionally, mitochondrial trnL-trnF sequences obtained by PCR from nine Cucurbita taxa revealed higher nucleotide diversity in the mitochondrial than in the plastid copies, likely related to the higher nucleotide substitution rates in the mitochondrial region and loss of functional constraints in its tRNA genes.
Collapse
Affiliation(s)
- Xitlali Aguirre-Dugua
- Unidad de Biotecnología Y Prototipos, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. De Los Barrios 1, Col. Los Reyes Iztacala, 54090, Tlalnepantla, Estado de México, Mexico.
| | - Gabriela Castellanos-Morales
- Departamento de Conservación de La Biodiversidad, El Colegio de La Frontera Sur, Unidad Villahermosa, Carretera Villahermosa-Reforma km. 15.5, Ranchería El Guineo 2a Sección, 86280, Villahermosa, Tabasco, Mexico
| | - Leslie M Paredes-Torres
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Circuito Exterior S/N Anexo Al Jardín Botánico, 04510, Ciudad de México, Mexico
| | - Helena S Hernández-Rosales
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Circuito Exterior S/N Anexo Al Jardín Botánico, 04510, Ciudad de México, Mexico
| | - Josué Barrera-Redondo
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Circuito Exterior S/N Anexo Al Jardín Botánico, 04510, Ciudad de México, Mexico
| | - Guillermo Sánchez-de la Vega
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Circuito Exterior S/N Anexo Al Jardín Botánico, 04510, Ciudad de México, Mexico
| | - Fernando Tapia-Aguirre
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Circuito Exterior S/N Anexo Al Jardín Botánico, 04510, Ciudad de México, Mexico
| | - Karen Y Ruiz-Mondragón
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Circuito Exterior S/N Anexo Al Jardín Botánico, 04510, Ciudad de México, Mexico
| | - Enrique Scheinvar
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Circuito Exterior S/N Anexo Al Jardín Botánico, 04510, Ciudad de México, Mexico
| | - Paulina Hernández
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Circuito Exterior S/N Anexo Al Jardín Botánico, 04510, Ciudad de México, Mexico
| | - Erika Aguirre-Planter
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Circuito Exterior S/N Anexo Al Jardín Botánico, 04510, Ciudad de México, Mexico
| | - Salvador Montes-Hernández
- Campo Experimental Bajío, Instituto Nacional de Investigaciones Forestales, Agrícolas Y Pecuarias (INIFAP), Km 6.5 Carretera Celaya-San Miguel de Allende, 38110, Celaya, Gto., Mexico
| | - Rafael Lira-Saade
- Unidad de Biotecnología Y Prototipos, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. De Los Barrios 1, Col. Los Reyes Iztacala, 54090, Tlalnepantla, Estado de México, Mexico.
| | - Luis E Eguiarte
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Circuito Exterior S/N Anexo Al Jardín Botánico, 04510, Ciudad de México, Mexico.
| |
Collapse
|
8
|
Abstract
RNA editing is a fundamental biochemical process relating to the modification of nucleotides in messenger RNAs of functional genes in cells. RNA editing leads to re-establishment of conserved amino acid residues for functional proteins in nuclei, chloroplasts, and mitochondria. Identification of RNA editing factors that contributes to target site recognition increases our understanding of RNA editing mechanisms. Significant progress has been made in recent years in RNA editing studies for both animal and plant cells. RNA editing in nuclei and mitochondria of animal cells and in chloroplast of plant cells has been extensively documented and reviewed. RNA editing has been also extensively documented on plant mitochondria. However, functional diversity of RNA editing factors in plant mitochondria is not overviewed. Here, we review the biological significance of RNA editing, recent progress on the molecular mechanisms of RNA editing process, and function diversity of editing factors in plant mitochondrial research. We will focus on: (1) pentatricopeptide repeat proteins in Arabidopsis and in crop plants; (2) the progress of RNA editing process in plant mitochondria; (3) RNA editing-related RNA splicing; (4) RNA editing associated flower development; (5) RNA editing modulated male sterile; (6) RNA editing-regulated cell signaling; and (7) RNA editing involving abiotic stress. Advances described in this review will be valuable in expanding our understanding in RNA editing. The diverse functions of RNA editing in plant mitochondria will shed light on the investigation of molecular mechanisms that underlies plant development and abiotic stress tolerance.
Collapse
|
9
|
Zhao N, Wang Y, Hua J. The Roles of Mitochondrion in Intergenomic Gene Transfer in Plants: A Source and a Pool. Int J Mol Sci 2018; 19:ijms19020547. [PMID: 29439501 PMCID: PMC5855769 DOI: 10.3390/ijms19020547] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/31/2018] [Accepted: 02/06/2018] [Indexed: 11/30/2022] Open
Abstract
Intergenomic gene transfer (IGT) is continuous in the evolutionary history of plants. In this field, most studies concentrate on a few related species. Here, we look at IGT from a broader evolutionary perspective, using 24 plants. We discover many IGT events by assessing the data from nuclear, mitochondrial and chloroplast genomes. Thus, we summarize the two roles of the mitochondrion: a source and a pool. That is, the mitochondrion gives massive sequences and integrates nuclear transposons and chloroplast tRNA genes. Though the directions are opposite, lots of likenesses emerge. First, mitochondrial gene transfer is pervasive in all 24 plants. Second, gene transfer is a single event of certain shared ancestors during evolutionary divergence. Third, sequence features of homologies vary for different purposes in the donor and recipient genomes. Finally, small repeats (or micro-homologies) contribute to gene transfer by mediating recombination in the recipient genome.
Collapse
Affiliation(s)
- Nan Zhao
- Laboratory of Cotton Genetics, Genomics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education, College of Agronomy and Biotechnology , China Agricultural University, Beijing 100193, China.
| | - Yumei Wang
- Institute of Cash Crops, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| | - Jinping Hua
- Laboratory of Cotton Genetics, Genomics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education, College of Agronomy and Biotechnology , China Agricultural University, Beijing 100193, China.
| |
Collapse
|
10
|
Abstract
Mitochondria are cytosolic organelles essential for generating energy and maintaining cell homeostasis. Despite their critical function, the handful of proteins expressed by the mitochondrial genome is insufficient to maintain mitochondrial structure or activity. Accordingly, mitochondrial metabolism is fully dependent on factors encoded by the nuclear DNA, including many proteins synthesized in the cytosol and imported into mitochondria via established mechanisms. However, there is growing evidence that mammalian mitochondria can also import cytosolic noncoding RNA via poorly understood processes. Here, we summarize our knowledge of mitochondrial RNA, discuss recent progress in understanding the molecular mechanisms and functional impact of RNA import into mitochondria, and identify rising challenges and opportunities in this rapidly evolving field.
Collapse
Affiliation(s)
- Kyoung Mi Kim
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Ji Heon Noh
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Kotb Abdelmohsen
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| |
Collapse
|
11
|
Ye N, Wang X, Li J, Bi C, Xu Y, Wu D, Ye Q. Assembly and comparative analysis of complete mitochondrial genome sequence of an economic plant Salix suchowensis. PeerJ 2017; 5:e3148. [PMID: 28367378 PMCID: PMC5374973 DOI: 10.7717/peerj.3148] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/05/2017] [Indexed: 11/20/2022] Open
Abstract
Willow is a widely used dioecious woody plant of Salicaceae family in China. Due to their high biomass yields, willows are promising sources for bioenergy crops. In this study, we assembled the complete mitochondrial (mt) genome sequence of S. suchowensis with the length of 644,437 bp using Roche-454 GS FLX Titanium sequencing technologies. Base composition of the S. suchowensis mt genome is A (27.43%), T (27.59%), C (22.34%), and G (22.64%), which shows a prevalent GC content with that of other angiosperms. This long circular mt genome encodes 58 unique genes (32 protein-coding genes, 23 tRNA genes and 3 rRNA genes), and 9 of the 32 protein-coding genes contain 17 introns. Through the phylogenetic analysis of 35 species based on 23 protein-coding genes, it is supported that Salix as a sister to Populus. With the detailed phylogenetic information and the identification of phylogenetic position, some ribosomal protein genes and succinate dehydrogenase genes are found usually lost during evolution. As a native shrub willow species, this worthwhile research of S. suchowensis mt genome will provide more desirable information for better understanding the genomic breeding and missing pieces of sex determination evolution in the future.
Collapse
Affiliation(s)
- Ning Ye
- College of Information Science and Technology, Nanjing Forestry University , Nanjing , Jiangsu , China
| | - Xuelin Wang
- College of Information Science and Technology, Nanjing Forestry University , Nanjing , Jiangsu , China
| | - Juan Li
- School of Electrical and Automatic Engineering, Nanjing Normal University , Nanjing , Jiangsu , China
| | - Changwei Bi
- School of Biological Science and Medical Engineering, Southeast University , Nanjing , Jiangsu , China
| | - Yiqing Xu
- College of Information Science and Technology, Nanjing Forestry University , Nanjing , Jiangsu , China
| | - Dongyang Wu
- College of Forest Resources and Environment, Nanjing Forestry University , Nanjing , Jiangsu , China
| | - Qiaolin Ye
- College of Information Science and Technology, Nanjing Forestry University , Nanjing , Jiangsu , China
| |
Collapse
|
12
|
Revisiting trends on mitochondrial mega-channels for the import of proteins and nucleic acids. J Bioenerg Biomembr 2016; 49:75-99. [DOI: 10.1007/s10863-016-9662-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 04/25/2016] [Indexed: 12/14/2022]
|
13
|
Tang M, Chen Z, Grover CE, Wang Y, Li S, Liu G, Ma Z, Wendel JF, Hua J. Rapid evolutionary divergence of Gossypium barbadense and G. hirsutum mitochondrial genomes. BMC Genomics 2015; 16:770. [PMID: 26459858 PMCID: PMC4603758 DOI: 10.1186/s12864-015-1988-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 10/06/2015] [Indexed: 11/10/2022] Open
Abstract
Background The mitochondrial genome from upland cotton, G. hirsutum, was previously sequenced. To elucidate the evolution of mitochondrial genomic diversity within a single genus, we sequenced the mitochondrial genome from Sea Island cotton (Gossypium barbadense L.). Methods Mitochondrial DNA from week-old etiolated seedlings was extracted from isolated organelles using discontinuous sucrose density gradient method. Mitochondrial genome was sequenced with Solexa using paired-end, 90 bp read. The clean reads were assembled into contigs using ABySS and finished via additional fosmid and BAC sequencing. Finally, the genome was annotated and analyzed using different softwares. Results The G. barbadense (Sea Island cotton) mitochondrial genome was fully sequenced (677,434-bp) and compared to the mitogenome of upland cotton. The G. barbadense mitochondrial DNA contains seven more genes than that of upland cotton, with a total of 40 protein coding genes (excluding possible pseudogenes), 6 rRNA genes, and 29 tRNA genes. Of these 75 genes, atp1, mttB, nad4, nad9, rrn5, rrn18, and trnD(GTC)-cp were each represented by two identical copies. A single 64 kb repeat was largely responsible for the 9 % difference in genome size between the two mtDNAs. Comparison of genome structures between the two mitochondrial genomes revealed 8 rearranged syntenic regions and several large repeats. The largest repeat was missing from the master chromosome in G. hirsutum. Both mitochondrial genomes contain a duplicated copy of rps3 (rps3-2) in conjunction with a duplication of repeated sequences. Phylogenetic and divergence considerations suggest that a 544-bp fragment of rps3 was transferred to the nuclear genome shortly after divergence of the A- and D- genome diploid cottons. Conclusion These results highlight the insights to the evolution of structural variation between Sea Island and upland cotton mitochondrial genomes. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1988-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mingyong Tang
- Department of Plant Genetics and Breeding /Key Laboratory of Crop Heterosis and Utilization of Ministry of Education /Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China.
| | - Zhiwen Chen
- Department of Plant Genetics and Breeding /Key Laboratory of Crop Heterosis and Utilization of Ministry of Education /Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China.
| | - Corrinne E Grover
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA50011, USA.
| | - Yumei Wang
- Institute of Cash Crops, Hubei Academy of Agricultural Sciences, Wuhan, 430064, Hubei, China.
| | - Shuangshuang Li
- Present address: Saskatchewan Cancer Agency, Division of Oncology, Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| | - Guozheng Liu
- Present address: Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstrasse 3, D-06466, Stadt, Seeland, Germany.
| | - Zhiying Ma
- College of Agronomy, Hebei Agricultural University, Baoding, 071001, Hebei, China.
| | - Jonathan F Wendel
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA50011, USA.
| | - Jinping Hua
- Department of Plant Genetics and Breeding /Key Laboratory of Crop Heterosis and Utilization of Ministry of Education /Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
14
|
Salinas-Giegé T, Giegé R, Giegé P. tRNA biology in mitochondria. Int J Mol Sci 2015; 16:4518-59. [PMID: 25734984 PMCID: PMC4394434 DOI: 10.3390/ijms16034518] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 01/23/2015] [Accepted: 01/29/2015] [Indexed: 01/23/2023] Open
Abstract
Mitochondria are the powerhouses of eukaryotic cells. They are considered as semi-autonomous because they have retained genomes inherited from their prokaryotic ancestor and host fully functional gene expression machineries. These organelles have attracted considerable attention because they combine bacterial-like traits with novel features that evolved in the host cell. Among them, mitochondria use many specific pathways to obtain complete and functional sets of tRNAs as required for translation. In some instances, tRNA genes have been partially or entirely transferred to the nucleus and mitochondria require precise import systems to attain their pool of tRNAs. Still, tRNA genes have also often been maintained in mitochondria. Their genetic arrangement is more diverse than previously envisaged. The expression and maturation of mitochondrial tRNAs often use specific enzymes that evolved during eukaryote history. For instance many mitochondria use a eukaryote-specific RNase P enzyme devoid of RNA. The structure itself of mitochondrial encoded tRNAs is also very diverse, as e.g., in Metazoan, where tRNAs often show non canonical or truncated structures. As a result, the translational machinery in mitochondria evolved adapted strategies to accommodate the peculiarities of these tRNAs, in particular simplified identity rules for their aminoacylation. Here, we review the specific features of tRNA biology in mitochondria from model species representing the major eukaryotic groups, with an emphasis on recent research on tRNA import, maturation and aminoacylation.
Collapse
Affiliation(s)
- Thalia Salinas-Giegé
- Institut de Biologie Moléculaire des Plantes, CNRS and Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg Cedex, France.
| | - Richard Giegé
- Institut de Biologie Moléculaire et Cellulaire, CNRS and Université de Strasbourg, 15 rue René Descartes, F-67084 Strasbourg Cedex, France.
| | - Philippe Giegé
- Institut de Biologie Moléculaire des Plantes, CNRS and Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg Cedex, France.
| |
Collapse
|
15
|
Sloan DB, Wu Z. History of plastid DNA insertions reveals weak deletion and at mutation biases in angiosperm mitochondrial genomes. Genome Biol Evol 2014; 6:3210-21. [PMID: 25416619 PMCID: PMC4986453 DOI: 10.1093/gbe/evu253] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Angiosperm mitochondrial genomes exhibit many unusual properties, including heterogeneous nucleotide composition and exceptionally large and variable genome sizes. Determining the role of nonadaptive mechanisms such as mutation bias in shaping the molecular evolution of these unique genomes has proven challenging because their dynamic structures generally prevent identification of homologous intergenic sequences for comparative analyses. Here, we report an analysis of angiosperm mitochondrial DNA sequences that are derived from inserted plastid DNA (mtpts). The availability of numerous completely sequenced plastid genomes allows us to infer the evolutionary history of these insertions, including the specific nucleotide substitutions and indels that have occurred because their incorporation into the mitochondrial genome. Our analysis confirmed that many mtpts have a complex history, including frequent gene conversion and multiple examples of horizontal transfer between divergent angiosperm lineages. Nevertheless, it is clear that the majority of extant mtpt sequence in angiosperms is the product of recent transfer (or gene conversion) and is subject to rapid loss/deterioration, suggesting that most mtpts are evolving relatively free from functional constraint. The evolution of mtpt sequences reveals a pattern of biased mutational input in angiosperm mitochondrial genomes, including an excess of small deletions over insertions and a skew toward nucleotide substitutions that increase AT content. However, these mutation biases are far weaker than have been observed in many other cellular genomes, providing insight into some of the notable features of angiosperm mitochondrial architecture, including the retention of large intergenic regions and the relatively neutral GC content found in these regions.
Collapse
Affiliation(s)
- Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins
| | - Zhiqiang Wu
- Department of Biology, Colorado State University, Fort Collins
| |
Collapse
|
16
|
Liu G, Cao D, Li S, Su A, Geng J, Grover CE, Hu S, Hua J. The complete mitochondrial genome of Gossypium hirsutum and evolutionary analysis of higher plant mitochondrial genomes. PLoS One 2013; 8:e69476. [PMID: 23940520 PMCID: PMC3734230 DOI: 10.1371/journal.pone.0069476] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 06/10/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Mitochondria are the main manufacturers of cellular ATP in eukaryotes. The plant mitochondrial genome contains large number of foreign DNA and repeated sequences undergone frequently intramolecular recombination. Upland Cotton (Gossypium hirsutum L.) is one of the main natural fiber crops and also an important oil-producing plant in the world. Sequencing of the cotton mitochondrial (mt) genome could be helpful for the evolution research of plant mt genomes. METHODOLOGY/PRINCIPAL FINDINGS We utilized 454 technology for sequencing and combined with Fosmid library of the Gossypium hirsutum mt genome screening and positive clones sequencing and conducted a series of evolutionary analysis on Cycas taitungensis and 24 angiosperms mt genomes. After data assembling and contigs joining, the complete mitochondrial genome sequence of G. hirsutum was obtained. The completed G.hirsutum mt genome is 621,884 bp in length, and contained 68 genes, including 35 protein genes, four rRNA genes and 29 tRNA genes. Five gene clusters are found conserved in all plant mt genomes; one and four clusters are specifically conserved in monocots and dicots, respectively. Homologous sequences are distributed along the plant mt genomes and species closely related share the most homologous sequences. For species that have both mt and chloroplast genome sequences available, we checked the location of cp-like migration and found several fragments closely linked with mitochondrial genes. CONCLUSION The G. hirsutum mt genome possesses most of the common characters of higher plant mt genomes. The existence of syntenic gene clusters, as well as the conservation of some intergenic sequences and genic content among the plant mt genomes suggest that evolution of mt genomes is consistent with plant taxonomy but independent among different species.
Collapse
Affiliation(s)
- Guozheng Liu
- Department of Plant Genetics and Breeding, College of Agronomy and Biotechnology, Key Laboratory of Crop Heterosis and Utilization of Ministry of Education, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Dandan Cao
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Shuangshuang Li
- Department of Plant Genetics and Breeding, College of Agronomy and Biotechnology, Key Laboratory of Crop Heterosis and Utilization of Ministry of Education, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Aiguo Su
- Department of Plant Genetics and Breeding, College of Agronomy and Biotechnology, Key Laboratory of Crop Heterosis and Utilization of Ministry of Education, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Jianing Geng
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Corrinne E. Grover
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, United States of America
| | - Songnian Hu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Jinping Hua
- Department of Plant Genetics and Breeding, College of Agronomy and Biotechnology, Key Laboratory of Crop Heterosis and Utilization of Ministry of Education, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| |
Collapse
|
17
|
Islam MS, Studer B, Byrne SL, Farrell JD, Panitz F, Bendixen C, Møller IM, Asp T. The genome and transcriptome of perennial ryegrass mitochondria. BMC Genomics 2013; 14:202. [PMID: 23521852 PMCID: PMC3664089 DOI: 10.1186/1471-2164-14-202] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 03/05/2013] [Indexed: 01/05/2023] Open
Abstract
Background Perennial ryegrass (Lolium perenne L.) is one of the most important forage and turf grass species of temperate regions worldwide. Its mitochondrial genome is inherited maternally and contains genes that can influence traits of agricultural importance. Moreover, the DNA sequence of mitochondrial genomes has been established and compared for a large number of species in order to characterize evolutionary relationships. Therefore, it is crucial to understand the organization of the mitochondrial genome and how it varies between and within species. Here, we report the first de novo assembly and annotation of the complete mitochondrial genome from perennial ryegrass. Results Intact mitochondria from perennial ryegrass leaves were isolated and used for mtDNA extraction. The mitochondrial genome was sequenced to a 167-fold coverage using the Roche 454 GS-FLX Titanium platform, and assembled into a circular master molecule of 678,580 bp. A total of 34 proteins, 14 tRNAs and 3 rRNAs are encoded by the mitochondrial genome, giving a total gene space of 48,723 bp (7.2%). Moreover, we identified 149 open reading frames larger than 300 bp and covering 67,410 bp (9.93%), 250 SSRs, 29 tandem repeats, 5 pairs of large repeats, and 96 pairs of short inverted repeats. The genes encoding subunits of the respiratory complexes – nad1 to nad9, cob, cox1 to cox3 and atp1 to atp9 – all showed high expression levels both in absolute numbers and after normalization. Conclusions The circular master molecule of the mitochondrial genome from perennial ryegrass presented here constitutes an important tool for future attempts to compare mitochondrial genomes within and between grass species. Our results also demonstrate that mitochondria of perennial ryegrass contain genes crucial for energy production that are well conserved in the mitochondrial genome of monocotyledonous species. The expression analysis gave us first insights into the transcriptome of these mitochondrial genes in perennial ryegrass.
Collapse
|
18
|
Seligmann H. Systematic asymmetric nucleotide exchanges produce human mitochondrial RNAs cryptically encoding for overlapping protein coding genes. J Theor Biol 2013; 324:1-20. [PMID: 23416187 DOI: 10.1016/j.jtbi.2013.01.024] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 01/26/2013] [Accepted: 01/28/2013] [Indexed: 11/19/2022]
Abstract
GenBank's EST database includes RNAs matching exactly human mitochondrial sequences assuming systematic asymmetric nucleotide exchange-transcription along exchange rules: A→G→C→U/T→A (12 ESTs), A→U/T→C→G→A (4 ESTs), C→G→U/T→C (3 ESTs), and A→C→G→U/T→A (1 EST), no RNAs correspond to other potential asymmetric exchange rules. Hypothetical polypeptides translated from nucleotide-exchanged human mitochondrial protein coding genes align with numerous GenBank proteins, predicted secondary structures resemble their putative GenBank homologue's. Two independent methods designed to detect overlapping genes (one based on nucleotide contents analyses in relation to replicative deamination gradients at third codon positions, and circular code analyses of codon contents based on frame redundancy), confirm nucleotide-exchange-encrypted overlapping genes. Methods converge on which genes are most probably active, and which not, and this for the various exchange rules. Mean EST lengths produced by different nucleotide exchanges are proportional to (a) extents that various bioinformatics analyses confirm the protein coding status of putative overlapping genes; (b) known kinetic chemistry parameters of the corresponding nucleotide substitutions by the human mitochondrial DNA polymerase gamma (nucleotide DNA misinsertion rates); (c) stop codon densities in predicted overlapping genes (stop codon readthrough and exchanging polymerization regulate gene expression by counterbalancing each other). Numerous rarely expressed proteins seem encoded within regular mitochondrial genes through asymmetric nucleotide exchange, avoiding lengthening genomes. Intersecting evidence between several independent approaches confirms the working hypothesis status of gene encryption by systematic nucleotide exchanges.
Collapse
Affiliation(s)
- Hervé Seligmann
- National Natural History Museum Collections, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel.
| |
Collapse
|
19
|
Niazi AK, Mileshina D, Cosset A, Val R, Weber-Lotfi F, Dietrich A. Targeting nucleic acids into mitochondria: progress and prospects. Mitochondrion 2012; 13:548-58. [PMID: 22609422 DOI: 10.1016/j.mito.2012.05.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 05/14/2012] [Indexed: 12/18/2022]
Abstract
Given the essential functions of these organelles in cell homeostasis, their involvement in incurable diseases and their potential in biotechnological applications, genetic transformation of mitochondria has been a long pursued goal that has only been reached in a couple of unicellular organisms. The challenge led scientists to explore a wealth of different strategies for mitochondrial delivery of DNA or RNA in living cells. These are the subject of the present review. Targeting DNA into the organelles currently shows promise but remarkably a number of alternative approaches based on RNA trafficking were also established and will bring as well major contributions.
Collapse
Affiliation(s)
- Adnan Khan Niazi
- Institut de Biologie Moléculaire des Plantes, CNRS and Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France
| | | | | | | | | | | |
Collapse
|
20
|
Sepuri NBV, Gorla M, King MP. Mitochondrial lysyl-tRNA synthetase independent import of tRNA lysine into yeast mitochondria. PLoS One 2012; 7:e35321. [PMID: 22539966 PMCID: PMC3335127 DOI: 10.1371/journal.pone.0035321] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 03/15/2012] [Indexed: 11/25/2022] Open
Abstract
Aminoacyl tRNA synthetases play a central role in protein synthesis by charging tRNAs with amino acids. Yeast mitochondrial lysyl tRNA synthetase (Msk1), in addition to the aminoacylation of mitochondrial tRNA, also functions as a chaperone to facilitate the import of cytosolic lysyl tRNA. In this report, we show that human mitochondrial Kars (lysyl tRNA synthetase) can complement the growth defect associated with the loss of yeast Msk1 and can additionally facilitate the in vitro import of tRNA into mitochondria. Surprisingly, the import of lysyl tRNA can occur independent of Msk1 in vivo. This suggests that an alternative mechanism is present for the import of lysyl tRNA in yeast.
Collapse
Affiliation(s)
- Naresh Babu V. Sepuri
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Andhra Pradesh, India
- Department of Biochemistry and Molecular Pharmacology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- * E-mail: (NBVS); (MK)
| | - Madhavi Gorla
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Andhra Pradesh, India
| | - Michael P. King
- Department of Biochemistry and Molecular Pharmacology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- * E-mail: (NBVS); (MK)
| |
Collapse
|
21
|
Wicke S, Schneeweiss GM, dePamphilis CW, Müller KF, Quandt D. The evolution of the plastid chromosome in land plants: gene content, gene order, gene function. PLANT MOLECULAR BIOLOGY 2011; 76:273-97. [PMID: 21424877 PMCID: PMC3104136 DOI: 10.1007/s11103-011-9762-4] [Citation(s) in RCA: 882] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2010] [Accepted: 02/19/2011] [Indexed: 05/18/2023]
Abstract
This review bridges functional and evolutionary aspects of plastid chromosome architecture in land plants and their putative ancestors. We provide an overview on the structure and composition of the plastid genome of land plants as well as the functions of its genes in an explicit phylogenetic and evolutionary context. We will discuss the architecture of land plant plastid chromosomes, including gene content and synteny across land plants. Moreover, we will explore the functions and roles of plastid encoded genes in metabolism and their evolutionary importance regarding gene retention and conservation. We suggest that the slow mode at which the plastome typically evolves is likely to be influenced by a combination of different molecular mechanisms. These include the organization of plastid genes in operons, the usually uniparental mode of plastid inheritance, the activity of highly effective repair mechanisms as well as the rarity of plastid fusion. Nevertheless, structurally rearranged plastomes can be found in several unrelated lineages (e.g. ferns, Pinaceae, multiple angiosperm families). Rearrangements and gene losses seem to correlate with an unusual mode of plastid transmission, abundance of repeats, or a heterotrophic lifestyle (parasites or myco-heterotrophs). While only a few functional gene gains and more frequent gene losses have been inferred for land plants, the plastid Ndh complex is one example of multiple independent gene losses and will be discussed in detail. Patterns of ndh-gene loss and functional analyses indicate that these losses are usually found in plant groups with a certain degree of heterotrophy, might rendering plastid encoded Ndh1 subunits dispensable.
Collapse
Affiliation(s)
- Susann Wicke
- Department of Biogeography and Botanical Garden, University of Vienna, Rennweg 14, 1030 Vienna, Austria.
| | | | | | | | | |
Collapse
|
22
|
Sloan DB, Alverson AJ, Storchová H, Palmer JD, Taylor DR. Extensive loss of translational genes in the structurally dynamic mitochondrial genome of the angiosperm Silene latifolia. BMC Evol Biol 2010; 10:274. [PMID: 20831793 PMCID: PMC2942850 DOI: 10.1186/1471-2148-10-274] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 09/10/2010] [Indexed: 11/10/2022] Open
Abstract
Background Mitochondrial gene loss and functional transfer to the nucleus is an ongoing process in many lineages of plants, resulting in substantial variation across species in mitochondrial gene content. The Caryophyllaceae represents one lineage that has experienced a particularly high rate of mitochondrial gene loss relative to other angiosperms. Results In this study, we report the first complete mitochondrial genome sequence from a member of this family, Silene latifolia. The genome can be mapped as a 253,413 bp circle, but its structure is complicated by a large repeated region that is present in 6 copies. Active recombination among these copies produces a suite of alternative genome configurations that appear to be at or near "recombinational equilibrium". The genome contains the fewest genes of any angiosperm mitochondrial genome sequenced to date, with intact copies of only 25 of the 41 protein genes inferred to be present in the common ancestor of angiosperms. As observed more broadly in angiosperms, ribosomal proteins have been especially prone to gene loss in the S. latifolia lineage. The genome has also experienced a major reduction in tRNA gene content, including loss of functional tRNAs of both native and chloroplast origin. Even assuming expanded wobble-pairing rules, the mitochondrial genome can support translation of only 17 of the 61 sense codons, which code for only 9 of the 20 amino acids. In addition, genes encoding 18S and, especially, 5S rRNA exhibit exceptional sequence divergence relative to other plants. Divergence in one region of 18S rRNA appears to be the result of a gene conversion event, in which recombination with a homologous gene of chloroplast origin led to the complete replacement of a helix in this ribosomal RNA. Conclusions These findings suggest a markedly expanded role for nuclear gene products in the translation of mitochondrial genes in S. latifolia and raise the possibility of altered selective constraints operating on the mitochondrial translational apparatus in this lineage.
Collapse
Affiliation(s)
- Daniel B Sloan
- Department of Biology, University of Virginia, Charlottesville, VA, USA.
| | | | | | | | | |
Collapse
|
23
|
Alverson AJ, Wei X, Rice DW, Stern DB, Barry K, Palmer JD. Insights into the evolution of mitochondrial genome size from complete sequences of Citrullus lanatus and Cucurbita pepo (Cucurbitaceae). Mol Biol Evol 2010; 27:1436-48. [PMID: 20118192 DOI: 10.1093/molbev/msq029] [Citation(s) in RCA: 340] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The mitochondrial genomes of seed plants are unusually large and vary in size by at least an order of magnitude. Much of this variation occurs within a single family, the Cucurbitaceae, whose genomes range from an estimated 390 to 2,900 kb in size. We sequenced the mitochondrial genomes of Citrullus lanatus (watermelon: 379,236 nt) and Cucurbita pepo (zucchini: 982,833 nt)--the two smallest characterized cucurbit mitochondrial genomes--and determined their RNA editing content. The relatively compact Citrullus mitochondrial genome actually contains more and longer genes and introns, longer segmental duplications, and more discernibly nuclear-derived DNA. The large size of the Cucurbita mitochondrial genome reflects the accumulation of unprecedented amounts of both chloroplast sequences (>113 kb) and short repeated sequences (>370 kb). A low mutation rate has been hypothesized to underlie increases in both genome size and RNA editing frequency in plant mitochondria. However, despite its much larger genome, Cucurbita has a significantly higher synonymous substitution rate (and presumably mutation rate) than Citrullus but comparable levels of RNA editing. The evolution of mutation rate, genome size, and RNA editing are apparently decoupled in Cucurbitaceae, reflecting either simple stochastic variation or governance by different factors.
Collapse
|
24
|
Iida K, Jin H, Zhu JK. Bioinformatics analysis suggests base modifications of tRNAs and miRNAs in Arabidopsis thaliana. BMC Genomics 2009; 10:155. [PMID: 19358740 PMCID: PMC2674459 DOI: 10.1186/1471-2164-10-155] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Accepted: 04/09/2009] [Indexed: 11/10/2022] Open
Abstract
Background Modifications of RNA bases have been found in some mRNAs and non-coding RNAs including rRNAs, tRNAs, and snRNAs, where modified bases are important for RNA function. Little is known about RNA base modifications in Arabidopsis thaliana. Results In the current work, we carried out a bioinformatics analysis of RNA base modifications in tRNAs and miRNAs using large numbers of cDNA sequences of small RNAs (sRNAs) generated with the 454 technology and the massively parallel signature sequencing (MPSS) method. We looked for sRNAs that map to the genome sequence with one-base mismatch (OMM), which indicate candidate modified nucleotides. We obtained 1,187 sites with possible RNA base modifications supported by both 454 and MPSS sequences. Seven hundred and three of these sites were within tRNA loci. Nucleotide substitutions were frequently located in the T arm (substitutions from A to U or G), upstream of the D arm (from G to C, U, or A), and downstream of the D arm (from G to U). The positions of major substitution sites corresponded with the following known RNA base modifications in tRNAs: N1-methyladenosine (m1A), N2-methylguanosine (m2G), and N2-N2-methylguanosine (m22G). Conclusion These results indicate that our bioinformatics method successfully detected modified nucleotides in tRNAs. Using this method, we also found 147 substitution sites in miRNA loci. As with tRNAs, substitutions from A to U or G and from G to C, U, or A were common, suggesting that base modifications might be similar in tRNAs and miRNAs. We suggest that miRNAs contain modified bases and such modifications might be important for miRNA maturation and/or function.
Collapse
Affiliation(s)
- Kei Iida
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA.
| | | | | |
Collapse
|
25
|
Millar AH, Small ID, Day DA, Whelan J. Mitochondrial biogenesis and function in Arabidopsis. THE ARABIDOPSIS BOOK 2008; 6:e0111. [PMID: 22303236 DOI: 10.1199/tab.0105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Mitochondria represent the powerhouse of cells through their synthesis of ATP. However, understanding the role of mitochondria in the growth and development of plants will rely on a much deeper appreciation of the complexity of this organelle. Arabidopsis research has provided clear identification of mitochondrial components, allowed wide-scale analysis of gene expression, and has aided reverse genetic manipulation to test the impact of mitochondrial component loss on plant function. Forward genetics in Arabidopsis has identified mitochondrial involvement in mutations with notable impacts on plant metabolism, growth and development. Here we consider the evidence for components involved in mitochondria biogenesis, metabolism and signalling to the nucleus.
Collapse
|
26
|
Millar AH, Small ID, Day DA, Whelan J. Mitochondrial biogenesis and function in Arabidopsis. THE ARABIDOPSIS BOOK 2008; 6:e0111. [PMID: 22303236 PMCID: PMC3243404 DOI: 10.1199/tab.0111] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Mitochondria represent the powerhouse of cells through their synthesis of ATP. However, understanding the role of mitochondria in the growth and development of plants will rely on a much deeper appreciation of the complexity of this organelle. Arabidopsis research has provided clear identification of mitochondrial components, allowed wide-scale analysis of gene expression, and has aided reverse genetic manipulation to test the impact of mitochondrial component loss on plant function. Forward genetics in Arabidopsis has identified mitochondrial involvement in mutations with notable impacts on plant metabolism, growth and development. Here we consider the evidence for components involved in mitochondria biogenesis, metabolism and signalling to the nucleus.
Collapse
Affiliation(s)
- A. Harvey Millar
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009
| | - Ian D. Small
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009
| | - David A. Day
- School of Biological Sciences, The University of Sydney 2006, NSW, Australia
| | - James Whelan
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009
| |
Collapse
|
27
|
Bouzaidi-Tiali N, Aeby E, Charrière F, Pusnik M, Schneider A. Elongation factor 1a mediates the specificity of mitochondrial tRNA import in T. brucei. EMBO J 2007; 26:4302-12. [PMID: 17853889 PMCID: PMC2034667 DOI: 10.1038/sj.emboj.7601857] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Accepted: 08/22/2007] [Indexed: 11/09/2022] Open
Abstract
Mitochondrial tRNA import is widespread in eukaryotes. Yet, the mechanism that determines its specificity is unknown. Previous in vivo experiments using the tRNAs(Met), tRNA(Ile) and tRNA(Lys) have suggested that the T-stem nucleotide pair 51:63 is the main localization determinant of tRNAs in Trypanosoma brucei. In the cytosol-specific initiator tRNA(Met), this nucleotide pair is identical to the main antideterminant that prevents interaction with cytosolic elongation factor (eEF1a). Here we show that ablation of cytosolic eEF1a, but not of initiation factor 2, inhibits mitochondrial import of newly synthesized tRNAs well before translation or growth is affected. tRNA(Sec) is the only other cytosol-specific tRNA in T. brucei. It has its own elongation factor and does not bind eEF1a. However, a mutant of the tRNA(Sec) expected to bind to eEF1a is imported into mitochondria. This import requires eEF1a and aminoacylation of the tRNA. Thus, for a tRNA to be imported into the mitochondrion of T. brucei, it needs to bind eEF1a, and it is this interaction that mediates the import specificity.
Collapse
Affiliation(s)
- Nabile Bouzaidi-Tiali
- Department of Biology/Cell and Developmental Biology, University of Fribourg, Chemin du Musée 10, Fribourg, Switzerland
| | - Eric Aeby
- Department of Biology/Cell and Developmental Biology, University of Fribourg, Chemin du Musée 10, Fribourg, Switzerland
| | - Fabien Charrière
- Department of Biology/Cell and Developmental Biology, University of Fribourg, Chemin du Musée 10, Fribourg, Switzerland
| | - Mascha Pusnik
- Department of Biology/Cell and Developmental Biology, University of Fribourg, Chemin du Musée 10, Fribourg, Switzerland
| | - André Schneider
- Department of Biology/Cell and Developmental Biology, University of Fribourg, Chemin du Musée 10, Fribourg, Switzerland
- Department of Biology, University of Fribourg, Chemin du Musee 10, Fribourg 1700, Switzerland. Tel.: +41 26 300 8877; Fax: +41 26 300 9741; E-mail:
| |
Collapse
|
28
|
Kamenski PA, Vinogradova EN, Krasheninnikov IA, Tarassov IA. Directed import of macromolecules into mitochondria. Mol Biol 2007. [DOI: 10.1134/s0026893307020021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Placido A, Damiano F, Losacco M, Rainaldi G, De Benedetto C, Gallerani R. Variable structures of promoters regulating transcription of cp-like tRNA genes and of some native genes on the sunflower mitochondrial genome. Gene 2006; 371:93-101. [PMID: 16520008 DOI: 10.1016/j.gene.2005.11.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2005] [Revised: 11/02/2005] [Accepted: 11/17/2005] [Indexed: 11/16/2022]
Abstract
Promoter regions regulating the transcription of all cp-like tRNA genes encoded by the sunflower chondriome have been identified. Some of these genes are part of clusters where the first gene is a typical mitochondrial isoform. Promoters regulating the transcription of single cp-like tRNA genes have a variable structure whereas those regulating the transcription of native genes or clusters with typical mitochondrial genes in the first position conform to a similar common structure. The variability of promoter regions described in this paper could be the result of modifications of regions having, at the moment of the cpDNA insertion event, only minimal structural features as promoters.
Collapse
Affiliation(s)
- Antonio Placido
- Dipartimento di Biochimica e Biologia Molecolare, Università di Bari, via Orabona 4, 70126 Bari, Italy
| | | | | | | | | | | |
Collapse
|
30
|
Biosynthesis and function of tRNA wobble modifications. FINE-TUNING OF RNA FUNCTIONS BY MODIFICATION AND EDITING 2005. [DOI: 10.1007/b106361] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
31
|
Clifton SW, Minx P, Fauron CMR, Gibson M, Allen JO, Sun H, Thompson M, Barbazuk WB, Kanuganti S, Tayloe C, Meyer L, Wilson RK, Newton KJ. Sequence and comparative analysis of the maize NB mitochondrial genome. PLANT PHYSIOLOGY 2004; 136:3486-503. [PMID: 15542500 PMCID: PMC527149 DOI: 10.1104/pp.104.044602] [Citation(s) in RCA: 210] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2004] [Revised: 08/25/2004] [Accepted: 08/25/2004] [Indexed: 05/18/2023]
Abstract
The NB mitochondrial genome found in most fertile varieties of commercial maize (Zea mays subsp. mays) was sequenced. The 569,630-bp genome maps as a circle containing 58 identified genes encoding 33 known proteins, 3 ribosomal RNAs, and 21 tRNAs that recognize 14 amino acids. Among the 22 group II introns identified, 7 are trans-spliced. There are 121 open reading frames (ORFs) of at least 300 bp, only 3 of which exist in the mitochondrial genome of rice (Oryza sativa). In total, the identified mitochondrial genes, pseudogenes, ORFs, and cis-spliced introns extend over 127,555 bp (22.39%) of the genome. Integrated plastid DNA accounts for an additional 25,281 bp (4.44%) of the mitochondrial DNA, and phylogenetic analyses raise the possibility that copy correction with DNA from the plastid is an ongoing process. Although the genome contains six pairs of large repeats that cover 17.35% of the genome, small repeats (20-500 bp) account for only 5.59%, and transposable element sequences are extremely rare. MultiPip alignments show that maize mitochondrial DNA has little sequence similarity with other plant mitochondrial genomes, including that of rice, outside of the known functional genes. After eliminating genes, introns, ORFs, and plastid-derived DNA, nearly three-fourths of the maize NB mitochondrial genome is still of unknown origin and function.
Collapse
MESH Headings
- Base Sequence
- Chromosome Mapping
- Conserved Sequence
- DNA Transposable Elements
- DNA, Mitochondrial
- DNA, Plant
- Gene Expression Regulation, Plant
- Genes, Plant
- Genome, Plant
- Genotype
- Introns
- Mitochondria/genetics
- Molecular Sequence Data
- Open Reading Frames
- Oryza/genetics
- Plastids
- RNA, Plant/genetics
- RNA, Ribosomal
- RNA, Transfer/genetics
- Repetitive Sequences, Nucleic Acid
- Sequence Homology, Nucleic Acid
- Zea mays/genetics
- Zea mays/metabolism
Collapse
Affiliation(s)
- Sandra W Clifton
- Genome Sequencing Center, Washington University School of Medicine, St. Louis, Missouri 63108, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Delage L, Duchêne AM, Zaepfel M, Maréchal-Drouard L. The anticodon and the D-domain sequences are essential determinants for plant cytosolic tRNA(Val) import into mitochondria. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 34:623-33. [PMID: 12787244 DOI: 10.1046/j.1365-313x.2003.01752.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In higher plants, one-third to one-half of the mitochondrial tRNAs are encoded in the nucleus and are imported into mitochondria. This process appears to be highly specific for some tRNAs, but the factors that interact with tRNAs before and/or during import, as well as the signals present on the tRNAs, still need to be identified. The rare experiments performed so far suggest that, besides the probable implication of aminoacyl-tRNA synthetases, at least one additional import factor and/or structural features shared by imported tRNAs must be involved in plant mitochondrial tRNA import. To look for determinants that direct tRNA import into higher plant mitochondria, we have transformed BY2 tobacco cells with Arabidopsis thaliana cytosolic tRNA(Val)(AAC) carrying various mutations. The nucleotide replacements introduced in this naturally imported tRNA correspond to the anticodon and/or D-domain of the non-imported cytosolic tRNA(Met-e). Unlike the wild-type tRNA(Val)(AAC), a mutant tRNA(Val) carrying a methionine CAU anticodon that switches the aminoacylation of this tRNA from valine to methionine is not present in the mitochondrial fraction. Furthermore, mutant tRNAs(Val) carrying the D-domain of the tRNA(Met-e), although still efficiently recognized by the valyl-tRNA synthetase, are not imported any more into mitochondria. These data demonstrate that in plants, besides identity elements required for the recognition by the cognate aminoacyl-tRNA synthetase, tRNA molecules contain other determinants that are essential for mitochondrial import selectivity. Indeed, this suggests that the tRNA import mechanism occurring in plant mitochondria may be different from what has been described so far in yeast or in protozoa.
Collapse
Affiliation(s)
- Ludovic Delage
- Institut de Biologie Moléculaire des Plantes du CNRS, UPR 2357, Université Louis Pasteur, 12 rue du Général Zimmer, 67084 Strasbourg Cedex, France
| | | | | | | |
Collapse
|
33
|
Murcha MW, Lister R, Ho AYY, Whelan J. Identification, expression, and import of components 17 and 23 of the inner mitochondrial membrane translocase from Arabidopsis. PLANT PHYSIOLOGY 2003; 131:1737-47. [PMID: 12692332 PMCID: PMC166929 DOI: 10.1104/pp.102.016808] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2002] [Revised: 11/25/2002] [Accepted: 12/31/2002] [Indexed: 05/20/2023]
Abstract
Characterization of components 17 and 23 of the inner mitochondrial membrane translocase (TIM17:23) from Arabidopsis indicated that there were three genes present for TIM17 and TIM23 and two for TIM44. AtTIM17 differed from the yeast (Saccharomyces cerevisiae) and mammalian homologs in that two genes encoded proteins that were longer and one gene encoded a shorter protein. All Arabidopsis TIM23 predicted proteins appeared to lack the first 34 amino acids compared with yeast TIM23. All AtTIM17 and AtTIM23 genes were expressed but displayed different tissue and developmental profiles. Complementation of deletion mutants in yeast indicated that for AtTIM17, the extension at the C terminus not present in yeast had to be removed to achieve complementation, whereas for TIM23, a preprotein and amino acid transporter domain had to be present for complementation. Import assays with AtTIM17 and AtTIM23 indicated that they both contained internal signals for integration into the inner mitochondrial membrane in a membrane potential-dependent manner. The C terminus of imported AtTIM17-2 was susceptible to degradation by externally added protease with intact mitochondria. Removal of the 85 C-terminal amino acids resulted in import and full protection of the truncated protein. This suggests that the novel extension at the C terminus of AtTIM17-2 links the outer and inner membrane in a manner analogous to yeast TIM23.
Collapse
Affiliation(s)
- Monika W Murcha
- Plant Molecular Biology Group, Biochemistry and Molecular Biology, School of Biomedical and Chemical Sciences, University of Western Australia, 35 Stirling Highway, Crawley 6009, Australia
| | | | | | | |
Collapse
|
34
|
Kaneko T, Suzuki T, Kapushoc ST, Rubio MA, Ghazvini J, Watanabe K, Simpson L, Suzuki T. Wobble modification differences and subcellular localization of tRNAs in Leishmania tarentolae: implication for tRNA sorting mechanism. EMBO J 2003; 22:657-67. [PMID: 12554666 PMCID: PMC140750 DOI: 10.1093/emboj/cdg066] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In Leishmania tarentolae, all mitochondrial tRNAs are encoded in the nuclear genome and imported from the cytosol. It is known that tRNA(Glu)(UUC) and tRNA(Gln)(UUG) are localized in both cytosol and mitochondria. We investigated structural differences between affinity-isolated cytosolic (cy) and mitochondrial (mt) tRNAs for glutamate and glutamine by mass spectrometry. A unique modification difference in both tRNAs was identified at the anticodon wobble position: cy tRNAs have 5-methoxycarbonylmethyl-2- thiouridine (mcm(5)s(2)U), whereas mt tRNAs have 5- methoxycarbonylmethyl-2'-O-methyluridine (mcm(5)Um). In addition, a trace portion (4%) of cy tRNAs was found to have 5-methoxycarbonylmethyluridine (mcm(5)U) at its wobble position, which could represent a common modification intermediate for both modified uridines in cy and mt tRNAs. We also isolated a trace amount of mitochondria-specific tRNA(Lys)(UUU) from the cytosol and found mcm(5)U at its wobble position, while its mitochondrial counterpart has mcm(5)Um. Mt tRNA(Lys) and in vitro transcribed tRNA(Glu) were imported much more efficiently into isolated mitochondria than the native cy tRNA(Glu) in an in vitro importation experiment, indicating that cytosol-specific 2-thiolation could play an inhibitory role in tRNA import into mitochondria.
Collapse
Affiliation(s)
- Tomonori Kaneko
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Building FSB-301, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan, Department of Microbiology, Immunology and Molecular Genetics and Howard Hughes Medical Institute, University of California, Los Angeles, 675 Circle Drive South, Los Angeles, CA 90095, USA Corresponding author e-mail:
| | - Takeo Suzuki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Building FSB-301, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan, Department of Microbiology, Immunology and Molecular Genetics and Howard Hughes Medical Institute, University of California, Los Angeles, 675 Circle Drive South, Los Angeles, CA 90095, USA Corresponding author e-mail:
| | - Stephen T. Kapushoc
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Building FSB-301, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan, Department of Microbiology, Immunology and Molecular Genetics and Howard Hughes Medical Institute, University of California, Los Angeles, 675 Circle Drive South, Los Angeles, CA 90095, USA Corresponding author e-mail:
| | - Mary Anne Rubio
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Building FSB-301, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan, Department of Microbiology, Immunology and Molecular Genetics and Howard Hughes Medical Institute, University of California, Los Angeles, 675 Circle Drive South, Los Angeles, CA 90095, USA Corresponding author e-mail:
| | - Jafar Ghazvini
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Building FSB-301, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan, Department of Microbiology, Immunology and Molecular Genetics and Howard Hughes Medical Institute, University of California, Los Angeles, 675 Circle Drive South, Los Angeles, CA 90095, USA Corresponding author e-mail:
| | - Kimitsuna Watanabe
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Building FSB-301, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan, Department of Microbiology, Immunology and Molecular Genetics and Howard Hughes Medical Institute, University of California, Los Angeles, 675 Circle Drive South, Los Angeles, CA 90095, USA Corresponding author e-mail:
| | - Larry Simpson
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Building FSB-301, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan, Department of Microbiology, Immunology and Molecular Genetics and Howard Hughes Medical Institute, University of California, Los Angeles, 675 Circle Drive South, Los Angeles, CA 90095, USA Corresponding author e-mail:
| | - Tsutomu Suzuki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Building FSB-301, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan, Department of Microbiology, Immunology and Molecular Genetics and Howard Hughes Medical Institute, University of California, Los Angeles, 675 Circle Drive South, Los Angeles, CA 90095, USA Corresponding author e-mail:
| |
Collapse
|
35
|
Blanc V, Farré JC, Litvak S, Araya A. Réécriture du matériel génétique : fonctions et mécanismes de l’édition de l’ARN. Med Sci (Paris) 2002. [DOI: 10.1051/medsci/2002182181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
36
|
Hoffmann M, Kuhn J, Däschner K, Binder S. The RNA world of plant mitochondria. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2002; 70:119-54. [PMID: 11642360 DOI: 10.1016/s0079-6603(01)70015-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Mitochondria are well known as the cellular power factory. Much less is known about these organelles as a genetic system. This is particularly true for mitochondria of plants, which subsist with respect to attention by the scientific community in the shadow of the chloroplasts. Nevertheless the mitochondrial genetic system is essential for the function of mitochondria and thus for the survival of the plant. In plant mitochondria the pathway from the genetic information encoded in the DNA to the functional protein leads through a very diverse RNA world. How the RNA is generated and what kinds of regulation and control mechanisms are operative in transcription are current topics in research. Furthermore, the modes of posttranscriptional alterations and their consequences for RNA stability and thus for gene expression in plant mitochondria are currently objects of intensive investigations. In this article current results obtained in the examination of plant mitochondrial transcription, RNA processing, and RNA stability are illustrated. Recent developments in the characterization of promoter structure and the respective transcription apparatus as well as new aspects of RNA processing steps including mRNA 3' processing and stability, mRNA polyadenylation, RNA editing, and tRNA maturation are presented. We also consider new suggestions concerning the endosymbiont hypothesis and evolution of mitochondria. These novel considerations may yield important clues for the further analysis of the plant mitochondrial genetic system. Conversely, an increasing knowledge about the mechanisms and components of the organellar genetic system might reveal new aspects of the evolutionary history of mitochondria.
Collapse
Affiliation(s)
- M Hoffmann
- Molekulare Botanik, Universität Ulm, Germany
| | | | | | | |
Collapse
|
37
|
Rokov-Plavec J, Lesjak S, Landeka I, Mijakovic I, Weygand-Durasevic I. Maize seryl-tRNA synthetase: specificity of substrate recognition by the organellar enzyme. Arch Biochem Biophys 2002; 397:40-50. [PMID: 11747308 DOI: 10.1006/abbi.2001.2600] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In our study of seryl-tRNA formation in maize, we investigated the enzymes involved in serylation. Only two dissimilar seryl-tRNA synthetase (SerRS) cDNA clones were identified in the Zea mays EST (expressed sequence tag) databases. One encodes a seryl-tRNA synthetase, which presumably functions in the organelles (SerZMm), while the other synthetase product is more similar to eukaryotic cytosolic counterparts (SerZMc). The expression of SerZMm in Saccharomyces cerevisiae resulted in complementation of mutant respiratory phenotype, caused by a disruption of the nuclear gene, presumably encoding yeast mitochondrial seryl-tRNA synthetase (SerSCm). Purified mature SerZMm displays tRNA-assisted serine activation and aminoacylates maize mitochondrial and chloroplast tRNA(Ser) transcripts with similar efficiencies, raising the possibility that only two isoforms of seryl-tRNA synthetase may be sufficient to catalyze seryl-tRNA(Ser) formation in three cellular compartments of Zea mays. Phylogenetic analysis suggests that SerZMm is of mitochondrial origin.
Collapse
Affiliation(s)
- Jasmina Rokov-Plavec
- Department of Chemistry, Faculty of Science, University of Zagreb, Strossmayerov trg 14, 10000 Zagreb, Croatia
| | | | | | | | | |
Collapse
|
38
|
Entelis NS, Kolesnikova OA, Dogan S, Martin RP, Tarassov IA. 5 S rRNA and tRNA import into human mitochondria. Comparison of in vitro requirements. J Biol Chem 2001; 276:45642-53. [PMID: 11551911 DOI: 10.1074/jbc.m103906200] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In vivo, human mitochondria import 5 S rRNA and do not import tRNAs from the cytoplasm. We demonstrated previously that isolated human mitochondria are able to internalize a yeast tRNA(Lys) in the presence of yeast soluble factors. Here, we describe an assay for specific uptake of 5 S rRNA by isolated human mitochondria and compare its requirements with the artificial tRNA import. The efficiency of 5 S rRNA uptake by isolated mitochondria was comparable with that found in vivo. The import was shown to depend on ATP and the transmembrane electrochemical potential and was directed by soluble proteins. Blocking the pre-protein import channel inhibited internalization of both 5 S rRNA and tRNA, which suggests this apparatus be involved in RNA uptake by the mitochondria. We show that human mitochondria can also selectively internalize several in vitro synthesized versions of yeast tRNA(Lys) as well as a transcript of the human mitochondrial tRNA(Lys). Either yeast or human soluble proteins can direct this import, suggesting that human cells possess all factors needed for such an artificial translocation. On the other hand, the efficiency of import directed by yeast or human protein factors varies significantly, depending on the tRNA version. Similarly to the yeast system, tRNA(Lys) import into human mitochondria depended on aminoacylation and on the precursor of the mitochondrial lysyl-tRNA synthetase. 5 S rRNA import was also dependent upon soluble protein(s), which were distinct from the factors providing tRNA internalization.
Collapse
Affiliation(s)
- N S Entelis
- Formation de Recherche en Evolution 2375, CNRS Modèles d'Etude de Pathologies Humaines, 21 rue René Descartes, 67084 Strasbourg, France
| | | | | | | | | |
Collapse
|
39
|
Abstract
Mitochondria, though containing their own genome, import the vast majority of their macromolecular components from the cytoplasm. If the mechanisms of pre-protein import are well understood, the import of nuclear-coded RNAs into mitochondria was investigated to a much lesser extent. This targeting, if not universal, is widely spread among species. The origin and the mechanisms of RNA import seem to differ from one system to another and striking differences are observed even in closely related species. We describe data concerning the various experimental systems of studying RNA import with emphasis on the model of the yeast Saccharomyces cerevisiae, which was studied in our laboratory. We compare various requirements of RNA import into mitochondria in different species and demonstrate that this pathway can be transferred from yeast to human cells, in which tRNAs normally are not imported. We speculate on the possibility to use RNA import for biomedical purposes.
Collapse
Affiliation(s)
- N S Entelis
- FRE 2168 CNRS, 21, rue René Descartes, 67084 Strasbourg, France
| | | | | | | |
Collapse
|
40
|
Duchêne AM, Peeters N, Dietrich A, Cosset A, Small ID, Wintz H. Overlapping destinations for two dual targeted glycyl-tRNA synthetases in Arabidopsis thaliana and Phaseolus vulgaris. J Biol Chem 2001; 276:15275-83. [PMID: 11278923 DOI: 10.1074/jbc.m011525200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In plant mitochondria, some of the tRNAs are encoded by the mitochondrial genome and resemble their prokaryotic counterparts, whereas the remaining tRNAs are encoded by the nuclear genome and imported from the cytosol. Generally, mitochondrial isoacceptor tRNAs all have the same genetic origin. One known exception to this rule is the group of tRNA(Gly) isoacceptors in dicotyledonous plants. A mitochondrion-encoded tRNA(Gly) and at least one nucleus-encoded tRNA(Gly) coexist in the mitochondria of these plants, and both are required to allow translation of all four GGN glycine codons. We have taken advantage of this atypical situation to address the problem of tRNA/aminoacyl-tRNA synthetase coevolution in plants. In this work, we show that two different nucleus-encoded glycyl-tRNA synthetases (GlyRSs) are imported into Arabidopsis thaliana and Phaseolus vulgaris mitochondria. The first one, GlyRS-1, is similar to human or yeast glycyl-tRNA synthetase, whereas the second, GlyRS-2, is similar to Escherichia coli glycyl-tRNA synthetase. Both enzymes are dual targeted, GlyRS-1 to mitochondria and to the cytosol and GlyRS-2 to mitochondria and chloroplasts. Unexpectedly, GlyRS-1 seems to be active in the cytosol but inactive in mitochondrial fractions, whereas GlyRS-2 is likely to glycylate both the organelle-encoded tRNA(Gly) and the imported tRNA(Gly) present in mitochondria.
Collapse
Affiliation(s)
- A M Duchêne
- Institut de Biologie Moléculaire des Plantes du CNRS, Université, CNRS Université Louis Pasteur, 12 Rue du Général Zimmer, F-67084 Strasbourg Cedex, France.
| | | | | | | | | | | |
Collapse
|
41
|
Mireau H, Cosset A, Marechal-Drouard L, Fox TD, Small ID, Dietrich A. Expression of Arabidopsis thaliana mitochondrial alanyl-tRNA synthetase is not sufficient to trigger mitochondrial import of tRNAAla in yeast. J Biol Chem 2000; 275:13291-6. [PMID: 10788435 DOI: 10.1074/jbc.275.18.13291] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It has often been suggested that precursors to mitochondrial aminoacyl-tRNA synthetases are likely carriers for mitochondrial import of tRNAs in those organisms where this process occurs. In plants, it has been shown that mutation of U(70) to C(70) in Arabidopsis thaliana tRNA(Ala)(UGC) blocks aminoacylation and also prevents import of the tRNA into mitochondria. This suggests that interaction of tRNA(Ala) with alanyl-tRNA synthetase (AlaRS) is necessary for import to occur. To test whether this interaction is sufficient to drive import, we co-expressed A. thaliana tRNA(Ala)(UGC) and the precursor to the A. thaliana mitochondrial AlaRS in Saccharomyces cerevisiae. The A. thaliana enzyme and its cognate tRNA were correctly expressed in yeast in vivo. However, although the plant AlaRS was efficiently imported into mitochondria in the transformed strains, we found no evidence for import of the A. thaliana tRNA(Ala) nor of the endogenous cytosolic tRNA(Ala) isoacceptors. We conclude that at least one other factor besides the mitochondrial AlaRS precursor must be involved in mitochondrial import of tRNA(Ala) in plants.
Collapse
Affiliation(s)
- H Mireau
- Station de Génétique et d'Amélioration des Plantes, Institut National de la Recherche Agronomique, Route de St.-Cyr, F-78026 Versailles Cedex, France.
| | | | | | | | | | | |
Collapse
|
42
|
Volpetti V, Gallerani R, De Benedetto C, Liuni S, Licciulli F, Ceci LR. PLMItRNA, a database for tRNAs and tRNA genes in plant mitochondria: enlargement and updating. Nucleic Acids Res 2000; 28:159-62. [PMID: 10592210 PMCID: PMC102413 DOI: 10.1093/nar/28.1.159] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The current version of PLMItRNA has been realized to constitute a database for tRNA molecules and genes identified in the mitochondria of all green plants ( Viridiplantae ). It is the enlargement of a previous database originally restricted to seed plants [Ceci,L.R., Volpicella,M., Liuni,S., Volpetti,V., Licciulli,F. and Gallerani,R. (1999) Nucleic Acids Res., 27, 156-157]. PLMItRNA reports information and multialignments on 254 genes and 16 tRNA molecules detected in 25 higher plants (one bryophyta and 24 vascular plants) and seven green algae. PLMItRNA is accessible via the WWW at http://bio-WWW.ba.cnr.it:8000/srs6/
Collapse
Affiliation(s)
- V Volpetti
- Dipartimento di Biochimica e Biologia Molecolare, Università di Bari, Via Amendola 165/A, 70126 Bari, Italy
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
The term RNA editing describes those molecular processes in which the information content is altered in an RNA molecule. To date such changes have been observed in tRNA. rRNA and mRNA molecules of eukaryotes, but not prokaryotes. The demonstration of RNA editing in prokaryotes may only be a matter of time, considering the range of species in which the various RNA editing processes have been found. RNA editing occurs in the nucleus, as well as in mitochondria and plastids, which are thought to have evolved from prokaryotic-like endosymbionts. Most of the RNA editing processes, however, appear to be evolutionarily recent acquisitions that arose independently. The diversity of RNA editing mechanisms includes nucleoside modifications such as C to U and A to I deaminations, as well as non-templated nucleotide additions and insertions. RNA editing in mRNAs effectively alters the amino acid sequence of the encoded protein so that it differs from that predicted by the genomic DNA sequence.
Collapse
|
44
|
Kazakova HA, Entelis NS, Martin RP, Tarassov IA. The aminoacceptor stem of the yeast tRNA(Lys) contains determinants of mitochondrial import selectivity. FEBS Lett 1999; 442:193-7. [PMID: 9929000 DOI: 10.1016/s0014-5793(98)01653-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Yeast tRNA(Lys)CUU is nucleus-encoded and is partially imported into the mitochondria. Another lysine isoacceptor, tRNA(Lys)SUU, is also nucleus-encoded but is not imported. These two tRNAs differ in 21 bases. We have previously localised import selectivity determinants in the anticodon arm. By in vitro import of mutant transcripts and by expression of mutant tRNA genes in vivo we show here that the first base pair (1:72) and the discriminator base 73 are also relevant to import selectivity. Replacement of bases 1:72 in tRNA(Lys)SUU by those of tRNA(Lys)CUU makes it importable with a transport efficiency similar to natural.
Collapse
Affiliation(s)
- H A Kazakova
- Division of Molecular Biology, Biology Faculty, Moscow State University, Russia
| | | | | | | |
Collapse
|
45
|
Abstract
The plastid genome of the nonphotosynthetic parasitic plant Epifagus virginiana contains only 17 of the 30 tRNA genes normally found in angiosperm plastid DNA. Although this is insufficient for translation, the genome is functional, so import of cytosolic tRNAs into plastids has been suggested. This raises the question of whether the tRNA genes that remain in E. virginiana plastid DNA are active or have just fortuitously escaped deletion. We report the sequences of 20 plastid tRNA loci from Orobanche minor, which shares a nonphotosynthetic ancestor with E. virginiana. The two species have 9 intact tRNA genes in common, the others being defunct in one or both species. The intron-containing trnLUAA gene is absent from E. virginiana, but it is intact, transcribed, and spliced in O. minor. The shared intact genes are better conserved than intergenic sequences, which indicates that these genes are being maintained by natural selection and, therefore, must be functional. For the most part, the tRNA species conserved in nonphotosynthetic plastids are also those that have never been found to be imported in plant mitochondria, which suggests that the same rules may govern tRNA import in the two organelles. A small photosynthesis gene, psbI, is still intact in O. minor, and computer simulations show that some small nonessential genes have an appreciable chance of escaping deletion.
Collapse
Affiliation(s)
- A J Lohan
- Department of Genetics, University of Dublin, Trinity College, Dublin 2, Ireland
| | | |
Collapse
|
46
|
Leon P, Arroyo A, Mackenzie S. NUCLEAR CONTROL OF PLASTID AND MITOCHONDRIAL DEVELOPMENT IN HIGHER PLANTS. ACTA ACUST UNITED AC 1998; 49:453-480. [PMID: 15012242 DOI: 10.1146/annurev.arplant.49.1.453] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The nucleus must coordinate organelle biogenesis and function on a cell and tissue-specific basis throughout plant development. The vast majority of plastid and mitochondrial proteins and components involved in organelle biogenesis are encoded by nuclear genes. Molecular characterization of nuclear mutants has illuminated chloroplast development and function. Fewer mutants exist that affect mitochondria, but molecular and biochemical approaches have contributed to a greater understanding of this organelle. Similarities between organelles and prokaryotic regulatory molecules have been found, supporting the prokaryotic origin of chloroplasts and mitochondria. A striking characteristic for both mitochondria and chloroplast is that most regulation is posttranscriptional.
Collapse
Affiliation(s)
- P. Leon
- Departamento de Biologia Molecular de Plantas, Instituto de Biotecnologia UNAM, Cuernavaca, Morelos 62250 Mexico; e-mail: , Department of Agronomy, Lilly Hall of Life Sciences, Purdue University, West Lafayette, Indiana 47907
| | | | | |
Collapse
|
47
|
Entelis NS, Kieffer S, Kolesnikova OA, Martin RP, Tarassov IA. Structural requirements of tRNALys for its import into yeast mitochondria. Proc Natl Acad Sci U S A 1998; 95:2838-43. [PMID: 9501177 PMCID: PMC19656 DOI: 10.1073/pnas.95.6.2838] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In the yeast Saccharomyces cerevisiae, one of the two cytoplasmic lysine tRNAs, tRNACUULys, is partially associated with the mitochondrial matrix. Mitochondrial import of this tRNA requires binding to the precursor of the mitochondrial lysyl-tRNA synthetase, pre-MSK, and aminoacylation by the cytoplasmic lysyl-tRNA synthetase, KRS, appears to be a prerequisite for this binding. The second lysine isoacceptor tRNAmnmLys5s2UUU [where 5-[(methylamino)-methyl]-2-thiouridine is mnm5s2U] is exclusively localized in the cytoplasm. To study import determinants within the tRNACUULys molecule, we introduced a panel of replacements in the original sequences of the imported and nonimported lysine tRNAs that correspond to domains or individual residues that differ between these two isoacceptors. The mutant transcripts were tested for import, aminoacylation, and binding to pre-MSK. Import and aminoacylation efficiencies correlate well for the majority of mutant transcripts. However, some poorly aminoacylated transcripts were rather efficiently imported. Surprisingly, these transcripts retained binding capacity to pre-MSK. In fact, all imported transcripts retained pre-MSK binding capacity but nonimported versions did not, suggesting that this binding, rather than aminoacylation, is essential for import. Substitution of the anticodon arm of tRNACUULys with that of tRNAmnmLys5s2UUU abolished import without affecting aminoacylation. A version of tRNAmnmLys5s2UUU with an anticodon CUU was efficiently imported in vitro and was also found to be imported in vivo. This implies that the anticodon arm, especially position 34, is important for recognition by the import machinery. A nicked tRNACUULys transcript is still imported but its import requires reannealing of the two tRNA moieties, which implies that tRNACUULys is imported as a folded molecule.
Collapse
Affiliation(s)
- N S Entelis
- Unité Propre de Recherche 9005 du Centre National de la Recherche Scientifique, Mécanismes Moléculaires de la Division Cellulaire et du Développement, Strasbourg, France
| | | | | | | | | |
Collapse
|
48
|
Nabholz CE, Hauser R, Schneider A. Leishmania tarentolae contains distinct cytosolic and mitochondrial glutaminyl-tRNA synthetase activities. Proc Natl Acad Sci U S A 1997; 94:7903-8. [PMID: 9223285 PMCID: PMC21527 DOI: 10.1073/pnas.94.15.7903] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The intracellular distribution of glutaminyl-tRNA synthetases and their role in mitochondrial tRNA import were evaluated in the ancient eukaryote Leishmania tarentolae. The following results were obtained: (i) Glutaminyl-tRNA synthetase was detected in leishmanial mitochondria. This was unexpected because it has been postulated that, in organelles, Gln-tRNAGln is not formed by direct acylation of tRNAGln but by enzymatic transamidation of misacylated Glu-tRNAGln. (ii) Whereas the cytosolic extract is able to charge cytosolic and mitochondrial tRNAsGln, the mitochondrial matrix extract does not aminoacylate the cytosol-specific tRNAGln. This indicates that mitochondrial and cytosolic glutaminyl-tRNA synthetases are distinct. (iii) Seven of the 11 nucleotides that differ between the cytosolic and the mitochondrial tRNAGln are sufficient to convert the cytosol-specific tRNAGln into an optimal substrate for the mitochondrial enzyme. These nucleotides are arranged in three groups consisting of the nucleotides flanking the anticodon stem, the 5' nucleotide of the anticodon, and four nucleotides within the acceptor stem. And (iv), it was shown that the identity elements for recognition by the mitochondrial glutaminyl-tRNA synthetase do not overlap with a previously identified sequence segment required for mitochondrial import of the tRNAGln.
Collapse
Affiliation(s)
- C E Nabholz
- Institute of Zoology, University of Fribourg, Pérolles, CH-1700 Fribourg, Switzerland
| | | | | |
Collapse
|
49
|
Abstract
Mitochondrial import of tRNA is now considered as a quasi-universal phenomenon. In the yeast Saccharomyces cerevisiae, one of the three lysine isoacceptors, the tRNA(Lys)1 with the anticodon CUU (tRNA-K1), is encoded by the nuclear genome and distributed between the cytoplasmic (> 95%) and mitochondrial (< 5%) compartments. In vivo and in vitro import assays were developed to study the mechanisms of tRNA-K1 mitochondrial import. Transmembrane translocation of the tRNA requires the intactness of at least two of the components of the mitochondrial import machinery of pre-proteins, MOM19 and MIM44, as well as energy of ATP hydrolysis and an electrochemical potential across the inner membrane. The import of tRNA-K1 involves formation of an RNP complex on the mitochondrial outer membrane. tRNA-K1 import is also dependent upon cytosolic protein factors, one of which was identified as the precursor of the mitochondrial lysyl-tRNA synthetase (MSK). Although essential for tRNA-K1 import in vitro and in vivo, pre-MSK is however not sufficient to direct the import in vitro, which suggests the need of additional cytosolic factor(s). The tRNA can be imported in its mature form and nucleoside modification is not essential. Aminoacylation of the imported tRNA by the cytoplasmic lysyl-tRNA synthetase is a prerequisite for import. Possible mechanisms of intracellular partitioning and mitochondrial membrane translocation of tRNA-K1 are discussed.
Collapse
|