1
|
Kalvelage J, Rabus R. Multifaceted Dinoflagellates and the Marine Model Prorocentrum cordatum. Microb Physiol 2024; 34:197-242. [PMID: 39047710 DOI: 10.1159/000540520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Dinoflagellates are a monophyletic group within the taxon Alveolata, which comprises unicellular eukaryotes. Dinoflagellates have long been studied for their organismic and morphologic diversity as well as striking cellular features. They have a main size range of 10-100 µm, a complex "cell covering", exceptionally large genomes (∼1-250 Gbp with a mean of 50,000 protein-encoding genes) spread over a variable number of highly condensed chromosomes, and perform a closed mitosis with extranuclear spindles (dinomitosis). Photosynthetic, marine, and free-living Prorocentrum cordatum is a ubiquitously occurring, bloom-forming dinoflagellate, and an emerging model system, particularly with respect to systems biology. SUMMARY Focused ion beam/scanning electron microscopy (FIB/SEM) analysis of P. cordatum recently revealed (i) a flattened nucleus with unusual structural features and a total of 62 tightly packed chromosomes, (ii) a single, barrel-shaped chloroplast devoid of grana and harboring multiple starch granules, (iii) a single, highly reticular mitochondrion, and (iv) multiple phosphate and lipid storage bodies. Comprehensive proteomics of subcellular fractions suggested (i) major basic nuclear proteins to participate in chromosome condensation, (ii) composition of nuclear pores to differ from standard knowledge, (iii) photosystems I and II, chloroplast complex I, and chlorophyll a-b binding light-harvesting complex to form a large megacomplex (>1.5 MDa), and (iv) an extraordinary richness in pigment-binding proteins. Systems biology-level investigation of heat stress response demonstrated a concerted down-regulation of CO2-concentrating mechanisms, CO2-fixation, central metabolism, and monomer biosynthesis, which agrees with reduced growth yields. KEY MESSAGES FIB/SEM analysis revealed new insights into the remarkable subcellular architecture of P. cordatum, complemented by proteogenomic unraveling of novel nuclear structures and a photosynthetic megacomplex. These recent findings are put in the wider context of current understanding of dinoflagellates.
Collapse
Affiliation(s)
- Jana Kalvelage
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Ralf Rabus
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| |
Collapse
|
2
|
Species Diversity of Pin Nematodes ( Paratylenchus spp.) from Potato Growing Regions of Southern Alberta, Canada. PLANTS 2021; 10:plants10020188. [PMID: 33498173 PMCID: PMC7908996 DOI: 10.3390/plants10020188] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/17/2021] [Accepted: 01/18/2021] [Indexed: 11/17/2022]
Abstract
Pin nematodes (Paratylenchus spp.) are polyphagous parasitic species with a wide host range and geographical distribution; their diversity is unknown in the potato growing region of Alberta, Canada. The present study aims to provide morphological and molecular characterization of three pin nematode species, namely P. neoprojectus, P. tateae, and a new species, Paratylenchus enigmaticus sp. nov. All of them were recovered from the potato growing region of southern Alberta. The nematodes were isolated using the sieving and flotation-centrifugation method, and their morphology was assessed by light microscopy. Molecular characterization was performed using partial 18S, D2–D3 expansion domains of the 28S and ITS ribosomal genes. This study is the first report of molecular characterization of P. tateae and P. neoprojectus, being new records from southern Alberta, and two Spanish populations of P. tateae comprising the first report of this species in Europe. The phylogenetic analysis of the 18S, D2–D3 expansion domains of the 28S and ITS ribosomal DNA regions underscores the importance of using molecular data for accurate species identification and clarifies the status of P. nanus type B and P. sheri. Moreover, our findings will be useful to determine the impact of pin nematodes on potato production in future field research.
Collapse
|
3
|
Potvin É, Kim SY, Yang EJ, Head MJ, Kim HC, Nam SI, Yim JH, Kang SH. Islandinium minutum
subsp. barbatum
subsp. nov. (Dinoflagellata), a New Organic-Walled Dinoflagellate Cyst from the Western Arctic: Morphology, Phylogenetic Position Based on SSU rDNA and LSU rDNA, and Distribution. J Eukaryot Microbiol 2018; 65:750-772. [DOI: 10.1111/jeu.12518] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/01/2018] [Accepted: 02/27/2018] [Indexed: 12/01/2022]
Affiliation(s)
- Éric Potvin
- Division of Polar Ocean Sciences; Korea Polar Research Institute; Songdo Incheon 406-840 South Korea
| | - So-Young Kim
- Division of Polar Ocean Sciences; Korea Polar Research Institute; Songdo Incheon 406-840 South Korea
| | - Eun Jin Yang
- Division of Polar Ocean Sciences; Korea Polar Research Institute; Songdo Incheon 406-840 South Korea
| | - Martin J. Head
- Department of Earth Sciences; Brock University; St. Catharines Ontario L2S 3A1 Canada
| | - Hyun-cheol Kim
- Unit of Arctic Sea-Ice Prediction; Korea Polar Research Institute; Songdo Incheon 406-840 South Korea
| | - Seung-Il Nam
- Division of Polar Paleoenvironment; Korea Polar Research Institute; Songdo Incheon 406-840 South Korea
| | - Joung Han Yim
- Division of Polar Life Sciences; Korea Polar Research Institute; Songdo Incheon 406-840 South Korea
| | - Sung-Ho Kang
- Division of Polar Ocean Sciences; Korea Polar Research Institute; Songdo Incheon 406-840 South Korea
| |
Collapse
|
4
|
Roy S, Jagus R, Morse D. Translation and Translational Control in Dinoflagellates. Microorganisms 2018; 6:microorganisms6020030. [PMID: 29642465 PMCID: PMC6027434 DOI: 10.3390/microorganisms6020030] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/03/2018] [Accepted: 04/05/2018] [Indexed: 12/24/2022] Open
Abstract
Dinoflagellates are unicellular protists that feature a multitude of unusual nuclear features, including large genomes, packaging of DNA without histones, and multiple gene copies organized as tandem gene arrays. Furthermore, all dinoflagellate mRNAs experience trans-splicing with a common 22-nucleotide splice leader (SL) sequence. These features challenge some of the concepts and assumptions about the regulation of gene expression derived from work on model eukaryotes such as yeasts and mammals. Translational control in the dinoflagellates, based on extensive study of circadian bioluminescence and by more recent microarray and transcriptome analyses, is now understood to be a crucial element in regulating gene expression. A picture of the translation machinery of dinoflagellates is emerging from the recent availability of transcriptomes of multiple dinoflagellate species and the first complete genome sequences. The components comprising the translational control toolkit of dinoflagellates are beginning to take shape and are outlined here.
Collapse
Affiliation(s)
- Sougata Roy
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, 4101 Sherbrooke East, Montréal, QC H1X 2B2, Canada.
| | - Rosemary Jagus
- Institute of Marine & Environmental Technology, University of Maryland Center for Environmental Science701 E. Pratt St., Baltimore, MD 21202, USA.
| | - David Morse
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, 4101 Sherbrooke East, Montréal, QC H1X 2B2, Canada.
| |
Collapse
|
5
|
Molecular phylogeny and species delimitation within the ciliate genus Spirostomum (Ciliophora, Postciliodesmatophora, Heterotrichea), using the internal transcribed spacer region. Mol Phylogenet Evol 2016; 102:128-44. [DOI: 10.1016/j.ympev.2016.05.041] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 05/23/2016] [Accepted: 05/31/2016] [Indexed: 11/23/2022]
|
6
|
Marek M, Zouhar M, Douda O, Maňasová M, Ryšánek P. Exploitation of FTA cartridges for the sampling, long-term storage, and DNA-based analyses of plant-parasitic nematodes. PHYTOPATHOLOGY 2014; 104:306-312. [PMID: 24093923 DOI: 10.1094/phyto-03-13-0067-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The use of DNA-based analyses in molecular plant nematology research has dramatically increased over recent decades. Therefore, the development and adaptation of simple, robust, and cost-effective DNA purification procedures are required to address these contemporary challenges. The solid-phase-based approach developed by Flinders Technology Associates (FTA) has been shown to be a powerful technology for the preparation of DNA from different biological materials, including blood, saliva, plant tissues, and various human and plant microbial pathogens. In this work, we demonstrate, for the first time, that this FTA-based technology is a valuable, low-cost, and time-saving approach for the sampling, long-term archiving, and molecular analysis of plant-parasitic nematodes. Despite the complex structure and anatomical organization of the multicellular bodies of nematodes, we report the successful and reliable DNA-based analysis of nematode high-copy and low-copy genes using the FTA technology. This was achieved by applying nematodes to the FTA cards either in the form of a suspension of individuals, as intact or pestle-crushed nematodes, or by the direct mechanical printing of nematode-infested plant tissues. We further demonstrate that the FTA method is also suitable for the so-called "one-nematode-assay", in which the target DNA is typically analyzed from a single individual nematode. More surprisingly, a time-course experiment showed that nematode DNA can be detected specifically in the FTA-captured samples many years after initial sampling occurs. Collectively, our data clearly demonstrate the applicability and the robustness of this FTA-based approach for molecular research and diagnostics concerning phytonematodes; this research includes economically important species such as the stem nematode (Ditylenchus dipsaci), the sugar beet nematode (Heterodera schachtii), and the Northern root-knot nematode (Meloidogyne hapla).
Collapse
|
7
|
Genealogical analyses of multiple loci of litostomatean ciliates (Protista, Ciliophora, Litostomatea). Mol Phylogenet Evol 2012; 65:397-411. [PMID: 22789763 PMCID: PMC3461193 DOI: 10.1016/j.ympev.2012.06.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 06/27/2012] [Accepted: 06/28/2012] [Indexed: 11/23/2022]
Abstract
The class Litostomatea is a highly diverse ciliate taxon comprising hundreds of free-living and endocommensal species. However, their traditional morphology-based classification conflicts with 18S rRNA gene phylogenies indicating (1) a deep bifurcation of the Litostomatea into Rhynchostomatia and Haptoria+Trichostomatia, and (2) body polarization and simplification of the oral apparatus as main evolutionary trends in the Litostomatea. To test whether 18S rRNA molecules provide a suitable proxy for litostomatean evolutionary history, we used eighteen new ITS1-5.8S rRNA-ITS2 region sequences from various free-living litostomatean orders. These single- and multiple-locus analyses are in agreement with previous 18S rRNA gene phylogenies, supporting that both 18S rRNA gene and ITS region sequences are effective tools for resolving phylogenetic relationships among the litostomateans. Despite insertions, deletions and mutational saturations in the ITS region, the present study shows that ITS1 and ITS2 molecules can be used to infer phylogenetic relationships not only at species level but also at higher taxonomic ranks when their secondary structure information is utilized to aid alignment.
Collapse
|
8
|
Hoppenrath M, Leander BS. Dinoflagellate phylogeny as inferred from heat shock protein 90 and ribosomal gene sequences. PLoS One 2010; 5:e13220. [PMID: 20949037 PMCID: PMC2951904 DOI: 10.1371/journal.pone.0013220] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 09/06/2010] [Indexed: 11/19/2022] Open
Abstract
Background Interrelationships among dinoflagellates in molecular phylogenies are largely unresolved, especially in the deepest branches. Ribosomal DNA (rDNA) sequences provide phylogenetic signals only at the tips of the dinoflagellate tree. Two reasons for the poor resolution of deep dinoflagellate relationships using rDNA sequences are (1) most sites are relatively conserved and (2) there are different evolutionary rates among sites in different lineages. Therefore, alternative molecular markers are required to address the deeper phylogenetic relationships among dinoflagellates. Preliminary evidence indicates that the heat shock protein 90 gene (Hsp90) will provide an informative marker, mainly because this gene is relatively long and appears to have relatively uniform rates of evolution in different lineages. Methodology/Principal Findings We more than doubled the previous dataset of Hsp90 sequences from dinoflagellates by generating additional sequences from 17 different species, representing seven different orders. In order to concatenate the Hsp90 data with rDNA sequences, we supplemented the Hsp90 sequences with three new SSU rDNA sequences and five new LSU rDNA sequences. The new Hsp90 sequences were generated, in part, from four additional heterotrophic dinoflagellates and the type species for six different genera. Molecular phylogenetic analyses resulted in a paraphyletic assemblage near the base of the dinoflagellate tree consisting of only athecate species. However, Noctiluca was never part of this assemblage and branched in a position that was nested within other lineages of dinokaryotes. The phylogenetic trees inferred from Hsp90 sequences were consistent with trees inferred from rDNA sequences in that the backbone of the dinoflagellate clade was largely unresolved. Conclusions/Significance The sequence conservation in both Hsp90 and rDNA sequences and the poor resolution of the deepest nodes suggests that dinoflagellates reflect an explosive radiation in morphological diversity in their recent evolutionary past. Nonetheless, the more comprehensive analysis of Hsp90 sequences enabled us to infer phylogenetic interrelationships of dinoflagellates more rigorously. For instance, the phylogenetic position of Noctiluca, which possesses several unusual features, was incongruent with previous phylogenetic studies. Therefore, the generation of additional dinoflagellate Hsp90 sequences is expected to refine the stem group of athecate species observed here and contribute to future multi-gene analyses of dinoflagellate interrelationships.
Collapse
Affiliation(s)
- Mona Hoppenrath
- Department of Zoology, University of British Columbia, Canadian Institute for Advanced Research, Program in Integrated Microbial Biodiversity, Vancouver, Canada
- Forschungsinstitut Senckenberg, Deutsches Zentrum für Marine Biodiversitätsforschung, Wilhelmshaven, Germany
| | - Brian S. Leander
- Department of Zoology, University of British Columbia, Canadian Institute for Advanced Research, Program in Integrated Microbial Biodiversity, Vancouver, Canada
- * E-mail:
| |
Collapse
|
9
|
Sun P, Clamp JC, Xu D. Analysis of the secondary structure of ITS transcripts in peritrich ciliates (Ciliophora, Oligohymenophorea): Implications for structural evolution and phylogenetic reconstruction. Mol Phylogenet Evol 2010; 56:242-51. [DOI: 10.1016/j.ympev.2010.02.030] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Revised: 02/03/2010] [Accepted: 02/25/2010] [Indexed: 10/19/2022]
|
10
|
Herzog M, Maroteaux L. Dinoflagellate 17S rRNA sequence inferred from the gene sequence: Evolutionary implications. Proc Natl Acad Sci U S A 2010; 83:8644-8. [PMID: 16578795 PMCID: PMC386987 DOI: 10.1073/pnas.83.22.8644] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We present the complete sequence of the nuclear-encoded small-ribosomal-subunit RNA inferred from the cloned gene sequence of the dinoflagellate Prorocentrum micans. The dinoflagellate 17S rRNA sequence of 1798 nucleotides is contained in a family of 200 tandemly repeated genes per haploid genome. A tentative model of the secondary structure of P. micans 17S rRNA is presented. This sequence is compared with the small-ribosomal-subunit rRNA of Xenopus laevis (Animalia), Saccharomyces cerevisiae (Fungi), Zea mays (Planta), Dictyostelium discoideum (Protoctista), and Halobacterium volcanii (Monera). Although the secondary structure of the dinoflagellate 17S rRNA presents most of the eukaryotic characteristics, it contains sufficient archaeobacterial-like structural features to reinforce the view that dinoflagellates branch off very early from the eukaryotic lineage.
Collapse
Affiliation(s)
- M Herzog
- Laboratoire Arago, Paris VI University, Centre National de la Recherche Scientifique UA 117, 66650 Banyuls sur Mer, France
| | | |
Collapse
|
11
|
Hoppenrath M, Bachvaroff TR, Handy SM, Delwiche CF, Leander BS. Molecular phylogeny of ocelloid-bearing dinoflagellates (Warnowiaceae) as inferred from SSU and LSU rDNA sequences. BMC Evol Biol 2009; 9:116. [PMID: 19467154 PMCID: PMC2694157 DOI: 10.1186/1471-2148-9-116] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Accepted: 05/25/2009] [Indexed: 11/23/2022] Open
Abstract
Background Dinoflagellates represent a major lineage of unicellular eukaryotes with unparalleled diversity and complexity in morphological features. The monophyly of dinoflagellates has been convincingly demonstrated, but the interrelationships among dinoflagellate lineages still remain largely unresolved. Warnowiid dinoflagellates are among the most remarkable eukaryotes known because of their possession of highly elaborate ultrastructural systems: pistons, nematocysts, and ocelloids. Complex organelles like these are evolutionary innovations found only in a few athecate dinoflagellates. Moreover, the taxonomy of warnowiids is extremely confusing and inferences about the evolutionary history of this lineage are mired by the absence of molecular phylogenetic data from any member of the group. In this study, we provide the first molecular phylogenetic data for warnowiids and couple them with a review of warnowiid morphological features in order to formulate a hypothetical framework for understanding character evolution within the group. These data also enabled us to evaluate the evolutionary relationship(s) between warnowiids and the other group of dinoflagellates with complex organelles: polykrikoids. Results Molecular phylogenetic analyses of SSU and LSU rDNA sequences demonstrated that warnowiids form a well-supported clade that falls within the more inclusive Gymnodinium sensu stricto clade. These data also confirmed that polykrikoids are members of the Gymnodinium sensu stricto clade as well; however, a specific sister relationship between the warnowiid clade and the polykrikoid clade was unresolved in all of our analyses. Nonetheless, the new DNA sequences from different isolates of warnowiids provided organismal anchors for several previously unidentified sequences derived from environmental DNA surveys of marine biodiversity. Conclusion Comparative morphological data and molecular phylogenetic data demonstrate that the polykrikoid and the warnowiid clade are closely related to each other, but the precise branching order within the Gymnodinium sensu stricto clade remains unresolved. We regard the ocelloid as the best synapomorphy for warnowiids and infer that the most recent common ancestor of polykrikoids and warnowiids possessed both nematocysts and photosynthetic plastids that were subsequently lost during the early evolution of warnowiids. Our summary of species and genus concepts in warnowiids demonstrate that the systematics of this poorly understood group is highly problematic and a comprehensive revision is needed.
Collapse
Affiliation(s)
- Mona Hoppenrath
- Departments of Botany and Zoology, University of British Columbia, Vancouver, Canada.
| | | | | | | | | |
Collapse
|
12
|
Miao M, Warren A, Song W, Wang S, Shang H, Chen Z. Analysis of the Internal Transcribed Spacer 2 (ITS2) Region of Scuticociliates and Related Taxa (Ciliophora, Oligohymenophorea) to Infer their Evolution and Phylogeny. Protist 2008; 159:519-33. [DOI: 10.1016/j.protis.2008.05.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2007] [Accepted: 05/31/2008] [Indexed: 10/21/2022]
|
13
|
THORNHILL DANIELJ, LAJEUNESSE TODDC, SANTOS SCOTTR. Measuring rDNA diversity in eukaryotic microbial systems: how intragenomic variation, pseudogenes, and PCR artifacts confound biodiversity estimates. Mol Ecol 2007; 16:5326-40. [DOI: 10.1111/j.1365-294x.2007.03576.x] [Citation(s) in RCA: 225] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Moreno Díaz de la Espina S, Alverca E, Cuadrado A, Franca S. Organization of the genome and gene expression in a nuclear environment lacking histones and nucleosomes: the amazing dinoflagellates. Eur J Cell Biol 2005; 84:137-49. [PMID: 15819396 DOI: 10.1016/j.ejcb.2005.01.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Dinoflagellates are fascinating protists that have attracted researchers from different fields. The free-living species are major primary producers and the cause of harmful algal blooms sometimes associated with red tides. Dinoflagellates lack histones and nucleosomes and present a unique genome and chromosome organization, being considered the only living knockouts of histones. Their plastids contain genes organized in unigenic minicircles. Basic cell structure, biochemistry and molecular phylogeny place the dinoflagellates firmly among the eukaryotes. They have G1-S-G2-M cell cycles, repetitive sequences, ribosomal genes in tandem, nuclear matrix, snRNAs, and eukaryotic cytoplasm, whereas their nuclear DNA is different, from base composition to chromosome organization. They have a high G + C content, highly methylated and rare bases such as 5-hydroxymethyluracil (HOMeU), no TATA boxes, and form distinct interphasic dinochromosomes with a liquid crystalline organization of DNA, stabilized by metal cations and structural RNA. Without histones and with a protein:DNA mass ratio (1:10) lower than prokaryotes, they need a different way of packing their huge amounts of DNA into a functional chromatin. In spite of the high interest in the dinoflagellate system in genetics, molecular and cellular biology, their analysis until now has been very restricted. We review here the main achievements in the characterization of the genome, nucleus and chromosomes in this diversified phylum. The recent discovery of a eukaryotic structural and functional differentiation in the dinochromosomes and of the organization of gene expression in them, demonstrate that in spite of the secondary loss of histones, that produce a lack of nucleosomal and supranucleosomal chromatin organization, they keep a functional nuclear organization closer to eukaryotes than to prokaryotes.
Collapse
|
15
|
Costas E, Goyanes V. Architecture and evolution of dinoflagellate chromosomes: an enigmatic origin. Cytogenet Genome Res 2005; 109:268-75. [PMID: 15753586 DOI: 10.1159/000082409] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2003] [Accepted: 02/19/2004] [Indexed: 11/19/2022] Open
Abstract
Dinoflagellates are a highly diversified group of unicellular protists that present fascinating nuclear features which have intrigued researchers for many years. As examples, a dense nuclear matrix accommodates permanently condensed chromosomes that are composed of fibers organized without histones and nucleosomes in stacked rows of parallel nested arches. The macromolecular chromosome structure corresponds to cholesteric liquid crystals with a constant left-handed twist. RNA acts to maintain the chromosome structure. Whole mounted chromosomes have a left-handed screw-like configuration with coils which progressively increase their pitch. This helical arrangement seems to be the result of a couple of narrow strands coiling together. Chromosomes do not show Q, G and C banding patterns. However, a roughly spherical differentiated upper end (primitive kinetochore?) and two differentiated coiling regions, the upper one composed of two to three coils where a couple of sister strands run together and parallel to each other, and the lower one where sister strands run out of phase by 180 degrees angular difference along the immediate next turns, can be distinguished. The chromosome segregation into two daughter chromatids begins at the telomere that attaches to the nuclear envelope, follows along the chromosome axis constituting first a Y-shaped and afterwards a V-shaped chromosome, which packs the newly synthesized DNA inside the "old" chromosome. Dividing chromosomes remain highly condensed, and the diameters of the new chromatids and the undivided chromosome are similar, but the number of arches is twice as large in G1 as in G2. The nuclear envelope remains through the cell cycle and shows spindle fibers, which penetrate intranuclear cytoplasmic channels during mitosis constituting an extra nuclear spindle. These and other cytogenetic features suggest that dinoflagellates are a group of enigmatic protists, unique and different from the usual eukaryotes. In contrast, DNA sequence studies propose that dinoflagellates are true eukaryotes, closely related to Apicomplexa, and ciliates (Alveolata), suggesting that the unusual features of chromosome and nuclear organization are not primitive but derived characters. Nevertheless, dinoflagellates have reached enigmatic specific nuclear and chromosome solutions, extremely far from those of other living beings.
Collapse
Affiliation(s)
- E Costas
- Genetica (Produccion Animal), Facultad de Veterinaria, Universidad Complutense, Madrid, Spain.
| | | |
Collapse
|
16
|
Saldarriaga JF, “Max” Taylor F, Cavalier-Smith T, Menden-Deuer S, Keeling PJ. Molecular data and the evolutionary history of dinoflagellates. Eur J Protistol 2004. [DOI: 10.1016/j.ejop.2003.11.003] [Citation(s) in RCA: 173] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Gottschling M, Plötner J. Secondary structure models of the nuclear internal transcribed spacer regions and 5.8S rRNA in Calciodinelloideae (Peridiniaceae) and other dinoflagellates. Nucleic Acids Res 2004; 32:307-15. [PMID: 14722225 PMCID: PMC373278 DOI: 10.1093/nar/gkh168] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Secondary structure models of the 5.8S rRNA and both internal transcribed spacers (ITS1 and ITS2) are proposed for Calciodinelloideae (Peridiniaceae) and are also plausible for other dinoflagellates. The secondary structure of the 5.8S rRNA corresponds to previously developed models, with two internal paired regions and at least one 5.8S rRNA-28S rRNA interaction. A general secondary structure model of ITS1 for Calciodinelloideae (and other dinoflagellates), consisting of an open multibranch loop with three major helices, is proposed. The homology of these paired regions with those found in other taxa, published in previous studies (e.g. yeast, green algae and Platyhelmithes) remains to be determined. Finally, a general secondary structure model of ITS2 for Calciodinelloideae (and other dinoflagellates) is reconstructed. Based on the 5.8S rRNA-28S rRNA interaction, it consists of a closed multibranch loop, with four major helices. At least helix III and IV have homology with paired regions found in other eukaryotic taxa (e.g. yeast, green algae and vertebrates). Since the secondary structures of both ITS regions are more conserved than the nucleotide sequences, their analysis helps in understanding molecular evolution and increases the number of structural characters. Thus, the structure models developed in this study may be generally useful for future phylogenetic analyses.
Collapse
Affiliation(s)
- Marc Gottschling
- Freie Universität Berlin, Institut für Geologische Wissenschaften-Fachrichtung Paläontologie, Malteserstrasse 74-100, D-12249 Berlin, Germany.
| | | |
Collapse
|
18
|
Lynn DH, Strüder-Kypke M. Phylogenetic position of Licnophora, Lechriopyla, and Schizocaryum, three unusual ciliates (phylum Ciliophora) endosymbiotic in echinoderms (phylum Echinodermata). J Eukaryot Microbiol 2002; 49:460-8. [PMID: 12503681 DOI: 10.1111/j.1550-7408.2002.tb00229.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Various echinoderms are colonized by species from several classes of the Phylum Ciliophora, indicating that the echinoderm "habitat" has been invaded independently on numerous occasions throughout evolutionary history. Two "echinoderm" ciliates whose phylogenetic positions have been problematic are Licnophora macfarlandi Stevens, 1901 and Schizocaryum dogieli Poljansky and Golikova, 1957. Licnophora macfarlandi is an endosymbiont of the respiratory trees of holothuroids, and S. dogieli is found in the esophagus of echinoids. A third species, Lechriopyla mystax Lynch, 1930, is a plagiopylid ciliate found in the intestine of echinoids. Host echinoderms were collected near the Friday Harbor Laboratories, San Juan Island, WA. Specimens of S. dogieli and L. mystax were obtained from the esophagus and intestine, respectively, of the sea urchin Strongylocentrotus pallidus. Specimens of L. macfarlandi were collected from the fluid obtained from the respiratory trees of Parastichopus californicus. Using small subunit ribosomal RNA (SSrRNA) sequences of these three ciliates and a global alignment of SSrRNA sequences of other ciliates, we established the following. 1) Licnophora is a spirotrich ciliate, clearly related to the hypotrichs and stichotrichs; this is corroborated by its possession of macronuclear replication bands. 2) Lechriopyla is the sister genus to Plagiopyla and is a member of the Class Plagiopylea, which was predicted based on its cytology. 3) Schizocaryum clusters in the Class Oligohymenophorea and is most closely related to the scuticociliates; there are currently no morphological features known to relate Schizocaryum to the scuticociliates.
Collapse
Affiliation(s)
- Denis H Lynn
- Department of Zoology, University of Guelph, Guelph, ON, Canada N1G 2W1.
| | | |
Collapse
|
19
|
Spalter RA, Walsh D, Reeves RA, Saul DJ, Gray RD, Bergquist PL, Mackenzie L, Bergquist PR. Sequence heterogeneity of the ribosomal RNA intergenic region Alexandrium species. BIOCHEM SYST ECOL 1997. [DOI: 10.1016/s0305-1978(96)00111-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
20
|
Gutell RR, Schnare MN, Gray MW. A compilation of large subunit (23S- and 23S-like) ribosomal RNA structures. Nucleic Acids Res 1992; 20 Suppl:2095-109. [PMID: 1375996 PMCID: PMC333986 DOI: 10.1093/nar/20.suppl.2095] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
21
|
Géraud ML, Herzog M, Soyer-Gobillard MO. Nucleolar localization of rRNA coding sequences in Prorocentrum micans Ehr. (dinomastigote, kingdom Protoctist) by in situ hybridization. Biosystems 1991; 26:61-74. [PMID: 1841639 DOI: 10.1016/0303-2647(91)90038-m] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
To define the molecular mechanisms of ribosome biogenesis and to find out in which nucleolar compartment transcription of rDNA occurs, we have performed in situ hybridization (ISH) of RNase-treated cryosections using biotinylated rRNA coding sequences as a probe and the eukaryotic dinoflagellate nucleolar system as a model. Recent data from ISH of eukaryotic ribosomal genes by electron microscopy (EM) has so far failed to establish a consensus which clearly defines the function of the three compartments of the nucleolus. Dinomastigote protoctists are the only known eukaryotes whose chromatin is totally devoid of nucleosomes. Their chromosomes remain permanently condensed during the entire cell cycle and active nucleoli arise from an unwound part of some of the otherwise compact chromosomes. In this work, DNA-DNA hybrids were detected either by fluorescent avidin or by indirect immunogold staining procedures in EM; this is the first use of cryosections to detect hybrids in EM not only in the nucleolus sensu lato but also in a dinomastigote cell. Coding sequences of ribosomal genes were detected both in the periphery of the nucleolar organizer region (NOR), which corresponds to the unwound part of the nucleolar chromosome, and in the proximal part of the fibrillo-granular (FG) region. These results suggest that the rRNA gene transcription predominantly occurs at the periphery of the NOR where the coding sequences are located. A predictive model summarizes and allows discussions and comparisons with other eukaryotes in which nucleolar mechanisms were previously studied. This leads to the conclusion that dinoflagellate cells constitute an excellent model for the study of the functional structure of the eukaryotic nucleolus.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M L Géraud
- Département de Biologie Cellulaire et Moléculaire, URA-CNRS No. 117, Banyuls sur mer, France
| | | | | |
Collapse
|
22
|
Schnare MN, Cook JR, Gray MW. Fourteen internal transcribed spacers in the circular ribosomal DNA of Euglena gracilis. J Mol Biol 1990; 215:85-91. [PMID: 2118961 DOI: 10.1016/s0022-2836(05)80097-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cytoplasmic ribosomes from Euglena gracilis contain 16 rRNA components. These include the typical 5 S, 5.8 S and 19 S rRNAs that are found in other eukaryotes as well as 13 discrete small RNAs that interact to form the equivalent of eukaryotic 25-28 S rRNA (accompanying paper). We have utilized DNA sequencing techniques to establish that genes for all of these RNAs, with the exception of 5 S rRNA, are encoded by the 11,500 base-pair circular rDNA of E. gracilis. We have determined the relative positions of the coding regions for the 19 S rRNA and the 14 components (including 5.8 S rRNA) of the large subunit rRNA, thereby establishing that the genes for each of these rRNAs are separated by internal transcribed spacers. We conclude that sequences corresponding to these spacers are removed post-transcriptionally from a high molecular weight pre-rRNA, resulting in a multiply fragmented large subunit rRNA. Internal transcribed spacers, in positions analogous to some of these additional Euglena rDNA spacers, have been found in the rDNA of other organisms and organelles. This finding supports the view that at least some internal transcribed spacers may have been present at an early stage in the evolution of rRNA genes.
Collapse
Affiliation(s)
- M N Schnare
- Department of Biochemistry, Dalhousie University Halifax, Nova Scotia, Canada
| | | | | |
Collapse
|
23
|
Gutell RR, Schnare MN, Gray MW. A compilation of large subunit (23S-like) ribosomal RNA sequences presented in a secondary structure format. Nucleic Acids Res 1990; 18 Suppl:2319-30. [PMID: 1692118 PMCID: PMC331876 DOI: 10.1093/nar/18.suppl.2319] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- R R Gutell
- Cangene Corporation, Mississauga, Ontario, Canada
| | | | | |
Collapse
|
24
|
Lenaers G, Maroteaux L, Michot B, Herzog M. Dinoflagellates in evolution. A molecular phylogenetic analysis of large subunit ribosomal RNA. J Mol Evol 1989; 29:40-51. [PMID: 2504929 DOI: 10.1007/bf02106180] [Citation(s) in RCA: 194] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The sequence of the large subunit ribosomal RNA (LsuRNA) gene of the dinoflagellate Prorocentrum micans has been determined. The inferred rRNA sequence [3408 nucleotides (nt)] is presented in its most probable secondary structure based on compensatory mutations, energy, and conservation criteria. No introns have been found but a hidden break is present in the second variable domain, 690 nt from the 5' end, as judged by agarose gel electrophoresis and primer extension experiments. Prorocentrum micans LsuRNA length and G+C content are close to those of ciliates and yeast. The conserved portions of the molecule (1900 nt) have been aligned with corresponding sequences from various eukaryotes, including five protista, one metaphyta, and three metazoa. An extensive phylogenetic study was performed, comparing two phenetic methods (neighbor joining on difference matrix, and Fitch and Margoliash on Knuc values matrix) and one cladistic (parsimony). The three methods led to similar tree topologies, except for the emergence of yeast that groups with ciliates and dinoflagellates when phenetic methods are used, but emerges later in the most parsimonious tree. This discrepancy was checked by statistical analyses on reduced trees (limited to four species) inferred using parsimony and evolutionary parsimony methods. The data support the phenetic tree topologies and a close relationship between dinoflagellates, ciliates, and yeast.
Collapse
Affiliation(s)
- G Lenaers
- Département de Biologie Cellulaire et Moléculaire, Laboratoire Arago, Université de Paris, VI, CNRS UA 117, Banyuis sur mer, France
| | | | | | | |
Collapse
|
25
|
Lenaers G, Nielsen H, Engberg J, Herzog M. The secondary structure of large-subunit rRNA divergent domains, a marker for protist evolution. Biosystems 1988; 21:215-22. [PMID: 3395681 DOI: 10.1016/0303-2647(88)90016-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The secondary structure of the large-subunit ribosomal RNA (24-26S rRNA) has been studied with emphasis on comparative analysis of the folding patterns of the divergent domains in the available protist sequences, that is Prorocentrum micans (dinoflagellate), Saccharomyces carlsbergensis (yeast), Tetrahymena thermophila (ciliate), Physarum polycephalum and Dictyostelium discoideum (slime moulds), Crithidia fasciculata and Giardia lamblia (parasitic flagellates). The folding for the D3, D7a and D10 divergent domains has been refined and a consensus model for the protist 24-26S rRNA structure is proposed. Two hundred seventy-seven nucleotide-long aligned sequences representing all or part of the D3, H32-33, D8, D9 and D10 divergent domains are used for the construction of unrooted phylogenetic trees either calculated from a nucleotide difference matrix, or determined with the PAUP programme based on the parsimony method. Both phylogenies suggest three major branchings, the first leading to the dinoflagellate (which branches off first), ciliate and yeast, the second to the slime moulds, and the last to the parasitic flagellates.
Collapse
Affiliation(s)
- G Lenaers
- Département de Biologie Moléculaire et Cellulaire, CNRS UA 117, Université Paris VI, France
| | | | | | | |
Collapse
|
26
|
Shippen-Lentz D, Ray R, Scaife JG, Langsley G, Vezza AC. Characterization and complete nucleotide sequence of a 5.8S ribosomal RNA gene from Plasmodium falciparum. Mol Biochem Parasitol 1987; 22:223-31. [PMID: 3553934 DOI: 10.1016/0166-6851(87)90053-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The 5.8S and 5S rRNA components from the FCR-3/The Gambia strain of Plasmodium falciparum have been identified and the complete nucleotide sequence of a 5.8S ribosomal RNA gene determined. Unlike the 5S rRNA species, the 5.8S is a single homogeneous population of molecules of 157 nucleotides. Comparison of its nucleotide sequence with previously reported 5.8S rRNA sequences indicates that it is homologous to these molecules, but distantly related to them. The sequence of the 5.8S rRNA coding region from the pfrib-2 recombinant of the HG13 Gambian isolate of P. falciparum is identical.
Collapse
|