1
|
Lee SA, Kim V, Choi B, Lee H, Chun YJ, Cho KS, Kim D. Functional Characterization of Drosophila melanogaster CYP6A8 Fatty Acid Hydroxylase. Biomol Ther (Seoul) 2023; 31:82-88. [PMID: 35934685 PMCID: PMC9810445 DOI: 10.4062/biomolther.2022.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 01/13/2023] Open
Abstract
Genomic analysis indicated that the genome of Drosophila melanogaster contains more than 80 cytochrome P450 genes. To date, the enzymatic activity of these P450s has not been extensively studied. Here, the biochemical properties of CYP6A8 were characterized. CYP6A8 was cloned into the pCW vector, and its recombinant enzyme was expressed in Escherichia coli and purified using Ni2+-nitrilotriacetate affinity chromatography. Its expression level was approximately 130 nmol per liter of culture. Purified CYP6A8 exhibited a low-spin state in the absolute spectra of the ferric forms. Binding titration analysis indicated that lauric acid and capric acid produced type І spectral changes, with Kd values 28 ± 4 and 144 ± 20 μM, respectively. Ultra-performance liquid chromatography-mass spectrometry analysis showed that the oxidation reaction of lauric acid produced (ω-1)-hydroxylated lauric acid as a major product and ω-hydroxy-lauric acid as a minor product. Steady-state kinetic analysis of lauric acid hydroxylation yielded a kcat value of 0.038 ± 0.002 min-1 and a Km value of 10 ± 2 μM. In addition, capric acid hydroxylation of CYP6A8 yielded kinetic parameters with a kcat value of 0.135 ± 0.007 min-1 and a Km value of 21 ± 4 μM. Because of the importance of various lipids as carbon sources, the metabolic analysis of fatty acids using CYP6A8 in this study can provide an understanding of the biochemical roles of P450 enzymes in many insects, including Drosophila melanogaster.
Collapse
Affiliation(s)
- Sang-A Lee
- Department of Biological Sciences, Konkuk University, Seoul 05025, Republic of Korea
| | - Vitchan Kim
- Department of Biological Sciences, Konkuk University, Seoul 05025, Republic of Korea
| | - Byoungyun Choi
- Department of Biological Sciences, Konkuk University, Seoul 05025, Republic of Korea
| | - Hyein Lee
- College of Pharmacy, Chung Ang University, Seoul 06974, Republic of Korea
| | - Young-Jin Chun
- College of Pharmacy, Chung Ang University, Seoul 06974, Republic of Korea
| | - Kyoung Sang Cho
- Department of Biological Sciences, Konkuk University, Seoul 05025, Republic of Korea
| | - Donghak Kim
- Department of Biological Sciences, Konkuk University, Seoul 05025, Republic of Korea,Corresponding Author E-mail: , Tel: +82-2-450-3366, Fax: +82-2-3436-5432
| |
Collapse
|
2
|
Rong S, Li DQ, Zhang XY, Li S, Zhu KY, Guo YP, Ma EB, Zhang JZ. RNA interference to reveal roles of β-N-acetylglucosaminidase gene during molting process in Locusta migratoria. INSECT SCIENCE 2013; 20:109-119. [PMID: 23955831 DOI: 10.1111/j.1744-7917.2012.01573.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
β-N-acetylglucosaminidases are crucial enzymes involved in chitin degradation in insects. We identified a β-N-acetylglucosaminidase gene (LmNAG1) from Locusta migratoria. The full-length complementary DNA (cDNA) of LmNAG1 consists of 2 667 nucleotides, including an open reading frame (ORF) of 1 845 nucleotides encoding 614 amino acid residues, and 233- and 589-nucleotide non-coding regions at the 5'- and 3'-ends, respectively. Phylogenetic analysis grouped the cDNA-deduced LmNAG1 protein with the enzymatically characterized β-N-acetylglucosaminidases in group I. Analyses of stage- and tissue-dependent expression patterns of LmNAG1 were carried out by real-time quantitative polymerase chain reaction. Our results showed that LmNAG1 transcript level in the integument was significantly high in the last 2 days of the fourth and fifth instar nymphs. LmNAG1 was highly expressed in foregut and hindgut. RNA interference of LmNAG1 resulted in an effective silence of the gene and a significantly reduced total LmNAG enzyme activity at 48 and 72 h after the injection of LmNAG1 double-stranded RNA (dsRNA). As compared with the control nymphs injected with GFP dsRNA, 50% of the dsLmNAG1-injected nymphs were not able to molt successfully and eventually died. Our results suggest that LmNAG1 plays an essential role in molting process of L. migratoria.
Collapse
Affiliation(s)
- Shuo Rong
- Research Institute of Applied Biology, Shanxi University, Taiyuan
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Zhou J, Zhang H, Li J, Sheng X, Zong S, Luo Y, Nagaoka K, Weng Q, Watanabe G, Taya K. Molecular cloning and expression profile of a Halloween gene encoding Cyp307A1 from the seabuckthorn carpenterworm, Holcocerus hippophaecolus. JOURNAL OF INSECT SCIENCE (ONLINE) 2013; 13:56. [PMID: 23909572 PMCID: PMC3740924 DOI: 10.1673/031.013.5601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 09/12/2012] [Indexed: 05/30/2023]
Abstract
20-Hydroxyecdyone, an active form of ecdysteroid, is the key hormone in insect growth and development. Halloween genes encode ecdysteroidogenic enzymes, including cytochrome P450 monooxygenase. CYP307A1 (spook) is accepted as an enzyme acting in the so-called 'black box' that includes a series of hypothetical and unproven reactions that finally result in the oxidation of 7-dehydrocholesterol to diketol. In this study, the Holcocerus hippophaecolus Hua (Lepidoptera: Cossidae) CYP307A1 (HhSpo) gene was identified and characterized. The obtained cDNA sequence was 2084 base pairs with an open reading frame of 537 animo acids, in which existed conserved motifs of CYP450 enzymes. The transcript profiles of HhSpo were analyzed in various tissues of final instar larvae. The highest expression was observed in the prothoracic gland, while expression level was low but significant in other tissues. These results suggest that the sequence character and expression profile of HhSpo were well conserved and provided the basic information for its functional analysis.
Collapse
Affiliation(s)
- Jiao Zhou
- The Key Laboratory for Silviculture and Conservation, Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, P.R. China
| | - Haolin Zhang
- Laboratory of Animal Physiology, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Juan Li
- Laboratory of Animal Physiology, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Xia Sheng
- Laboratory of Animal Physiology, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Shixiang Zong
- The Key Laboratory for Silviculture and Conservation, Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, P.R. China
| | - Youqing Luo
- The Key Laboratory for Silviculture and Conservation, Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, P.R. China
| | - Kentaro Nagaoka
- Faculty of Agriculture, Tokyo University of Agriculture and Technology
| | - Qiang Weng
- Laboratory of Animal Physiology, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Gen Watanabe
- Faculty of Agriculture, Tokyo University of Agriculture and Technology
| | - Kazuyoshi Taya
- Faculty of Agriculture, Tokyo University of Agriculture and Technology
| |
Collapse
|
4
|
Badisco L, Ott SR, Rogers SM, Matheson T, Knapen D, Vergauwen L, Verlinden H, Marchal E, Sheehy MRJ, Burrows M, Broeck JV. Microarray-based transcriptomic analysis of differences between long-term gregarious and solitarious desert locusts. PLoS One 2011; 6:e28110. [PMID: 22132225 PMCID: PMC3223224 DOI: 10.1371/journal.pone.0028110] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 11/01/2011] [Indexed: 12/02/2022] Open
Abstract
Desert locusts (Schistocerca gregaria) show an extreme form of phenotypic plasticity and can transform between a cryptic solitarious phase and a swarming gregarious phase. The two phases differ extensively in behavior, morphology and physiology but very little is known about the molecular basis of these differences. We used our recently generated Expressed Sequence Tag (EST) database derived from S. gregaria central nervous system (CNS) to design oligonucleotide microarrays and compare the expression of thousands of genes in the CNS of long-term gregarious and solitarious adult desert locusts. This identified 214 differentially expressed genes, of which 40% have been annotated to date. These include genes encoding proteins that are associated with CNS development and modeling, sensory perception, stress response and resistance, and fundamental cellular processes. Our microarray analysis has identified genes whose altered expression may enable locusts of either phase to deal with the different challenges they face. Genes for heat shock proteins and proteins which confer protection from infection were upregulated in gregarious locusts, which may allow them to respond to acute physiological challenges. By contrast the longer-lived solitarious locusts appear to be more strongly protected from the slowly accumulating effects of ageing by an upregulation of genes related to anti-oxidant systems, detoxification and anabolic renewal. Gregarious locusts also had a greater abundance of transcripts for proteins involved in sensory processing and in nervous system development and plasticity. Gregarious locusts live in a more complex sensory environment than solitarious locusts and may require a greater turnover of proteins involved in sensory transduction, and possibly greater neuronal plasticity.
Collapse
Affiliation(s)
- Liesbeth Badisco
- Department of Animal Physiology and Neurobiology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Swidbert R. Ott
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Stephen M. Rogers
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Thomas Matheson
- Department of Biology, University of Leicester, Leicester, United Kingdom
| | - Dries Knapen
- Department of Biology, Universiteit Antwerpen, Antwerpen, Belgium
| | - Lucia Vergauwen
- Department of Biology, Universiteit Antwerpen, Antwerpen, Belgium
| | - Heleen Verlinden
- Department of Animal Physiology and Neurobiology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Elisabeth Marchal
- Department of Animal Physiology and Neurobiology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Matt R. J. Sheehy
- Department of Biology, University of Leicester, Leicester, United Kingdom
- Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Malcolm Burrows
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Jozef Vanden Broeck
- Department of Animal Physiology and Neurobiology, Katholieke Universiteit Leuven, Leuven, Belgium
- * E-mail:
| |
Collapse
|
5
|
Lew-Tabor AE, Kurscheid S, Barrero R, Gondro C, Moolhuijzen PM, Rodriguez Valle M, Morgan JAT, Covacin C, Bellgard MI. Gene expression evidence for off-target effects caused by RNA interference-mediated gene silencing of Ubiquitin-63E in the cattle tick Rhipicephalus microplus. Int J Parasitol 2011; 41:1001-14. [PMID: 21712043 DOI: 10.1016/j.ijpara.2011.05.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 05/24/2011] [Accepted: 05/25/2011] [Indexed: 01/10/2023]
Affiliation(s)
- A E Lew-Tabor
- CRC for Beef Genetic Technologies, Armidale, NSW, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Mitchell MJ, Brescia AI, Smith SL, Morgan ED. Effects of the compounds 2-methoxynaphthoquinone, 2-propoxynaphthoquinone, and 2-isopropoxynaphthoquinone on ecdysone 20-monooxygenase activity. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2007; 66:45-52. [PMID: 17694563 DOI: 10.1002/arch.20196] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The effects of the natural compound 2-methoxy-1,4-naphthoquinone, isolated from the leaves of Impatiens glandulifera and the synthetic compounds 2-propoxy-1,4-naphthoquinone and 2-isopropoxy-1,4-naphthoquinone on ecdysone 20-monooxygenase (E-20-M) activity were examined in three insect species. Homogenates of wandering stage third instar larvae of Drosophila melanogaster, or abdomens from adult female Aedes aegypti, or fat body or midgut from fifth instar larvae of Manduca sexta were incubated with radiolabelled ecdysone and increasing concentrations (from 1 x 10(-8) to 1 x 10(-3) M) of the three compounds. All three compounds were found to inhibit in a dose-dependent fashion the E-20-M activity in the three insect species. The concentration of these compounds required to elicit a 50% inhibition of this steroid hydroxylase activity in the three insect species examined ranged from approximately 3 x 10(-5) to 7 x 10(-4) M.
Collapse
Affiliation(s)
- Martin J Mitchell
- Department of Biology and Health Services, Edinboro University of Pennsylvania, Edinboro, Pennsylvania, USA
| | | | | | | |
Collapse
|
7
|
Rauschenbach IY, Gruntenko NE, Chentsova NA, Adonyeva NV, Alekseev AA. Role of ecdysone 20-monooxygenase in regulation of 20-hydroxyecdysone levels by juvenile hormone and biogenic amines in Drosophila. J Comp Physiol B 2007; 178:27-32. [PMID: 17703313 DOI: 10.1007/s00360-007-0196-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2007] [Revised: 07/18/2007] [Accepted: 07/24/2007] [Indexed: 10/22/2022]
Abstract
The effects of increased levels of dopamine (feeding flies with dopamine precursor, L: -dihydroxyphenylalanine) and octopamine (feeding flies with octopamine) on ecdysone 20-monooxygenase activity in young (2 days old) wild type females (the strain wt) of Drosophila virilis have been studied. L: -dihydroxyphenylalanine and octopamine feeding increases ecdysone 20-monooxygenase activity by a factor of 1.6 and 1.7, respectively. Ecdysone 20-monooxygenase activity in the young (1 day old) octopamineless females of the strain Tbetah ( nM18 ), in females of the strain P845 (precursor of Tbetah ( nM18 ) strain) and in wild type females (Canton S) of Drosophila melanogaster have been measured. The absence of octopamine leads to a considerable decrease in the enzyme activity. We have also studied the effects of juvenile hormone application on ecdysone 20-monooxygenase activity in 2-day-old wt females of D. virilis and demonstrated that an increase in juvenile hormone titre leads to an increase in the enzyme activity. We discuss the supposition that ecdysone 20-monooxygenase occupies a key position in the regulation of 20-hydroxyecdysone titre under the conditions that lead to changes in juvenile hormone titre and biogenic amine levels.
Collapse
Affiliation(s)
- Inga Yu Rauschenbach
- Institute of Cytology and Genetics, Siberian Division of Russian Academy of Sciences, Lavrentjev ave., 10, Novosibirsk , 630090, Russia.
| | | | | | | | | |
Collapse
|
8
|
Matolcsy G, Feyereisen R, Van Mellaert H, Pál Á, Varjas L, Bélai I, Kulcsár P. Molecular modifications of benzylphenol and benzyl-1,3-benzodioxole types of insect chemosterilants. ACTA ACUST UNITED AC 2006. [DOI: 10.1002/ps.2780170103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
Rewitz KF, Rybczynski R, Warren JT, Gilbert LI. Developmental expression of Manduca shade, the P450 mediating the final step in molting hormone synthesis. Mol Cell Endocrinol 2006; 247:166-74. [PMID: 16473459 DOI: 10.1016/j.mce.2005.12.053] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2005] [Revised: 12/20/2005] [Accepted: 12/28/2005] [Indexed: 11/25/2022]
Abstract
The ecdysone 20-monooxygenase (E20MO; 20-hydroxylase) is the enzyme that mediates the conversion of ecdysone (E) to the active insect molting hormone, 20-hydroxyecdysone (20E), which coordinates developmental progression. We report the identification and developmental expression of the Halloween gene shade (shd; CYP314A1) that encodes the E20MO in the tobacco hornworm, Manduca sexta. Manduca Shd (MsShd) mediates the conversion of E to 20E when expressed in Drosophila S2 cells. In accord with the central dogma, the data show that Msshd is expressed mainly in the midgut, Malpighian tubules, fat body and epidermis with very low expression in the prothoracic gland and nervous system. Developmental variations in E20MO enzymatic activity are almost perfectly correlated with comparable changes in the gene expression of Msshd in the fat body and midgut during the fifth instar and the beginning of pupal-adult development. The results indicate three successive and overlapping peaks of expression in the fat body, midgut and Malpighian tubules, respectively, during the fifth larval instar. The data suggest that precise tissue-specific transcriptional regulation controls the levels, and thereby the activity, of the Manduca E20MO.
Collapse
Affiliation(s)
- Kim F Rewitz
- Department of Life Sciences and Chemistry, Roskilde University, P.O. Box 260, 4000 Roskilde, Denmark
| | | | | | | |
Collapse
|
10
|
Helvig C, Tijet N, Feyereisen R, Walker FA, Restifo LL. Drosophila melanogaster CYP6A8, an insect P450 that catalyzes lauric acid (ω-1)-hydroxylation. Biochem Biophys Res Commun 2004; 325:1495-502. [PMID: 15555597 DOI: 10.1016/j.bbrc.2004.10.194] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2004] [Indexed: 10/26/2022]
Abstract
Only a handful of P450 genes have been functionally characterized from the approximately 90 recently identified in the genome of Drosophila melanogaster. Cyp6a8 encodes a 506-amino acid protein with 53.6% amino acid identity with CYP6A2. CYP6A2 has been shown to catalyze the metabolism of several insecticides including aldrin and heptachlor. CYP6A8 is expressed at many developmental stages as well as in adult life. CYP6A8 was produced in Saccharomyces cerevisiae and enzymatically characterized after catalytic activity was reconstituted with D. melanogaster P450 reductase and NADPH. Although several saturated or non-saturated fatty acids were not metabolized by CYP6A8, lauric acid (C12:0), a short-chain unsaturated fatty acid, was oxidized by CYP6A8 to produce 11-hydroxylauric acid with an apparent V(max) of 25 nmol/min/nmol P450. This is the first report showing that a member of the CYP6 family catalyzes the hydroxylation of lauric acid. Our data open new prospects for the CYP6 P450 enzymes, which could be involved in important physiological functions through fatty acid metabolism.
Collapse
Affiliation(s)
- Christian Helvig
- Department of Chemistry, The University of Arizona, Tucson, AZ 85721, USA.
| | | | | | | | | |
Collapse
|
11
|
Winter J, Eckerskorn C, Waditschatka R, Kayser H. A microsomal ecdysone-binding cytochrome P450 from the insect Locusta migratoria purified by sequential use of type-II and type-I ligands. Biol Chem 2001; 382:1541-9. [PMID: 11767943 DOI: 10.1515/bc.2001.188] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A dual-affinity method was established to purify, for the first time, a microsomal ecdysone-binding cytochrome P450 protein from locust Malpighian tubules. This method involved, after prepurification on omega-octylamino-agarose and hydroxylapatite, binding of cytochrome P450 to an immobilized triazole-based general P450 inhibitor (type-II ligand) followed by elution with the substrate ecdysone (type-I ligand) of the bound cytochrome. The isolated material showed a typical cytochrome P450 spectrum, a specific heme content of 13 nmol/mg protein, and a prominent protein of about 60 kDa on SDS-PAGE. Based on a tryptic undecapeptide sequence the isolated protein may be identical to CYP6H1, a putative ecdysone 20-monooxygenase recently cloned from the same tissue. Ecdysone 20-monooxygenase activity could be partially reconstituted from microsomal detergent extracts, when supplemented with purified bovine cytochrome P450 reductase and detergent-extracted microsomes; reconstitution was not successful with any chromatographic fraction, however. Therefore, purification of the locust cytochrome P450 was monitored by ecdysone-induced type-I difference spectra, whenever applicable, in addition to carbon monoxide spectra. Affinity columns with matrix-bound diethylstilbestrol and testosterone 3-thiosemicarbazone, but not with the 17beta-hemisuccinate, yielded elution profiles with ecdysone that were comparable to those of the triazole matrix. The concept of dual-affinity chromatography described here may be generally applicable to the isolation of cytochromes P450.
Collapse
Affiliation(s)
- J Winter
- Syngenta Crop Protection AG, Basel, Switzerland
| | | | | | | |
Collapse
|
12
|
Winter J, Bilbe G, Richener H, Sehringer B, Kayser H. Cloning of a cDNA encoding a novel cytochrome P450 from the insect Locusta migratoria: CYP6H1, a putative ecdysone 20-hydroxylase. Biochem Biophys Res Commun 1999; 259:305-10. [PMID: 10362503 DOI: 10.1006/bbrc.1999.0783] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The biosynthesis of the steroidal molting hormone, 20-hydroxyecdysone, of arthropods involves a series of cytochrome P450-catalyzed hydroxylations. None of the many sequences of insect cytochromes P450, known to date, is related to ecdysteroid pathways. Here, we report the cloning and sequencing of a full-length cDNA of a new cytochrome P450, classified as CYP6H1, from malpighian tubules of the locust, Locusta migratoria. The 1854 bp DNA contained an open reading frame coding for a protein of 542 amino acids, a 5'-leader sequence and a 3'-untranslated region containing a polyadenylation signal and a poly(A) tail. The encoded protein had been isolated as an ecdysone-binding cytochrome P450 from microsomes of the same tissue in previous work. The closest homolog of CYP6H1 was CYP6A2 from Drosophila with 42.1% identity. According to Northern analysis, CYP6H1 is predominantly expressed at larval instars and in malpighian tubules. Evidence is presented for a functional assignment of CYP6H1 to microsomal ecdysone 20-hydroxylase of the locust.
Collapse
Affiliation(s)
- J Winter
- Research Biochemistry, Novartis Crop Protection AG, Basel, CH-4002, Switzerland
| | | | | | | | | |
Collapse
|
13
|
Abstract
The P450 enzymes (mixed function oxidases, cytochrome P450 monooxygenases), a diverse class of enzymes found in virtually all insect tissues, fulfill many important tasks, from the synthesis and degradation of ecdysteroids and juvenile hormones to the metabolism of foreign chemicals of natural or synthetic origin. This diversity in function is achieved by a diversity in structure, as insect genomes probably carry about 100 P450 genes, sometimes arranged in clusters, and each coding for a different P450 enzyme. Both microsomal and mitochondrial P450s are present in insects and are best studied by heterologous expression of their cDNA and reconstitution of purified enzymes. P450 genes are under complex regulation, with induction playing a central role in the adaptation to plant chemicals and regulatory mutations playing a central role in insecticide resistance. Polymorphisms in induction or constitutive expression allow insects to scan their P450 gene repertoire for the appropriate response to chemical insults, and these evolutionary pressures in turn maintain P450 diversity.
Collapse
Affiliation(s)
- R Feyereisen
- Department of Entomology, University of Arizona, Tucson 85721, USA.
| |
Collapse
|
14
|
Horike N, Sonobe H. Ecdysone 20-monooxygenase in eggs of the silkworm, Bombyx mori: enzymatic properties and developmental changes. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 1999; 41:9-17. [PMID: 10331236 DOI: 10.1002/(sici)1520-6327(1999)41:1<9::aid-arch3>3.0.co;2-g] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Ecdysone 20-monooxygenase in eggs of the silkworm Bombyx mori was characterized in relation to embryonic development. First, subcellular fractions were prepared by means of differential centrifugation, and analyzed using marker enzymes and antibodies against NADPH-cytochrome P450 reductase. It was demonstrated that most ecdysone 20-monooxygenase activity was associated with microsomes, and that there was little or no intrinsic mitochondrial ecdysone 20-monooxygenase. Next, conditions for the measurement of ecdysone 20-monooxygenase activity were established for the microsomal fraction, and changes in the enzyme activity were measured in diapause eggs and non-diapause eggs during early embryogenesis. It was demonstrated that enzyme activity in diapause eggs remained at a low level, while that in the non-diapause eggs increased from the gastrula stage. The increase in egg ecdysone 20-monooxygenase activity was prevented by actinomycin D and alpha-amanitin, suggesting that gene transcription is required for eliciting an increase in ecdysone 20-monooxygenase activity.
Collapse
Affiliation(s)
- N Horike
- Department of Biology, Konan University, Kobe, Japan
| | | |
Collapse
|
15
|
Mitchell MJ, Smith SL, Johnson S, Morgan ED. Effects of the neem tree compounds azadirachtin, salannin, nimbin, and 6-desacetylnimbin on ecdysone 20-monooxygenase activity. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 1997; 35:199-209. [PMID: 9131784 DOI: 10.1002/(sici)1520-6327(1997)35:1/2<199::aid-arch18>3.0.co;2-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The effects of azadirachtin, salannin, nimbin, and 6-desacetylnimbin on ecdysone 20-monooxygenase (E-20-M) activity were examined in three insect species. Homogenates of wandering stage third instar larvae of Drosophila melanogaster, or abdomens from adult female Aedes aegypti, or fat body or midgut from fifth instar larvae of Manduca sexta were incubated with radiolabeled ecdysone and increasing concentrations (from 1 x 10(-8) to 1 x 10(-3) M) of the four compounds isolated from seed kernels of the neem tree, Azadirachta indica. All four neem tree compounds were found to inhibit, in a dose-dependent fashion, the E-20-M activity in three insect species. The concentration of these compounds required to elicit a 50% inhibition of this steroid hydroxylase activity in the three insect species examined ranged from approximately 2 x 10(-5) to 1 x 10(-3).
Collapse
Affiliation(s)
- M J Mitchell
- Department of Biology and Health Services, Edinboro University of Pennsylvania 16444, USA.
| | | | | | | |
Collapse
|
16
|
Chen JH, Hara T, Fisher MJ, Rees HH. Immunological analysis of developmental changes in ecdysone 20-mono-oxygenase expression in the cotton leafworm, Spodoptera littoralis. Biochem J 1994; 299 ( Pt 3):711-7. [PMID: 8192659 PMCID: PMC1138078 DOI: 10.1042/bj2990711] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The developmental changes in ecdysone 20-mono-oxygenase during the sixth larval instar of the cotton leafworm, Spodoptera littoralis, were investigated. The specific activity of mitochondrial ecdysone 20-mono-oxygenase in the fat-body exhibited a distinct peak at 72 h, at which time the larvae stop feeding. Immunoblot analyses, using antibodies raised against components of vertebrate mitochondrial steroidogenic enzyme systems [anti-(cytochrome P-450scc), anti-(cytochrome P-450(11) beta), anti-adrenodoxin and anti-(adrenodoxin reductase) antibodies], revealed the presence of specific immunoreactive polypeptides in fat-body mitochondrial extracts. In addition, these antibodies effectively inhibited fat-body mitochondrial ecdysone 20-mono-oxygenase activity. This suggests that the S. littoralis steroid-hydroxylating system(s) may contain polypeptide components analogous to those present in vertebrates. A close correlation between developmental changes in mitochondrial ecdysone 20-mono-oxygenase activity and the abundance of polypeptides (approx. 66 kDa and 50 kDa) recognized by the anti-(cytochrome P-450(11) beta) antibody and a polypeptide (approx. 52 kDa) recognized by the anti-(adrenodoxin reductase) antibody were observed in both fat-body and midgut. These results suggest that developmental changes in the abundance of components of the ecdysone 20-mono-oxygenase system may play an important role in the developmental regulation of the enzyme expression and, hence, of 20-hydroxyecdysone titre.
Collapse
Affiliation(s)
- J H Chen
- Department of Biochemistry, University of Liverpool, U.K
| | | | | | | |
Collapse
|
17
|
Keogh DP, Mitchell MJ, Crooks JR, Smith SL. Effects of the adenylate cyclase activator forskolin and its inactive derivative 1,9-dideoxyforskolin on insect cytochrome P-450 dependent steroid hydroxylase activity. EXPERIENTIA 1992; 48:39-41. [PMID: 1737575 DOI: 10.1007/bf01923603] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The adenylate cyclase activator forskolin and its pharmacologically inactive derivative 1,9-dideoxyforskolin were found to inhibit in a dose-dependent fashion the ecdysone 20-monooxygenase activity associated with wandering stage larvae of Drosophila melanogaster and fat body and midgut from last instar larvae of the tobacco hornworm, Manduca sexta. The concentrations of these labdane diterpenes required to elicit a 50% inhibition of the cytochrome P-450 dependent steroid hydroxylase activity in the insect tissues ranged from approximately 5 x 10(-6) to 5 x 10(-4) M.
Collapse
Affiliation(s)
- D P Keogh
- Department of Biological Sciences, Bowling Green State University, Ohio 43403-0212
| | | | | | | |
Collapse
|
18
|
Keogh DP, Smith SL. Regulation of cytochrome P-450 dependent steroid hydroxylase activity in Manduca sexta: effects of the ecdysone agonist RH 5849 on ecdysone 20-monooxygenase activity. Biochem Biophys Res Commun 1991; 176:522-7. [PMID: 2018541 DOI: 10.1016/0006-291x(91)90956-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The non-steroidal ecdysone agonist RH 5849 (1,2-dibenzoyl-1-tert-butylhydrazine) was found to inhibit in a dose-response and apparently competitive fashion the cytochrome P-450 dependent ecdysone 20-monooxygenase activity in the midgut of wandering stage last instar larvae of the tobacco hornworn, Manduca sexta. More effectively on a per molar basis than the naturally occurring molting hormones ecdysone and 20-hydroxyecdysone, RH 5849 was also found to elicit the dramatic 50-fold increase in midgut steroid hydroxylase activity (which normally occurs with the onset of the wandering stage) when injected into competent head or thoracic ligated pre-wandering last instar larvae. These data support and extend the potential usefulness of RH 5849 as a pharmacological probe for further investigating the actions of ecdysteroids and their role(s) in the regulation of ecdysteroid monooxygenases.
Collapse
Affiliation(s)
- D P Keogh
- Department of Biological Sciences, Bowling Green State University, OH 43403
| | | |
Collapse
|
19
|
Ecdysone 20-monooxygenase in a cricket, Gryllus bimaculatus (Ensifera, Gryllidae)?characterization of the microsomal midgut steroid hydroxylase in adult females. J Comp Physiol B 1991. [DOI: 10.1007/bf00258752] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
20
|
Mitchell MJ, Smith SL. Ecdysone 20-monooxygenase activity throughout the life cycle of Drosophila melanogaster. Gen Comp Endocrinol 1988; 72:467-70. [PMID: 3149248 DOI: 10.1016/0016-6480(88)90170-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- M J Mitchell
- Department of Biological Sciences, Bowling Green State University, Ohio 43403
| | | |
Collapse
|
21
|
Smith SL, Mitchell MJ. Effects of azadirachtin on insect cytochrome P-450 dependent ecdysone 20-monooxygenase activity. Biochem Biophys Res Commun 1988; 154:559-63. [PMID: 2900005 DOI: 10.1016/0006-291x(88)90176-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The effects of the insect growth and ecdysis inhibitor azadirachtin on ecdysone 20-monooxygenase activity were examined in three insect species. Homogenates of wandering stage third instar larvae of Drosophila melanogaster, or abdomens from adult female Aedes aegypti, or fat body or midgut from last instar larvae of Manduca sexta were incubated with radiolabelled ecdysone and increasing concentrations of azadirachtin and the ecdysone 20-monoxygenase activity quantified by radioassay. Azadirachtin was found to inhibit in a dose-response fashion the ecdysone 20-monooxygenase activity associated with all the insect preparations. The concentration of azadirachtin required to elicit approximately 50% inhibition of the ecdysone 20-monooxygenase activity ranged from a low of 1 x 10(-4) M for Drosophila to a high of 4 x 10(-4) M for Manduca midgut.
Collapse
Affiliation(s)
- S L Smith
- Department of Biological Sciences, Bowling Green State University, OH 43403
| | | |
Collapse
|
22
|
Hemolymph ecdysteroid titer and midgut ecdysone 20-monooxygenase activity during the last larval stage of Diploptera punctata. ACTA ACUST UNITED AC 1986. [DOI: 10.1016/0020-1790(86)90005-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
23
|
|
24
|
Mitchell MJ, Smith SL. Characterization of ecdysone 20-monooxygenase activity in wandering stage larvae of Drosophilamelanogaster. ACTA ACUST UNITED AC 1986. [DOI: 10.1016/0020-1790(86)90030-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
25
|
Feyereisen R, Farnsworth D. Developmental changes of microsomal cytochrome monooxygenases in larval and adult Diploptera punctata. ACTA ACUST UNITED AC 1985. [DOI: 10.1016/0020-1790(85)90104-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Greenwood DR, Rees HH. Ecdysone 20-mono-oxygenase in the desert locust, Schistocerca gregaria. Biochem J 1984; 223:837-47. [PMID: 6439188 PMCID: PMC1144370 DOI: 10.1042/bj2230837] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The enzyme catalysing the hydroxylation of ecdysone to 20-hydroxyecdysone, ecdysone 20-mono-oxygenase (EC 1.14.99.22), was investigated in the Malpighian tubules of fifth-instar locusts, Schistocerca gregaria. Enzyme activity was optimal at 35 degrees C and pH 6.8-8.0. Under these conditions the mono-oxygenase exhibited an apparent Km for ecdysone of 7.1 X 10(-7) M, a maximal specific activity of 1.1 nmol/h per mg of protein and was competitively inhibited by 20-hydroxyecdysone with an apparent Ki of 6.3 X 10(-7) M. Enzyme activity was decreased in the presence of Ca2+, Mg2+, EDTA and non-ionic detergents. The Malpighian tubule ecdysone 20-mono-oxygenase was localized primarily in the subcellular fraction sedimenting at 7500 g and, on the basis of marker enzyme profiles, was assigned mainly to the mitochondria. NADPH was required for activity, although addition of NADH together with NADPH had a synergistic effect. NADP+-dependent isocitrate dehydrogenase (EC 1.1.1.42) and an energy-dependent NAD(P) transhydrogenase (EC 1.6.1.1.) appeared to be the major sources of reducing equivalents, with the contribution from the 'malic enzyme' (EC 1.1.1.40) being less important. The monooxygenase was characterized as a cytochrome P-450-containing mixed-function oxidase from the inhibition patterns with metyrapone, CO and cyanide; CO inhibition was reversible with monochromatic light at 450 nm. However, the ecdysone 20-mono-oxygenase shows much lower sensitivity to CO inhibition and to photodissociation of the CO-inhibited complex than do vertebrate cytochrome P-450-dependent hydroxylation systems. The concentration of cytochrome P-450 in the Malpighian tubule mitochondria was 30 pmol/mg of protein. The properties of the mono-oxygenase are discussed in relation to hydroxylation enzymes from other sources.
Collapse
|
27
|
|
28
|
|
29
|
Smith SL, Bollenbacher WE, Gilbert LI. Ecdysone 20-monooxygenase activity during larval-pupal development of Manduca sexta. Mol Cell Endocrinol 1983; 31:227-51. [PMID: 6628832 DOI: 10.1016/0303-7207(83)90151-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Profiles of ecdysone 20-monooxygenase (E-20-M) activity in the fat body and midgut of Manduca sexta were determined during larval-pupal development. The E-20-M activities for both tissues were found to exhibit a single major fluctuation during this 10-day period of development: fat body, a 10-fold fluctuation with peak activity on day 4; midgut, a 60-fold fluctuation with peak activity on day 5. Substrate kinetics revealed that the apparent Km values of fat body and midgut monooxygenases for ecdysone were fairly constant during the instar, 2.42 X 10(-7) M and 4.67 X 10(-7) M, respectively. By contrast, the monooxygenase Vmax values in each tissue fluctuated in a manner both quantitatively and temporally coincident with the fluctuations in enzyme activity. These findings suggest that changes in E-20-M activity are a function of changes in the titer of the enzyme. The possible developmental significance of the fluctuations in E-20-M activity are discussed.
Collapse
|
30
|
Maa WC, Terriere LC. Age-dependent variation in enzymatic and electrophoretic properties of house fly (M. domestica) carboxylesterases. ACTA ACUST UNITED AC 1983. [DOI: 10.1016/0742-8413(83)90132-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Salaün JP, Benveniste I, Reichhart D, Durst F. Induction and specificity of a (cytochrome P-450)-dependent laurate in-chain-hydroxylase from higher plant microsomes. EUROPEAN JOURNAL OF BIOCHEMISTRY 1981; 119:651-5. [PMID: 7308207 DOI: 10.1111/j.1432-1033.1981.tb05657.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The substrate and product specifities of the (cytochrome P-450)-dependent laurate monooxygenase from tuber tissues of Jerusalem artichoke (Helianthus tuberosus L.) were investigated. The plant enzyme appeared strictly specific for the C12 free fatty acid and produced a mixture of C-8, C-9 and C-10 hydroxylated lauric acids, the C-9 derivative being predominant. No C-12 or C-11 hydroxylated laurates were detected. The activity of the enzyme, which was not detectable in the intact tuber, was induced by slicing and aging the tissues on water, and strongly superinduced by the addition of manganese and phenobarbital to the aging medium. Regulation of laurate hydroxylase was clearly independent from that of cinnamic acid 4-hydroxylase, another plant cytochrome P-450 enzyme.
Collapse
|