1
|
Dynamics of HOX gene expression and regulation in adipocyte development. Gene 2020; 768:145308. [PMID: 33197517 DOI: 10.1016/j.gene.2020.145308] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/08/2020] [Accepted: 11/10/2020] [Indexed: 02/03/2023]
Abstract
HOX proteins are homeodomain-containing transcription factors that play a central role in development. We have applied genome-wide approaches to develop time-dependent profile of differentially expressed genes in early and mature adipocytes. The list of differentially expressed HOX genes were developed by analyzing the microarray datasets of murine adipocyte samples at different time points of development. Since these datasets were obtained from Gene Expression Omnibus (GEO), we were able to find a new HOX gene, HOXC13 in adipogenesis. To investigate whether these members of the homeobox gene family are expressed and regulated in preadipocytes or mature adipocytes, RNA was isolated from 3T3-L1 preadipocyte cells at different time point's through-out the preadipocyte and adipocyte state. A reverse transcriptase-polymerase chain reaction strategy was applied for the analysis of gene expression. We have observed that HOXA5 and HOXC13 were differentially expressed in preadipocytes and HOXD4 and HOXD8 in mature adipocytes. To understand this difference in expression pattern, we have considered to investigate the role of the major regulators of adipogenesis in HOX gene regulation. Since Retinoic acid receptor (RAR) was reported previously as a regulator of Hox genes, we chose the combination of Peroxisome proliferator-activated receptor gamma (PPARγ) and Retinoic X receptor (RXR) which are modulated by the presence of RAR. To provide a detailed analysis of retinoic acid (RA) and/or PPARγ induced transcriptional and epigenetic changes within the homeotic clusters of mouse fibroblast cells (3T3-L1), we have performed a promoter mapping of HOX genes and observed an enriched binding site for PPARγ and RXR in their promoter regions. We further confirmed this PPARγ and RXR binding to HOX gene promoters by re-analyzing the anti-PPARγ/anti-RXR ChIP-Seq data. Based on the results, we modulated the PPARγ expression at the transcriptional and translational levels by using 5 different pharmacological molecules (TSA, GW9662, ATRA, FH535, and Pioglitazone) to elucidate their effect on the HOX gene transcription. These pharmacological molecules had a direct or indirect regulatory effect on the PPARγ activity. We observed that PPARγ suppression alone is enough for the upregulation of HOXA5 and HOXD4 genes. In addition, HOXD8 regulation was mediated by RAR activation in mature adipocytes but the regulation of HOXC13 gene expression was not clear. We suggest that it might be partially mediated through suppressing PPARγ activation. Further insights are required to provide a mechanistic detail about HOX gene regulation through PPARγ. In this study, we have reported a time-dependent expression analysis of HOXA5, HOXD4, HOXD8, and HOXC13 in preadipocytes and mature adipocytes. Also, we have suggested PPARγ/RAR dependent regulation for these genes during adipogenesis.
Collapse
|
2
|
Jiang G, Dallas-Yang Q, Li Z, Szalkowski D, Liu F, Shen X, Wu M, Zhou G, Doebber T, Berger J, Moller DE, Zhang BB. Potentiation of insulin signaling in tissues of Zucker obese rats after acute and long-term treatment with PPARgamma agonists. Diabetes 2002; 51:2412-9. [PMID: 12145152 DOI: 10.2337/diabetes.51.8.2412] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Thiazolidinediones (TZDs), agonists of peroxisome proliferator-activated receptor-gamma (PPARgamma), improve insulin sensitivity in vivo, and the mechanism remains largely unknown. In this study, we showed that, in Zucker obese (fa/fa) rats, acute (1-day) treatment with both rosiglitazone (a TZD) and a non-TZD PPARgamma agonist (nTZD) reduced plasma free fatty acid and insulin levels and, concomitantly, potentiated insulin-stimulated Akt phosphorylation at threonine 308 (Akt-pT308) in adipose and muscle tissues. A similar effect on Akt was observed in liver after a 7-day treatment. The increase in Akt-pT308 was correlated with an increase in Akt phosphorylation at serine 473 (Akt-pS473), tyrosine phosphorylation of insulin receptor beta subunit and insulin receptor substrate-1, and serine phosphorylation of glycogen synthase kinase-3alpha/beta. The agonists appeared to potentiate Akt1 phosphorylation in muscle and liver and both Akt1 and Akt2 in adipose. Finally, potentiation of insulin signaling was also observed in isolated adipose tissue ex vivo and differentiated 3T3 L1 adipocytes in vitro, but not in rat primary hepatocytes in vitro. These results suggest that 1) PPARgamma agonists acutely potentiate insulin signaling in adipose and muscle tissues and such regulation may be physiologically relevant to insulin sensitization in vivo; 2) the agonists directly target adipose tissues; and 3) the metabolic and signaling effects of the agonists are mediated by structurally distinct PPARgamma agonists.
Collapse
Affiliation(s)
- Guoqiang Jiang
- Department of Molecular Endocrinology-Diabetes, Merck Research Laboratories, Rahway, New Jersey 07065, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Hevener AL, Reichart D, Janez A, Olefsky J. Thiazolidinedione treatment prevents free fatty acid-induced insulin resistance in male wistar rats. Diabetes 2001; 50:2316-22. [PMID: 11574414 DOI: 10.2337/diabetes.50.10.2316] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We sought to ascertain whether pretreatment with troglitazone (20 days) could prevent acute free fatty acid (FFA)-induced insulin resistance in male Wistar rats. Animals were divided into three groups: 1) control, 2) FFA infusion alone (FFA1), and 3) thiazolidinedione (TZD)-treated + FFA infusion (FFA1). Days before a hyperinsulinemic-euglycemic clamp, all animals were cannulated in the jugular vein (infusion) and carotid artery (sampling). Animals were allowed 5 days to recover from surgery and fasted 12 h before the experiment. Glucose (variable), insulin (40 mU. kg(-1). min(-1)), and Liposyn (heparinized 10% lipid emulsion) infusions were initiated simultaneously and continued from 0-120 min. Steady-state glucose, 8.3 +/- 0.14 mmol/l, and insulin concentrations, 7.3 +/- 2.45 nmol/l, were the same between groups. Interestingly, steady-state FFA levels were significantly lower in animals pretreated with TZD compared with FFA alone (1.83 +/- 0.26 vs. 2.96 +/- 0.25 mmol/l; P = 0.009), despite matched intralipid infusion rates. A second group of TZD-treated animals (TZD + FFA2) were infused with intralipid at a higher infusion rate (44%) to match the arterial concentrations of FFA1. The glucose infusion and insulin-stimulated glucose disposal rates (GDRs) were significantly decreased (40%) for untreated Liposyn infused (FFA1) compared with control rats. In addition, insulin receptor substrate-1 (IRS-1) phosphorylation and IRS-1-associated phosphatidylinositol (PI) 3-kinase activity was significantly reduced, 30-50%, in FFA1 rats. TZD pretreatment prevented the FFA-induced decrement in insulin signaling. Fatty acid translocase (FAT/CD36) also was significantly reduced (56%) in untreated FFA1 rats after the clamp but remained identical to control values for TZD-treated rats. In conclusion, acutely elevated FFA levels 1) induced a significant reduction in tracer-determined GDR paralleled by impaired tyrosine phosphorylation of IRS-1 and reduced IRS-1-associated PI 3-kinase activity and 2) induced a significant reduction in FAT/CD36 total protein. TZD pretreatment prevented FFA-induced decrements in insulin action and prevented the reduction in FAT/CD36 protein.
Collapse
Affiliation(s)
- A L Hevener
- Department of Medicine, University of California, San Diego, La Jolla, California 92093-0673, USA
| | | | | | | |
Collapse
|
4
|
Kanoh Y, Bandyopadhyay G, Sajan MP, Standaert ML, Farese RV. Rosiglitazone, insulin treatment, and fasting correct defective activation of protein kinase C-zeta/lambda by insulin in vastus lateralis muscles and adipocytes of diabetic rats. Endocrinology 2001; 142:1595-605. [PMID: 11250941 DOI: 10.1210/endo.142.4.8066] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Atypical protein kinases C (PKCs), zeta and lambda, and protein kinase B (PKB) are thought to function downstream of phosphatidylinositol 3-kinase (PI 3-kinase) and regulate glucose transport during insulin action in skeletal muscle and adipocytes. Insulin-stimulated glucose transport is defective in type II diabetes mellitus, and this defect is ameliorated by thiazolidinediones and lowering of blood glucose by chronic insulin therapy or short-term fasting. Presently, we evaluated the effects of these insulin-sensitizing modalities on the activation of insulin receptor substrate-1 (IRS-1)-dependent PI 3-kinase, PKC-zeta/lambda, and PKB in vastus lateralis skeletal muscles and adipocytes of nondiabetic and Goto-Kakizaki (GK) diabetic rats. Insulin provoked rapid increases in the activity of PI 3-kinase, PKC-zeta/lambda, and PKB in muscles and adipocytes of nondiabetic rats, but increases in IRS-1-dependent PI 3-kinase and PKC-zeta/lambda, but not PKB, activity were substantially diminished in GK muscles and adipocytes. Rosiglitazone treatment for 10-14 days, 10-day insulin treatment, and 60-h fasting reversed defects in PKC-zeta/lambda activation in GK muscles and adipocytes and increased glucose transport in GK adipocytes, without necessarily increasing IRS-1-dependent PI 3-kinase or PKB activation. Our findings suggest that insulin-sensitizing modalities, viz. thiazolidinediones, chronic insulin treatment, and short-term fasting, similarly improve defects in insulin-stimulated glucose transport at least partly by correcting defects in insulin-induced activation of PKC-zeta/lambda.
Collapse
Affiliation(s)
- Y Kanoh
- J. A. Haley Veterans Hospital Research Service and Department of Internal Medicine, University of South Florida College of Medicine Tampa, Florida 33612, USA
| | | | | | | | | |
Collapse
|
5
|
Kanoh Y, Bandyopadhyay G, Sajan MP, Standaert ML, Farese RV. Thiazolidinedione treatment enhances insulin effects on protein kinase C-zeta /lambda activation and glucose transport in adipocytes of nondiabetic and Goto-Kakizaki type II diabetic rats. J Biol Chem 2000; 275:16690-6. [PMID: 10749857 DOI: 10.1074/jbc.m000287200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We evaluated effects of the thiazolidinedione, rosiglitazone, on insulin-induced activation of protein kinase C (PKC)-zeta/lambda and glucose transport in adipocytes of Goto-Kakizaki (GK)-diabetic and nondiabetic rats. Insulin effects on PKC-zeta/lambda and 2-deoxyglucose uptake were diminished by approximately 50% in GK adipocytes, as compared with control adipocytes. This defect in insulin-induced PKC-zeta/lambda activation was associated with diminished activation of IRS-1-dependent phosphatidylinositol (PI) 3-kinase, and was accompanied by diminished phosphorylation of threonine 410 in the activation loop of PKC-zeta; in contrast, protein kinase B (PKB) activation and phosphorylation were not significantly altered. Rosiglitazone completely reversed defects in insulin-stimulated 2-deoxyglucose uptake, PKCzeta/lambda enzyme activity and PKC-zeta threonine 410 phosphorylation, but had no effect on PI 3-kinase activation or PKB activation/phosphorylation in GK adipocytes. Similarly, in adipocytes of nondiabetic rats, rosiglitazone provoked increases in insulin-stimulated 2-deoxyglucose uptake, PKC-zeta/lambda enzyme activity and phosphorylation of both threonine 410 activation loop and threonine 560 autophosphorylation sites in PKC-zeta, but had no effect on PI 3-kinase activation or PKB activation/phosphorylation. Our findings suggest that (a) decreased effects of insulin on glucose transport in adipocytes of GK-diabetic rats are due at least in part to diminished phosphorylation/activation of PKC-zeta/lambda, and (b) thiazolidinediones enhance glucose transport responses to insulin in adipocytes of both diabetic and nondiabetic rats through increases in phosphorylation/activation of PKC-zeta/lambda.
Collapse
Affiliation(s)
- Y Kanoh
- J. A. Haley Veterans Hospital Research Service and Department of Internal Medicine, University of South Florida College of Medicine Tampa, FL 33612, USA
| | | | | | | | | |
Collapse
|
6
|
Abstract
Resistance to the action of insulin in its target tissues in a major predisposing factor for the development of type 2 diabetes and is also tightly associated with a common pattern of cardiovascular risk factors that characterize the "insulin resistance syndrome." The thiazolidinediones are a new class of drugs that act as insulin sensitizers with well-documented-efficacy in the control of hyperglycemia in patients with overt diabetes. A growing body of evidence also suggests that thiazolidinediones may preserve beta-cell function and protect cardiovascular and renal function in patients with type 2 diabetes. This review will summarize our current notions of the mechanism of action of thiazolidinediones, which appears to involve a fascinating interplay between the partitioning of triglyceride stores, circulating free fatty acids and insulin signaling pathways. A detailed understanding of the action of thiazolidinediones will provide new insights into the pathogenesis of insulin resistance, diabetes and some of the causes of increased cardiovascular mortality in these conditions.
Collapse
Affiliation(s)
- B J Goldstein
- Dorrance H. Hamilton Research Laboratories, Division of Endocrinology, Diabetes, and Metabolic Diseases, Department of Medicine, Jefferson Medical College, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
7
|
Liu LS, Tanaka H, Ishii S, Eckel J. The new antidiabetic drug MCC-555 acutely sensitizes insulin signaling in isolated cardiomyocytes. Endocrinology 1998; 139:4531-9. [PMID: 9794462 DOI: 10.1210/endo.139.11.6310] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Freshly isolated adult rat ventricular cardiomyocytes have been used to characterize the action profile of the new thiazolidinedione antidiabetic drug MCC-555. Preincubation of cells with the compound (100 microM for 30 min or 10 microM for 2 h) did not modify basal 3-O-methylglucose transport, but produced a marked sensitizing effect (2- to 3-fold increase in insulin action at 3 x 10(-11) M insulin) and a further enhancement of maximum insulin action (1.8-fold). MCC-555 did not modulate autophosphorylation of the insulin receptor and tyrosine phosphorylation of insulin receptor substrate-1 (IRS-1). However, insulin action (10(-10) and 10(-7) M) on IRS-1-associated phosphatidylinositol (PI) 3-kinase activity was enhanced 2-fold in the presence of MCC-555. Association of the p85 adapter subunit of PI 3-kinase to IRS-1 was not modified by the drug. Immunoblotting experiments demonstrated expression of the peroxisomal proliferator-activated receptor-gamma in cardiomyocytes reaching about 30% of the abundance observed in adipocytes. The insulin-sensitizing effect of MCC-555 was lost after inhibition of protein synthesis by preincubation of the cells with cycloheximide (1 mM; 30 min). Cardiomyocytes from obese Zucker rats exhibited a completely blunted response of glucose transport at 3 x 10(-11) M insulin. MCC-555 ameliorates this insulin resistance, producing a 2-fold stimulation of glucose transport, with maximum insulin action being 1.6-fold higher than that in control cells. This drug effect was paralleled by a significant dephosphorylation of IRS-1 on Ser/Thr. In conclusion, MCC-555 rapidly sensitizes insulin-stimulated cardiac glucose uptake by enhancing insulin signaling resulting from increased intrinsic activity of PI 3-kinase. Acute activation of protein expression leading to a modulation of the Ser/Thr phosphorylation state of signaling proteins such as IRS-1 may be underlying this process. It is suggested that MCC-555 may provide a causal therapy of insulin resistance by targeted action on the defective site in the insulin signaling cascade.
Collapse
Affiliation(s)
- L S Liu
- Molecular Cardiology, Diabetes Research Institute, Düsseldorf, Germany
| | | | | | | |
Collapse
|
8
|
Lefebvre AM, Peinado-Onsurbe J, Leitersdorf I, Briggs MR, Paterniti JR, Fruchart JC, Fievet C, Auwerx J, Staels B. Regulation of lipoprotein metabolism by thiazolidinediones occurs through a distinct but complementary mechanism relative to fibrates. Arterioscler Thromb Vasc Biol 1997; 17:1756-64. [PMID: 9327774 DOI: 10.1161/01.atv.17.9.1756] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Thiazolidinediones are antidiabetic agents, which not only improve glucose metabolism but also reduce blood triglyceride concentrations. These compounds are synthetic ligands for PPAR gamma, a transcription factor belonging to the nuclear receptor subfamily of PPARs, which are important transcriptional regulators of lipid and lipoprotein metabolism. The goal of this study was to evaluate the influence of a potent thiazolidinedione, BRL49653, on serum lipoproteins and to determine whether its lipid-lowering effects are mediated by changes in the expression of key genes implicated in lipoprotein metabolism. Treatment of normal rats for 7 days with BRL49653 decreased serum triglycerides in a dose-dependent fashion without affecting serum total and HDL cholesterol and apolipoprotein (apo) A-I and apo A-II concentrations. The decrease in triglyceride concentrations after BRL49653 was mainly due to a reduction of the amount of VLDL particles of unchanged lipid and apo composition. BRL49653 treatment did not change triglyceride production in vivo as analyzed by injection of Triton WR-1339, indicating a primary action on triglyceride catabolism. Analysis of the influence of BRL49653 on the expression of LPL and apo C-III, two key players in triglyceride catabolism, showed a dose-dependent increase in mRNA levels and activity of LPL in epididymal adipose tissue, whereas liver apo C-III mRNA levels remained constant. Furthermore, addition of BRL49653 to primary cultures of differentiated adipocytes increased LPL mRNA levels, indicating a direct action of the drug on the adipocyte. Simultaneous administration of BRL49653 and fenofibrate, a hypolipidemic drug that acts primarily on liver through activation of PPAR alpha both decreased liver apo C-III and increased adipose tissue LPL mRNA levels, resulting in a more pronounced lowering of serum triglycerides than each drug alone. In conclusion, both fibrates and thiazolidinediones exert a hypotriglyceridemic effect. While fibrates act primarily on the liver by decreasing apo C-III production, BRL49653 acts primarily on adipose tissue by increasing lipolysis through the induction of LPL expression. Drugs combining both PPAR alpha and gamma activation potential should therefore display a more efficient hypotriglyceridemic activity than either compound alone and may provide a rationale for improved therapy for elevated triglycerides.
Collapse
Affiliation(s)
- A M Lefebvre
- U.325 INSERM, Département d'Athérosclérose, Institut Pasteur, Lille, France
| | | | | | | | | | | | | | | | | |
Collapse
|