1
|
Effects of a selanylimidazopyridine on the acute restraint stress-induced depressive- and anxiety-like behaviors and biological changes in mice. Behav Brain Res 2019; 366:96-107. [DOI: 10.1016/j.bbr.2019.03.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/07/2019] [Accepted: 03/11/2019] [Indexed: 12/24/2022]
|
2
|
Peters J. Local renin-angiotensin systems in the adrenal gland. Peptides 2012; 34:427-32. [PMID: 22391260 DOI: 10.1016/j.peptides.2012.01.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 01/28/2012] [Accepted: 01/28/2012] [Indexed: 10/28/2022]
Abstract
In the adrenal gland all components of the renin-angiotensin system (RAS) are expressed in both the adrenal cortex and the adrenal medulla. In this review evidence shall be presented that a local secretory RAS exists in the adrenal cortex that stimulates aldosterone production and serves as an amplification system for circulating angiotensin (ANG) II. The regulation of the secretory adrenal RAS clearly differs from the regulation of the circulatory RAS in terms of renin expression as well as of renin secretion. For example under potassium load the activity of the renal and circulatory RAS is suppressed whereas the activity of the adrenal RAS is stimulated. Thus the activity of the adrenal RAS but not of the circulating RAS correlates well with the regulation of aldosterone production by potassium. The present review also summarizes the knowledge about the expression and functions of an additional renin transcript that has recently been discovered. This transcript encodes for a non-secretory cytosolic renin isoform. The cytosolic renin may be a basis for the existence of an intracellular renin system in the adrenal gland that has long been proposed. The present state of knowledge shall be discussed indicating that such an intracellular system modulates cell survival and cell death such as apoptosis and necrosis or cell functions such as aldosterone production.
Collapse
Affiliation(s)
- Jörg Peters
- Institute of Physiology, University of Greifswald, Germany.
| |
Collapse
|
3
|
Fletcher EL, Phipps JA, Ward MM, Vessey KA, Wilkinson-Berka JL. The renin-angiotensin system in retinal health and disease: Its influence on neurons, glia and the vasculature. Prog Retin Eye Res 2010; 29:284-311. [PMID: 20380890 DOI: 10.1016/j.preteyeres.2010.03.003] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Renin-Angiotensin System is classically recognized for its role in the control of systemic blood pressure. However, the retina is recognized to have all the components necessary for angiotensin II formation, suggestive of a role for Angiotensin II in the retina that is independent of the systemic circulation. The most well described effects of Angiotensin II are on the retinal vasculature, with roles in vasoconstriction and angiogenesis. However, it is now emerging that Angiotensin II has roles in modulation of retinal function, possibly in regulating GABAergic amacrine cells. In addition, Angiotensin II is likely to have effects on glia. Angiotensin II has also been implicated in retinal vascular diseases such as Retinopathy of Prematurity and diabetic retinopathty, and more recently actions in choroidal neovascularizaiton and glaucoma have also emerged. The mechanisms by which Angiotensin II promotes angiogensis in retinal vascular diseases is indicative of the complexity of the RAS and the variety of cell types that it effects. Indeed, these diseases are not purely characterized by direct effects of Angiotensin II on the vasculature. In retinopathy of prematurity, for example, blockade of AT1 receptors prevents pathological angiogenesis, but also promotes revascularization of avascular regions of the retina. The primary site of action of Angiotensin II in this disease may be on retinal glia, rather than the vasculature. Indeed, blockade of AT1 receptors prevents glial loss and promotes the re-establishment of normal vessel growth. Blockade of RAS as a treatment for preventing the incidence and progression of diabetic retinopathy has also emerged based on a series of studies in animal models showing that blockade of the RAS prevents the development of a variety of vascular and neuronal deficits in this disease. Importantly these effects may be independent of actions on systemic blood pressure. This has culminated recently with the completion of several large multi-centre clinical trials that showed that blockade of the RAS may be of benefit in some at risk patients with diabetes. With the emergence of novel compounds targeting different aspects of the RAS even more effective ways of blocking the RAS may be possible in the future.
Collapse
Affiliation(s)
- Erica L Fletcher
- Department of Anatomy and Cell Biology, The University of Melbourne, Parkville 3010, Victoria, Australia.
| | | | | | | | | |
Collapse
|
4
|
Spät A, Hunyady L. Control of aldosterone secretion: a model for convergence in cellular signaling pathways. Physiol Rev 2004; 84:489-539. [PMID: 15044681 DOI: 10.1152/physrev.00030.2003] [Citation(s) in RCA: 329] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Aldosterone secretion by glomerulosa cells is stimulated by angiotensin II (ANG II), extracellular K(+), corticotrophin, and several paracrine factors. Electrophysiological, fluorimetric, and molecular biological techniques have significantly clarified the molecular action of these stimuli. The steroidogenic effect of corticotrophin is mediated by adenylyl cyclase, whereas potassium activates voltage-operated Ca(2+) channels. ANG II, bound to AT(1) receptors, acts through the inositol 1,4,5-trisphosphate (IP(3))-Ca(2+)/calmodulin system. All three types of IP(3) receptors are coexpressed, rendering a complex control of Ca(2+) release possible. Ca(2+) release is followed by both capacitative and voltage-activated Ca(2+) influx. ANG II inhibits the background K(+) channel TASK and Na(+)-K(+)-ATPase, and the ensuing depolarization activates T-type (Ca(v)3.2) Ca(2+) channels. Activation of protein kinase C by diacylglycerol (DAG) inhibits aldosterone production, whereas the arachidonate released from DAG in ANG II-stimulated cells is converted by lipoxygenase to 12-hydroxyeicosatetraenoic acid, which may also induce Ca(2+) signaling. Feedback effects and cross-talk of signal-transducing pathways sensitize glomerulosa cells to low-intensity stimuli, such as physiological elevations of [K(+)] (< or =1 mM), ANG II, and ACTH. Ca(2+) signaling is also modified by cell swelling, as well as receptor desensitization, resensitization, and downregulation. Long-term regulation of glomerulosa cells involves cell growth and proliferation and induction of steroidogenic enzymes. Ca(2+), receptor, and nonreceptor tyrosine kinases and mitogen-activated kinases participate in these processes. Ca(2+)- and cAMP-dependent phosphorylation induce the transfer of the steroid precursor cholesterol from the cytoplasm to the inner mitochondrial membrane. Ca(2+) signaling, transferred into the mitochondria, stimulates the reduction of pyridine nucleotides.
Collapse
Affiliation(s)
- András Spät
- Dept. of Physiology, Semmelweis University, Faculty of Medicine, PO Box 259, H-1444 Budapest, Hungary.
| | | |
Collapse
|
5
|
Montero-Hadjadje M, Pelletier G, Yon L, Li S, Guillemot J, Magoul R, Tillet Y, Vaudry H, Anouar Y. Biochemical characterization and immunocytochemical localization of EM66, a novel peptide derived from secretogranin II, in the rat pituitary and adrenal glands. J Histochem Cytochem 2003; 51:1083-95. [PMID: 12871990 DOI: 10.1177/002215540305100812] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Characterization of secretogranin II (SgII) mRNA in various vertebrates has revealed selective conservation of the amino acid sequences of two regions of the protein, i.e., the bioactive peptide secretoneurin and a flanking novel peptide that we named EM66. To help elucidate the possible role of EM66, we examined the occurrence as well as the cellular and subcellular distribution of EM66 in rat pituitary and adrenal glands by using a polyclonal antibody raised against the recombinant human EM66 peptide. High-performance liquid chromatography (HPLC) analysis of rat pituitary and adrenal extracts combined with a radioimmunoassay resolved EM66-immunoreactive material exhibiting the same retention time as recombinant EM66. In the rat pituitary, double-labeling immunohistochemical (IHC) studies showed that EM66 immunoreactivity (IR) was present in gonadotrophs, lactotrophs, thyrotrophs, and melanotrophs, whereas corticotrophs were devoid of labeling. EM66-IR was also observed in nerve endings in the neural lobe. Immunocytochemical staining at the electron microscopic level revealed that EM66-IR is sequestered in the secretory granules within gonadotrophs and lactotrophs. In the adrenal medulla, double IHC labeling showed that EM66-IR occurs exclusively in epinephrine-synthesizing cells. At the ultrastructural level, EM66-IR was seen in chromaffin vesicles of adrenomedullary cells. These results demonstrate that post-translational processing of SgII generates a novel peptide that exhibits a cell-specific distribution in the rat pituitary and adrenal glands where it is stored in secretory granules, supporting the notion that EM66 may play a role in the endocrine system.
Collapse
Affiliation(s)
- Maité Montero-Hadjadje
- European Institute for Peptide Research (IFRMP 23), Laboratory of Cellular and Molecular Neuroendocrinology, INSERM U413, UA CNRS, University of Rouen, Mont-Saint-Aignan, France
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Jezova M, Armando I, Bregonzio C, Yu ZX, Qian S, Ferrans VJ, Imboden H, Saavedra JM. Angiotensin II AT(1) and AT(2) receptors contribute to maintain basal adrenomedullary norepinephrine synthesis and tyrosine hydroxylase transcription. Endocrinology 2003; 144:2092-101. [PMID: 12697718 DOI: 10.1210/en.2002-0019] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Angiotensin II (Ang II) AT(1) receptors have been proposed to mediate the Ang II-dependent and the stress-stimulated adrenomedullary catecholamine synthesis and release. However, in this tissue, most of the Ang II receptors are of the AT(2) type. We asked the question whether AT(1) and AT(2) receptors regulate basal catecholamine synthesis. Long-term AT(1) receptor blockade decreased adrenomedullary AT(1) receptor binding, AT(2) receptor binding and AT(2) receptor protein, rat tyrosine hydroxylase (TH) mRNA, norepinephrine (NE) content, Fos-related antigen 2 (Fra-2) protein, phosphorylated cAMP response element binding protein (pCREB), and ERK2. Long-term AT(2) receptor blockade decreased AT(2) receptor binding, TH mRNA, NE content and Fra-2 protein, although not affecting AT(1) receptor binding or receptor protein, pCREB or ERK2. Angiotensin II colocalized with AT(1) and AT(2) receptors in ganglion cell bodies. AT(2) receptors were clearly localized to many, but not all, chromaffin cells. Our data support the hypothesis of an AT(1)/AT(2) receptor cross-talk in the adrenomedullary ganglion cells, and a role for both receptor types on the selective regulation of basal NE, but not epinephrine formation, and in the regulation of basal TH transcription. Whereas AT(1) and AT(2) receptors involve the Fos-related antigen Fra-2, AT(1) receptor transcriptional effects include pCREB and ERK2, indicating common as well as different regulatory mechanisms for each receptor type.
Collapse
Affiliation(s)
- Miroslava Jezova
- Section on Pharmacology, Division of Intramural Research Programs, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Levi R, Silver RB, Mackins CJ, Seyedi N, Koyama M. Activation of a renin-angiotensin system in ischemic cardiac sympathetic nerve endings and its association with norepinephrine release. Int Immunopharmacol 2002; 2:1965-73. [PMID: 12489810 DOI: 10.1016/s1567-5769(02)00148-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We had reported that in the ischemic heart, locally formed bradykinin (BK) and angiotensin II (Ang II) activate B2- and AT1-receptors on sympathetic nerve terminals (SNE), promoting reversal of the norepinephrine (NE) transporter in an outward direction (i.e., carrier-mediated NE release). Although both BK and Ang II contribute to ischemic NE release, Ang II is likely to play a more important role. Since BK is formed by ischemic SNE, we questioned whether cardiac SNE also contribute to local Ang II formation, in addition to being a target of Ang II. SNE were isolated from surgical specimens of human right atrium and incubated in ischemic conditions. These SNE released large amounts of endogenous NE via a carrier-mediated mechanism, as evidenced by the inhibitory effect of desipramine on this process. Moreover, two renin inhibitors, pepstatin-A and BILA 2157 BS, the ACE inhibitor enalaprilat and the AT1-receptor antagonist EXP3174 prevented ischemic NE release. Western blot analysis revealed the presence of renin in cardiac SNE. Renin abundance increased more than three-fold during ischemia. Thus, renin is present in cardiac SNE and is activated during ischemia, eventually culminating in Ang II formation, stimulation of AT1-receptors and carrier-mediated NE release. Our findings uncover a novel autocrine mechanism, by which Ang II, formed at SNE in myocardial ischemia, elicits carrier-mediated NE release by activating prejuntional AT1-receptors.
Collapse
Affiliation(s)
- Roberto Levi
- Department of Pharmacology, Weill Medical College of Cornell University, Room LC419, 1300 York Avenue, New York, NY 10021, USA.
| | | | | | | | | |
Collapse
|
8
|
Wang JM, Slembrouck D, Tan J, Arckens L, Leenen FHH, Courtoy PJ, De Potter WP. Presence of cellular renin-angiotensin system in chromaffin cells of bovine adrenal medulla. Am J Physiol Heart Circ Physiol 2002; 283:H1811-8. [PMID: 12384458 DOI: 10.1152/ajpheart.01092.2001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The presence of a local renin-angiotensin system has been established in organs that serve as angiotensin targets. In this study, the expression of angiotensinogen mRNA and subcellular localization of renin, angiotensin-converting enzyme, and angiotensin II were investigated in bovine adrenal medullary cells in primary culture. By light microscopy, expression of angiotensinogen mRNA, immunoreactive renin, angiotensin-converting enzyme, and angiotensin II were readily detectable only in the chromaffin cells. The density distribution of renin and angiotensin II in sucrose gradients suggested a concentration in chromaffin granules, a localization directly confirmed by immunoelectron microscopy. Reverse transcriptase-polymerase chain reaction and sequencing confirmed the expression of angiotensinogen in bovine chromaffin cells and the adrenal medulla. In addition, in vitro autoradiography indicated that both angiotensin-converting enzyme and angiotensin type 1 receptors were present in the adrenal medulla. These results provide the first direct evidence that chromaffin cells in the adrenal medulla are not only the target for angiotensin but should also be considered as potential local angiotensin-generating and -storing cells.
Collapse
Affiliation(s)
- Jun Ming Wang
- Laboratory of Neuropharmacology and Neurobiology, Department of Medicine, Universitaire Instelling Antwerpen, University of Antwerp, B-2610 Antwerp, Belgium
| | | | | | | | | | | | | |
Collapse
|
9
|
Wilkinson-Berka JL, Kelly DJ, Rong P, Campbell DJ, Skinner SL. Characterisation of a thymic renin-angiotensin system in the transgenic m(Ren-2)27 rat. Mol Cell Endocrinol 2002; 194:201-9. [PMID: 12242043 DOI: 10.1016/s0303-7207(02)00217-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We previously showed the rat thymus contains and secretes active renin. However, the cellular location of the thymic renin-angiotensin system (RAS) is unknown. To more easily study the thymic RAS we used the hypertensive transgenic (mRen-2)27 rat which overexpresses renin and angiotensin in extra-renal tissues. Comparisons were made with normotensive Sprague Dawley (SD) rats. All rats exhibited intense immunolabeling for renin protein and angiotensin in macrophages and thymic epithelial cells, however renin prosequence was not detected. In each rat strain, thymic renin was predominately active and highest in Ren-2 rats (Ren-2, 22.6+/-4.2, SD 0.8+/-0.1 mGoldblatt Units/g, mean+/-SEM). Renin mRNA was identified in Ren-2 and SD rat thymus by RT-PCR. Thymic angiotensin II concentrations/wet weight in Ren-2 (20.1+/-1.1 fmol/g) and SD (15.8+/-2.3 fmol/g) rats were similar to plasma. In conclusion, macrophages and epithelial cells are the source of active renin in the rat thymus. The thymic RAS may have actions systemically and may also influence local processes such as blood flow and cell growth.
Collapse
Affiliation(s)
- Jennifer L Wilkinson-Berka
- Department of Physiology, The University of Melbourne, Grattan Street, Parkville 3010, Victoria, Australia.
| | | | | | | | | |
Collapse
|
10
|
Seyedi N, Koyama M, Mackins CJ, Levi R. Ischemia promotes renin activation and angiotensin formation in sympathetic nerve terminals isolated from the human heart: contribution to carrier-mediated norepinephrine release. J Pharmacol Exp Ther 2002; 302:539-44. [PMID: 12130713 DOI: 10.1124/jpet.302.2.539] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We recently reported that in the ischemic human heart, locally formed angiotensin II activates angiotensin II type 1 (AT(1)) receptors on sympathetic nerve terminals, promoting reversal of the norepinephrine transporter in an outward direction (i.e., carrier-mediated norepinephrine release). The purpose of this study was to assess whether cardiac sympathetic nerve endings contribute to local angiotensin II formation, in addition to being a target of angiotensin II. To this end, we isolated sympathetic nerve endings (cardiac synaptosomes) from surgical specimens of human right atrium and incubated them in ischemic conditions (95% N(2,) sodium dithionite, and no glucose for 70 min). These synaptosomes released large amounts of endogenous norepinephrine via a carrier-mediated mechanism, as evidenced by the inhibitory effect of desipramine on this process. Norepinephrine release was further enhanced by preincubation of synaptosomes with angiotensinogen and was prevented by two renin inhibitors, pepstatin-A and BILA 2157BS, as well as by the angiotensin-converting enzyme inhibitor enalaprilat and the AT(1) receptor antagonist EXP 3174 [2-N-butyl-4-chloro-1-[2'-(1H-tetrazol-5-yl)biphenyl-4-yl] methyl]imidazole-5-carboxylic acid]. Western blot analysis revealed the presence of renin in cardiac sympathetic nerve terminals; renin abundance increased ~3-fold during ischemia. Thus, renin is rapidly activated during ischemia in cardiac sympathetic nerve terminals, and this process eventually culminates in angiotensin II formation, stimulation of AT(1) receptors, and carrier-mediated norepinephrine release. Our findings uncover a novel autocrine/paracrine mechanism whereby angiotensin II, formed at adrenergic nerve endings in myocardial ischemia, elicits carrier-mediated norepinephrine release by activating adjacent AT(1) receptors.
Collapse
Affiliation(s)
- Nahid Seyedi
- Department of Pharmacology, Cornell University Weill Medical College, 1300 York Avenue, New York, NY 10021, USA
| | | | | | | |
Collapse
|
11
|
Lapner KN, Perry SF. The role of angiotensin II in regulating catecholamine secretion during hypoxia in rainbow troutOncorhynchus mykiss. J Exp Biol 2001; 204:4169-76. [PMID: 11809790 DOI: 10.1242/jeb.204.23.4169] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYExperiments were performed in vivo on chronically cannulated adult rainbow trout (Oncorhynchus mykiss) to assess the involvement of serotonergic or muscarinic receptor stimulation or activation of the renin–angiotensin system in eliciting catecholamine release during acute hypoxia during periods of nicotinic receptor desensitisation.Despite nicotinic receptor desensitisation induced by intravenous infusion of nicotine (1.3×10–5 mol kg–1 h–1), plasma catecholamine levels were increased to levels (adrenaline plus noradrenaline 125–200 nmol l–1) similar to those in control fish during severe hypoxia (40–45 mmHg; 5.3–6.0 kPa). Blockade of serotonergic receptors using methysergide or of muscarinic receptors using atropine did not affect the ability of fish to elevate circulating catecholamine levels during hypoxia. However, selective blockade of the renin–angiotensin system, using lisinopril to inhibit angiotensin-converting enzyme, prevented the elevation of both angiotensin II and circulating catecholamine levels in acutely hypoxic fish experiencing nicotinic receptor desensitisation. In fish possessing functional nicotinic receptors, angiotensin-converting enzyme blockade attenuated but did not prevent the elevation of plasma catecholamine levels during hypoxia. The results of this study indicate that the renin–angiotensin system is activated during hypoxia and plays a role in eliciting catecholamine release that is secondary to activation of nicotinic receptors. However, under conditions of nicotinic receptor desensitisation, activation of the renin–angiotensin system during hypoxia is a prerequisite for catecholamine release.
Collapse
Affiliation(s)
- K N Lapner
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Ontario, Canada K1N 6N5
| | | |
Collapse
|
12
|
Rong P, Wilkinson-Berka JL, Skinner SL. Control of renin secretion from adrenal gland in transgenic Ren-2 and normal rats. Mol Cell Endocrinol 2001; 173:203-12. [PMID: 11223191 DOI: 10.1016/s0303-7207(00)00406-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In Ren-2 rats, plasma active renin and prorenin increase following binephrectomy (BNx) related to increasing plasma potassium. Adrenal is the source of the increasing prorenin but active renin comes mainly from thymus and gut. Trophic influences other than potassium were tested in the present work. Angiotensin did not influence the post-BNx increases in plasma active or prorenin but suppressed resting plasma prorenin from non-adrenal, non-renal sources virtually to zero. ACTH and histamine had no discernible effects. Hexamethonium decreased by 50% the post BNx increase in prorenin but not active renin. In Sprague-Dawley and spontaneously hypertensive rats, low levels of active renin secretion were detected from adrenal but no prorenin. Thus, in anesthetized Ren-2 rats, secreted prorenin is from two sources, i.e. extrarenal and extra-adrenal sites readily suppressible with angiotensin and the adrenal that is partly suppressible by autonomic blockage. This may assist in identifying the origin of extra-renal prorenin secreted in man.
Collapse
Affiliation(s)
- P Rong
- Department of Physiology, The University of Melbourne, Vic. 3010, Parkville, Australia
| | | | | |
Collapse
|
13
|
Morris BJ. Renin. Compr Physiol 2000. [DOI: 10.1002/cphy.cp070301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Clausmeyer S, Reinecke A, Farrenkopf R, Unger T, Peters J. Tissue-specific expression of a rat renin transcript lacking the coding sequence for the prefragment and its stimulation by myocardial infarction. Endocrinology 2000; 141:2963-70. [PMID: 10919285 DOI: 10.1210/endo.141.8.7623] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
An alternative transcript of the rat renin gene was recently characterized in the adrenal gland, in addition to the known messenger RNA (mRNA) coding for preprorenin. In the alternative transcript, exon 1 is replaced by exon 1A, a domain originating in intron 1. The reading frame of this mRNA, termed exon 1A-renin transcript, codes for a truncated prorenin that presumably remains intracellular, in contrast to preprorenin, which is targeted to the secretory pathway by its prefragment. We here demonstrate the tissue-specific regulation of expression of both transcripts by RT and PCR. In many tissues both transcripts are present, for example in the adrenal gland, spleen, liver, and hypothalamus. In some organs, however, only one of the renin mRNAs is found. In the kidney only the full-length mRNA coding for preprorenin is detected. In the heart exclusively the exon 1A-mRNA is expressed, but not the preprorenin transcript. After myocardial infarction, which is known to activate the intracardiac renin-angiotensin system, expression of exon 1A-renin mRNA in the left ventricle was stimulated about 4-fold, compared with that in sham-operated animals, whereas no mRNA corresponding to preprorenin was detectable. These findings may have implications for the current concepts of local extrarenal renin-angiotensin systems, as they provide the molecular basis for a possible intracellular function of renin and exclude a role for locally produced secretory renin in the heart.
Collapse
Affiliation(s)
- S Clausmeyer
- Department of Pharmacology, University of Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
15
|
Clausmeyer S, Stürzebecher R, Peters J. An alternative transcript of the rat renin gene can result in a truncated prorenin that is transported into adrenal mitochondria. Circ Res 1999; 84:337-44. [PMID: 10024308 DOI: 10.1161/01.res.84.3.337] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Characterization of the local renin-angiotensin system in the rat adrenal zona glomerulosa indicated a dual targeting of renin both to the secretory pathway and mitochondria. To investigate the transport of renin into mitochondria, we constructed a series of amino-terminal deletion variants of preprorenin. One of these variants, lacking the complete signal sequence for the endoplasmic reticulum and 10 amino acids of the profragment, was transported efficiently into isolated mitochondria. The transport was further shown to be dependent on mitochondrial membrane potential and ATP synthesis. Analysis of adrenal RNA revealed the existence of 2 renin transcripts. While one of the transcripts corresponds to the known full-length transcript, the other one lacks exon 1; instead, exon 2 is preceded by a domain of 80 nucleotides originating from intron 1. This domain, as well as the following region of intron 1 being excised, shows all essential sequence elements defining an additional, so-far-unknown exon. The second mRNA possibly derives from an additional transcription start in intron 1 and an alternative splicing process. Translation of this mRNA could result in a truncated prorenin representing a cytosolic form of renin, which is required for transport into mitochondria. This truncated prorenin corresponds exactly to the deletion variant being imported into mitochondria in vitro.
Collapse
Affiliation(s)
- S Clausmeyer
- Department of Pharmacology, University of Heidelberg, Germany
| | | | | |
Collapse
|
16
|
Lo YC, Brett L, Kenyon CJ, Morley SD, Mason JI, Williams BC. StAR protein is expressed in both medulla and cortex of the bovine and rat adrenal gland. Endocr Res 1998; 24:559-63. [PMID: 9888537 DOI: 10.3109/07435809809032645] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We have employed polyclonal antibodies to a peptide sequence of bovine steroidogenic acute regulatory (StAR) protein and human placental 3beta-hydroxysteroid dehydrogenase (3beta-HSD) to determine the localisation and distribution of these proteins in rat and bovine adrenal glands. Immunohistochemical staining demonstrated the presence of StAR protein in the zona glomerulosa (ZG), zona fasciculata (ZF), zona reticularis (ZR) and in the medulla of both species. For 3beta-HSD, immunostaining was observed in the ZG, ZF and ZR of the rat adrenal and was absent in the medulla. Immunoblotting experiments showed intense bands for StAR protein (30 kDa, 37 kDa) in the mitochondria of bovine ZG, ZF and medulla and a less intense band (30 kDa) in the microsomes. In rat ZG and ZF/R mitochondria only the 30 kDa protein was present. For 3beta-HSD, an intense band (42 kDa) was found in microsomes and mitochondria of rat and bovine ZG and ZFR. A very faint signal for 3beta-HSD was seen in adrenal medulla. In conclusion, StAR (or a closely related) protein is present throughout the adrenal gland in rat and bovine species in contrast to 3beta-HSD which is confined to the steroidogenic zones. The possible function of StAR protein in the adrenal medulla merits investigation.
Collapse
Affiliation(s)
- Y C Lo
- Department of Clinical Biochemistry, The Royal Infirmary of Edinburgh, Scotland, UK
| | | | | | | | | | | |
Collapse
|
17
|
Kelly DJ, Wilkinson-Berka JL, Allen TJ, Cooper ME, Skinner SL. A new model of diabetic nephropathy with progressive renal impairment in the transgenic (mRen-2)27 rat (TGR). Kidney Int 1998; 54:343-52. [PMID: 9690200 DOI: 10.1046/j.1523-1755.1998.00019.x] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND The tissue renin-angiotensin system (RAS) may modulate the structural and functional changes that occur in the diabetic kidney. METHODS Hypertensive transgenic (mREN-2)27 rat (TGR) that exhibit increased tissue renin expression were administered streptozotocin (STZ, diabetic) or citrate buffer (non-diabetic) at six weeks of age, and sacrificed 4 and 12 weeks later. Further groups were treated for 12 weeks post-STZ or vehicle with the angiotensin converting enzyme inhibitor, perindopril. Comparisons were made with 18-week-old non-diabetic and diabetic spontaneously hypertensive rats (SHR). RESULTS In diabetic TGR, the most florid lesion was seen after 12 weeks of STZ, with kidneys exhibiting vacuolated tubules, hylanized arterioles, medullary fibrosis and necrosis and severe glomerulosclerosis. In contrast, only mild glomerulosclerosis was seen in non-diabetic TGR and diabetic SHR. Glomerular filtration rate was increased after four weeks of diabetes in TGR and 12 weeks of diabetes in SHR, but declined by greater than 50% after 12 weeks of diabetes in TGR. In both TGR and SHR, diabetes increased albuminuria but did not modify systolic blood pressure. Renal renin content increased progressively in diabetic TGR, and this was associated with increased renin immunolabeling in the juxtaglomerular apparatus (JGA) and the appearance of renin in proximal convoluted tubules. In contrast, renal renin content and JGA renin immunolabeling were unchanged in diabetic SHR. Perindopril attenuated renal pathology, improved renal function and abolished proximal tubular renin immunolabeling in diabetic TGR. CONCLUSIONS This is the first report of a diabetic rodent model developing rapid onset renal impairment. Furthermore, this study suggests a role for an activated renal RAS in the acceleration of diabetic renal disease and confirms the benefit of drugs that inhibit this system.
Collapse
Affiliation(s)
- D J Kelly
- Department of Physiology, University of Melbourne, Parkville, Australia
| | | | | | | | | |
Collapse
|
18
|
Ehrhart-Bornstein M, Hinson JP, Bornstein SR, Scherbaum WA, Vinson GP. Intraadrenal interactions in the regulation of adrenocortical steroidogenesis. Endocr Rev 1998; 19:101-43. [PMID: 9570034 DOI: 10.1210/edrv.19.2.0326] [Citation(s) in RCA: 312] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|