1
|
Ledda C, Loreto C, Zammit C, Marconi A, Fago L, Matera S, Costanzo V, Sanzà GF, Palmucci S, Ferrante M, Costa C, Fenga C, Biondi A, Pomara C, Rapisarda V. Non‑infective occupational risk factors for hepatocellular carcinoma: A review (Review). Mol Med Rep 2017; 15:511-533. [PMID: 28000892 PMCID: PMC5364850 DOI: 10.3892/mmr.2016.6046] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 07/01/2016] [Indexed: 02/07/2023] Open
Abstract
Liver cancer is the second leading worldwide cause of cancer‑associated mortalities. Hepatocellular carcinoma, which accounts for the majority of liver tumors, ranks fifth among types of human cancer. Well‑established risk factors for liver cancer include the hepatitis B and C viruses, aflatoxins, alcohol consumption, and oral contraceptives. Tobacco smoking, androgenic steroids, and diabetes mellitus are suspected risk factors. Current knowledge regarding non‑infective occupational risk factors for liver cancer is inconclusive. The relevance of liver disorders to occupational medicine lies in the fact that the majority of chemicals are metabolized in the liver, and toxic metabolites generated via metabolism are the predominant cause of liver damage. However, their non‑specific clinical manifestations that are similar in a number of liver diseases make diagnosis difficult. Furthermore, concomitant conditions, such as viral hepatitis and alcohol or drug abuse, may mask liver disorders that result from occupational hepatotoxic agents and block the demonstration of an occupational cause. The identification of environmental agents that result in human cancer is a long and often difficult process. The purpose of the present review is to summarize current knowledge regarding the association of non‑infective occupational risk exposure and HCC, to encourage further research and draw attention to this global occupational public health problem.
Collapse
Affiliation(s)
- Caterina Ledda
- Occupational Medicine, Department of Clinical and Experimental Medicine, University of Catania, I-95123 Catania, Italy
- Hygiene and Public Health, Department of Medical Sciences, Surgical and Advanced Technologies ‘GF Ingrassia’, University of Catania, I-95123 Catania, Italy
| | - Carla Loreto
- Human Anatomy and Histology, Department of Biomedical and Biotechnology Sciences, University of Catania, I-95123 Catania, Italy
| | - Christian Zammit
- Anatomy Department, Faculty of Medicine and Surgery, University of Malta, MSD-2080 Msida, Malta
| | - Andrea Marconi
- Occupational Medicine, Department of Clinical and Experimental Medicine, University of Catania, I-95123 Catania, Italy
| | - Lucrezia Fago
- Occupational Medicine, Department of Clinical and Experimental Medicine, University of Catania, I-95123 Catania, Italy
| | - Serena Matera
- Occupational Medicine, Department of Clinical and Experimental Medicine, University of Catania, I-95123 Catania, Italy
| | - Valentina Costanzo
- Occupational Medicine, Department of Clinical and Experimental Medicine, University of Catania, I-95123 Catania, Italy
| | - Giovanni Fuccio Sanzà
- Division of Radiology, ‘Policlinico-Vittorio Emanuele’ University Hospital, University of Catania, I-95123 Catania, Italy
| | - Stefano Palmucci
- Division of Radiology, ‘Policlinico-Vittorio Emanuele’ University Hospital, University of Catania, I-95123 Catania, Italy
| | - Margherita Ferrante
- Hygiene and Public Health, Department of Medical Sciences, Surgical and Advanced Technologies ‘GF Ingrassia’, University of Catania, I-95123 Catania, Italy
| | - Chiara Costa
- Occupational Medicine, Department of the Environment, Safety, Territory, Food and Health Sciences, University of Messina, I-98125 Messina, Italy
| | - Concettina Fenga
- Occupational Medicine, Department of the Environment, Safety, Territory, Food and Health Sciences, University of Messina, I-98125 Messina, Italy
| | - Antonio Biondi
- General Surgery, Department of General Surgery and Medical-Surgical Specialties, University of Catania, I-95123 Catania, Italy
| | - Cristoforo Pomara
- Anatomy Department, Faculty of Medicine and Surgery, University of Malta, MSD-2080 Msida, Malta
- Forensic Pathology, Department of Clinical and Experimental Medicine, University of Foggia, I-71122 Foggia, Italy
| | - Venerando Rapisarda
- Occupational Medicine, Department of Clinical and Experimental Medicine, University of Catania, I-95123 Catania, Italy
| |
Collapse
|
2
|
Dragan YP, Schrenk D. Animal studies addressing the carcinogenicity of TCDD (or related compounds) with an emphasis on tumour promotion. FOOD ADDITIVES AND CONTAMINANTS 2000; 17:289-302. [PMID: 10912243 DOI: 10.1080/026520300283360] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Dioxin and certain structurally related compounds increase the incidence of liver neoplasms in rodents upon chronic bioassay. Short-term studies indicate the lack of direct DNA-damaging effects including covalent binding to DNA; however, secondary mechanisms may be important in the observed carcinogenicity as these chemicals affect a number of pathways necessary for maintenance of normal growth control and differentiation status. Studies with TCDD in the mouse skin support a lack of initiating activity but an ability to promote the growth of previously initiated lesions indicative of a promoting agent. Mouse skin tumour promotion studies indicate that Ah receptor activation may be involved in promotion by TCDD and selected structurally related compounds. While the mechanism of carcinogenicity induced by TCDD is unknown, the processes involved have a no-effect level, which in the rat liver is at an exposure level below 10 ng TCDD/kg/day. At least for the rodent liver, the relative effective dose for cytochrome P450 induction is not a good indicator of promotion potency. Studies on liver tumour promotion in the female rat liver support a non-genotoxic mechanism for the induction of neoplasms by TCDD. The ability of TCDD to enhance proliferation and inhibit apoptotic processes in focal hepatic lesions further supports an indirect mechanism of carcinogenicity.
Collapse
Affiliation(s)
- Y P Dragan
- College of Medicine and Public Health, Ohio State University, Colombus, OH, USA.
| | | |
Collapse
|
3
|
Randerath E, Randerath K, Reddy R, Narasimhan TR, Wang X, Safe S. Effects of polychlorinated dibenzofurans on compounds in hepatic DNA of female Sprague-Dawley rats: structure dependence and mechanistic considerations. Chem Biol Interact 1993; 88:175-90. [PMID: 8403078 DOI: 10.1016/0009-2797(93)90090-l] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Previous work indicated that covalent age-dependent DNA modifications of endogenous origin termed I-compounds may represent useful biomarkers for tumor promotion/carcinogenesis, as various tumor promoters/carcinogens, including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and phenobarbital, reduce rat I-compound levels in liver, the target organ. The present study addressed the question as to whether polychlorinated dibenzofurans (PCDFs), which are related to TCDD and its congeners with regard to their toxic and biochemical properties, would also affect hepatic I-compound patterns and levels, and whether such effects would be chemical structure-dependent. Female Sprague-Dawley rats were treated once a week with a single dose (100 micrograms/kg) of 1,2,3,7,8-pentachlorodibenzofuran (1,2,3,7,8-PeCDF), 1,2,4,7,8-PeCDF, 2,3,4,7,8-PeCDF, or 2,3,4,6,7,8-hexachlorodibenzofuran (2,3,4,6,7,8-HeCDF) for 4 weeks and liver DNA was analyzed at the end of the last week by 32P-postlabeling assay. No carcinogen-DNA adducts were detected; however, levels of both non-polar and polar I-compounds were reduced in a structure-dependent manner. Potencies increased in the order, control (100%, 122 modifications in 10(9) DNA nucleotides = 1,2,4,7,8-PeCDF (104%) < 1,2,3,7,8-PeCDF (80%) < 2,3,4,7,8-PeCDF (61%) and 2,3,4,6,7,8-HeCDF (61%). Structure-activity relationships for total I-compounds, therefore, paralleled those reported for Ah receptor agonist activity, i.e., compounds that exhibit high cytosolic Ah receptor binding affinities and are also potent inducers of aryl hydrocarbon hydroxylase activity (1,2,3,7,8-PeCDF, 2,3,4,7,8-PeCDF, and 2,3,4,6,7,8-HeCDF) were active, while 1,2,4,7,8-PeCDF, which is a less potent Ah receptor agonist, was inactive. Polar I-compounds responded to a greater extent than did non-polar ones and, in general, individual I-compounds were affected differentially, thus decreased formation or increased removal of I-compounds played a role in the observed effects of the toxins on DNA. It is proposed that Ah receptor-mediated enzyme induction, particularly of cytochrome P450, is involved in reduced hepatic I-compound formation and that subnormal I-compound levels may contribute to tumor promotion.
Collapse
Affiliation(s)
- E Randerath
- Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030
| | | | | | | | | | | |
Collapse
|
4
|
Waern F, Flodström S, Busk L, Kronevi T, Nordgren I, Ahlborg UG. Relative liver tumour promoting activity and toxicity of some polychlorinated dibenzo-p-dioxin- and dibenzofuran-congeners in female Sprague-Dawley rats. PHARMACOLOGY & TOXICOLOGY 1991; 69:450-8. [PMID: 1766921 DOI: 10.1111/j.1600-0773.1991.tb01328.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The polychlorinated dibenzo-p-dioxins/dibenzofurans 1,2,3,7,8-pentachlorodibenzo-p-dioxin (PeCDD), 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and 2,3,4,7,8-pentachlorodibenzofuran (PeCDF) were studied for liver tumour promoting activity in a medium-term altered foci assay in nitrosamine-initiated female Sprague-Dawley rats. The congeners under study were administered by weekly subcutaneous injections at three dose levels for 20 weeks. Evaluation of gamma-glutamyltranspeptidase (GGT+), altered hepatic foci development, showed that all congeners studied acted as potent promoters of hepatocarcinogenesis. TCDD and PeCDD were virtually equipotent as enhancers of foci development while PeCDF displayed approximately ten per cent of the activity of the dioxins. Analysis of the dioxin- and furan-congeners by gas chromatography/mass spectroscopy (GC/MS) technique showed that the retention of PeCDD and PeCDF in liver tissue was approximately 7 and 20 times, respectively, as high as the retention of TCDD. Based on the concentration of the respective congener in liver tissue, PeCDD and PeCDF were 0.14 and 0.007 times as active as TCDD as promoters of foci development. The dose related enhancement of GGT+ foci development induced by the PCDD/PCDF congeners was accompanied by an increased incidence of histological changes in the liver.
Collapse
Affiliation(s)
- F Waern
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
5
|
Hébert CD, Harris MW, Elwell MR, Birnbaum LS. Relative toxicity and tumor-promoting ability of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), 2,3,4,7,8-pentachlorodibenzofuran (PCDF), and 1,2,3,4,7,8-hexachlorodibenzofuran (HCDF) in hairless mice. Toxicol Appl Pharmacol 1990; 102:362-77. [PMID: 2300974 DOI: 10.1016/0041-008x(90)90033-q] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dixoin 2,3,4,7,8-pentachlorodibenzofuran (PCDF), and 1,2,3,4,7,8-hexachlorodibenzofuran (HCDF) are highly toxic members of a class of environmental contaminants, the polychlorinated aromatic hydrocarbons (PCAH), which exhibit a similar and highly characteristic spectrum of toxic effects. For purposes of risk assessment, it is important to be able to make accurate estimates of the relative potency of these and related compounds. Previous investigations have indicated that, in acute exposure or in vitro studies, PCDF is approximately 0.1 times as toxic and HCDF is approximately 0.01 times as toxic as TCDD. In this study, we compared the relative toxicity and tumor-promoting abilities of TCDD, PCDF, and HCDF in hairless mouse skin. Female hairless mice (HRS/J hr/hr) were treated dermally with the initiator MNNG, then dosed twice weekly for 20 weeks with acetone, TCDD (2.5-10 ng/mouse/dose), PCDF (25-100 ng/mouse/dose), or HCDF (250-1000 ng/mouse/dose) as promoter. TCDD, PCDF, and HCDF were all potent promoters for the induction of squamous cell papillomas. There was, however, no difference in the incidence or multiplicity of papilloma formation between groups. The same doses of the three PCAH, in the absence of initiator, induced no skin papillomas. TCDD produced a significant increase in liver:body weight ratio (p less than 0.001) at all doses and a decrease in thymus:body weight ratio at a dose of 10 ng (p less than 0.001). Mice treated with PCDF and HCDF had marked thymic and splenic involution, liver hypertrophy, mucous cell hyperplasia in the fundic portion of the glandular stomach, and loss of body weight. PCDF and HCDF produced a greater incidence and severity of dermatotoxic effects than TCDD. Based on data for dermal toxicity and changes in body weight and organ weights, PCDF is estimated to be 0.2 to 0.4 times, and HCDF 0.08 to 0.16 times, as toxic as TCDD following repeated dermal exposure. Therefore, toxic equivalence factors generated using data from acute and/or in vitro studies may underestimate the risk from repeated low-dose exposures to these compounds.
Collapse
Affiliation(s)
- C D Hébert
- Experimental Toxicology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709
| | | | | | | |
Collapse
|
6
|
Skene SA, Dewhurst IC, Greenberg M. Polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans: the risks to human health. A review. HUMAN TOXICOLOGY 1989; 8:173-203. [PMID: 2663703 DOI: 10.1177/096032718900800301] [Citation(s) in RCA: 94] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
1 PCDDs and PCDFs are ubiquitous and persistent in the environment. They are to be found in body tissues of both humans and animals. 2 The most extensively studied PCDD is 2,3,7,8-TCDD. It has been shown to produce a wide range of effects and is considered to be a (non-genotoxic) carcinogen in animals. 3 Studies into the mechanisms of toxicity so far reveal that there is involvement of a specific receptor (Ah), however further work is required to elucidate the mechanisms of the various effects. 4 Reports on a number of human exposures to PCDDs and PCDFs are described. Results from human epidemiological studies are difficult to interpret: there have been problems in methodology; there has been inadequate information on intake, and exposures have often been to mixtures of PCDDs and/or PCDFs together with other related compounds. 5 Many regulatory authorities faced with the problem of providing an index of risk from exposure to mixtures of PCDDs and PCDFs have employed the concept of 'TCDD equivalents'. 6 Whether or not PCDDs and PCDFs pose a significant human health risk at current levels of exposure they remain of considerable interest to the toxicologist.
Collapse
Affiliation(s)
- S A Skene
- Department of Health, Medical Toxicology, London, UK
| | | | | |
Collapse
|
7
|
Abstract
The potential mutagenicity and carcinogenicity of commercial PCBs has been investigated in both in vivo and in vitro systems and several conclusions can be drawn from these studies. (1) PCBs can covalently adduct DNA both in vivo and in vitro (using a source of metabolic activation); the more highly chlorinated biphenyls are poorly metabolized and these compounds tend to exhibit very low binding to DNA. Based on the structure-activity relationships for PCBs (Safe, 1984) it is unlikely that the more toxic compounds such as 3,3',4,4',5-penta- and 3,3',4,4',5,5'-hexachlorobiphenyl, would form covalent adducts with DNA. (2) PCB mixtures and individual compounds exhibit minimal mutagenic activity in most assay systems. (3) The more highly chlorinated PCB mixtures (i.e. greater than 50% Cl by weight) are hepatocarcinogens in rodents whereas data from a limited number of studies suggest that the lower chlorinated mixtures are not carcinogenic. (4) In some model systems, the higher chlorinated PCB mixtures act as promoters of preneoplastic lesions and hepatocellular carcinomas in rodents treated with a variety of initiators. (5) Aroclor 1254 acts as a promoter of skin papilloma formation in HRS/J hairless mice and structure-activity and genetic studies suggest that the Ah receptor is necessary but not sufficient for the activity of halogenated aryl hydrocarbons as promoters in hairless mice. (6) Individual PCB congeners and higher chlorinated commercial mixtures also exhibit anti-carcinogenic activity in the CD-1 mouse skin cancer model. (7) Results from occupational studies suggest that individuals exposed to PCBs may have an excess of cancer at some sites, however, the most comprehensive study (Brown, 1987) suggests that there are no significant increases in the overall cancer rate in workers exposed to PCBs. Follow-up and continuing epidemiological studies on the PCB-exposed workers are required to further clarify the potential carcinogenic effects of PCBs on humans. In several strains of rats and mice, there is a high incidence of hepatic preneoplastic lesions and carcinomas and these lesions can be induced by diverse promoting agents (Schulte-Hermann et al., 1983; Weinstein, 1984). Since PCBs are not mutagenic and do not readily form covalent adducts with cellular DNA, it is likely that the higher chlorinated biphenyls are not genotoxic and act as promoters of carcinogenesis in rodents. A comparable mechanism has been suggested for 2,3,7,8-TCDD (Shu et al., 1987; Weinstein, 1984). For PCBs, the role of the Ah receptor in mediating their activity as promoters has not been delineated.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- S Safe
- Department of Physiology and Pharmacology, College of Veterinary Medicine, Texas A & M University, College Station 77840
| |
Collapse
|