1
|
Pandey P, Khan F, Alshammari N, Saeed A, Aqil F, Saeed M. Updates on the anticancer potential of garlic organosulfur compounds and their nanoformulations: Plant therapeutics in cancer management. Front Pharmacol 2023; 14:1154034. [PMID: 37021043 PMCID: PMC10067574 DOI: 10.3389/fphar.2023.1154034] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/02/2023] [Indexed: 03/22/2023] Open
Abstract
Garlic (Allium sativum L.) possesses numerous pharmacological potential, including antibacterial, antiarthritic, antithrombotic, anticancer, hypoglycemic, and hypolipidemic effects. The anti-cancer action of garlic is likely the best researched of the many advantageous pharmacological effects, and its use offers significant protection against the risk of developing cancer. A few active metabolites of garlic have been reported to be essential in the destruction of malignant cells due to their multi-targeted activities and lack of significant toxicity. The bioactive compounds in garlic having anticancer properties include diallyl trisulfide, allicin, allyl mercaptan diallyl disulfide, and diallyl sulphide. Different garlic-derived constituents and their nanoformulations have been tested for their effects against various cancers including skin, ovarian, prostate, gastric, breast, and lung, colorectal, liver, oral, and pancreatic cancer. The objective of this review is to summarize the antitumor activity and associated mechanisms of the organosulfur compounds of garlic in breast carcinoma. Breast cancer continues to have a significant impact on the total number of cancer deaths worldwide. Global measures are required to reduce its growing burden, particularly in developing nations where incidence is increasing quickly and fatality rates are still high. It has been demonstrated that garlic extract, its bioactive compounds, and their use in nanoformulations can prevent breast cancer in all of its stages, including initiation, promotion, and progression. Additionally, these bioactive compounds affect cell signaling for cell cycle arrest and survival along with lipid peroxidation, nitric oxide synthase activity, epidermal growth factor receptor, nuclear factor kappa B (NF-κB), and protein kinase C in breast carcinoma. Hence, this review deciphers the anticancer potential of garlic components and its nanoformulations against several breast cancer thereby projecting it as a potent drug candidate for efficient breast cancer management.
Collapse
Affiliation(s)
- Pratibha Pandey
- Department of Biotechnology, Noida Institute of Engineering and Technology, Noida, Uttar Pradesh, India
| | - Fahad Khan
- Department of Biotechnology, Noida Institute of Engineering and Technology, Noida, Uttar Pradesh, India
- *Correspondence: Fahad Khan, ; Mohd Saeed,
| | - Nawaf Alshammari
- Department of Biology, College of Sciences, University of Hail, Hail, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Hail, Hail, Saudi Arabia
| | - Amir Saeed
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Hail, Hail, Saudi Arabia
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail, Saudi Arabia
| | - Farrukh Aqil
- Department of Medicine and Brown Cancer Center, University of Louisville, Louisville, KY, United States
| | - Mohd Saeed
- Department of Biology, College of Sciences, University of Hail, Hail, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Hail, Hail, Saudi Arabia
- *Correspondence: Fahad Khan, ; Mohd Saeed,
| |
Collapse
|
2
|
Hahm ER, Singh SV. Gene Expression Changes by Diallyl Trisulfide Administration in Chemically-induced Mammary Tumors in Rats. J Cancer Prev 2022; 27:22-30. [PMID: 35419300 PMCID: PMC8984650 DOI: 10.15430/jcp.2022.27.1.22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 11/06/2022] Open
Abstract
Diallyl trisulfide (DATS) was shown to be a potent inhibitor of luminal-type MCF-7 xenograft growth in vivo. The present study was conducted to determine the preventive effect of DATS administration using an N-methyl-N-nitrosourea (MNU)-induced rat mammary tumor model, which shares molecular resemblance to luminal-type human breast cancers. The DATS administration (50 mg/kg body weight, 5 times/week) was safe, but did not reduce mammary tumor latency, incidence, burden or multiplicity. Therefore, we conducted RNA-seq analysis using mammary tumors from control and DATS-treated rats (n = 3 for each group) to gain insights into lack of mammary tumor prevention by this phytochemical. The gene ontology and the Kyoto encyclopedia of genes and genomes pathway analyses of the RNA-seq data revealed upregulation of genes associated with ribosomes, translation, peptide biosynthetic/metabolic process, and oxidative phosphorylation but downregulation of genes associated with mitogen-activated protein kinases. A total of 33 genes associated with ribosomes were significantly upregulated by DATS treatment, including RPL11 and RPS14. Western blotting confirmed upregulation of RPL11 and neurofascin protein expression in mammary tumors from DATS-treated rats when compared to controls. A statistically significant increase in protein level of c-Jun N-terminal kinase 2 was also observed in tumors from DATS-treated rats when compared to controls. On the other hand, expression of complex I subunits NDUFV1 or NDUFS1 was not affected by DATS treatment. These results offer potential explanations for ineffectiveness of DATS in the chemically-induced rat mammary tumor model. Inhibitors of the proteins upregulated by DATS may be needed to improve chemopreventive efficacy of this phytochemical.
Collapse
Affiliation(s)
- Eun-Ryeong Hahm
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Shivendra V. Singh
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
3
|
Lee J, Zhao N, Fu Z, Choi J, Lee HJ, Chung M. Effects of garlic intake on cancer: a systematic review of randomized clinical trials and cohort studies. Nutr Res Pract 2021; 15:773-788. [PMID: 34858554 PMCID: PMC8601942 DOI: 10.4162/nrp.2021.15.6.773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/14/2021] [Accepted: 07/21/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND/OBJECTIVES Due to the rapid increase of global cancer incidence and mortality and a high level of interest in cancer prevention, a systematic review of garlic intake and cancer risk is needed. SUBJECTS/METHODS We implemented a systematic review to examine the effects of varying levels of garlic intake on cancer. We conducted comprehensive literature searches in three electronic databases (MEDLINE, Embase, and Web of Science) for studies published between database inception and July or September of 2018. Two investigators independently screened abstracts and full-texts, extracted data, and assessed risk of bias (RoB). A total of one medium-quality randomized controlled trial (RCT) and 13 cohort studies graded as high RoB were included. RESULTS The 1-year follow-up results from a RCT showed that a significant decrease in the number and size of colorectal adenomas among participants with colorectal adenomas who received high-dose aged garlic extract (AGE) compared with those who received low-dose AGE (P < 0.05). The results of prospective observational studies provided inconsistent associations of colorectal cancer risk with garlic supplements and garlic intake as food. CONCLUSIONS In summary, the AGE was effective in reducing the number and magnitude of colorectal adenomas in one RCT, but there were inconsistent associations between garlic intake and colorectal cancer in cohort studies. Therefore, we could not draw a firm conclusion regarding the effects of garlic on cancer, because the current strength of evidence is inadequate due to a lack of number of high-quality RCTs.
Collapse
Affiliation(s)
- Jounghee Lee
- Department of Food and Nutrition, Kunsan National University, Gunsan 54150, Korea
| | - Naisi Zhao
- Department of Public Health and Community Medicine, School of Medicine, Tufts University, Boston, MA 02111, USA
| | - Zhuxuan Fu
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jihee Choi
- Department of Food and Nutrition, Gachon University, Seongnam 13120, Korea
| | - Hae-Jeung Lee
- Department of Food and Nutrition, Gachon University, Seongnam 13120, Korea
| | - Mei Chung
- Department of Public Health and Community Medicine, School of Medicine, Tufts University, Boston, MA 02111, USA
- Division of Nutrition Epidemiology and Data Science, Freidman School of Nutrition Science and Policy, Tufts University, Boston, MA 02111, USA
| |
Collapse
|
4
|
Diallyl Sulfide Attenuation of Carcinogenesis in Mammary Epithelial Cells through the Inhibition of ROS Formation, and DNA Strand Breaks. Biomolecules 2021; 11:biom11091313. [PMID: 34572526 PMCID: PMC8470778 DOI: 10.3390/biom11091313] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/20/2021] [Accepted: 09/01/2021] [Indexed: 11/17/2022] Open
Abstract
Garlic has long been used medicinally for many diseases, including cancer. One of the active garlic components is diallyl sulfide (DAS), which prevents carcinogenesis and reduces the incidence rate of several cancers. In this study, non-cancerous MCF-10A cells were used as a model to investigate the effect of DAS on Benzo (a)pyrene (BaP)-induced cellular carcinogenesis. The cells were evaluated based on changes in proliferation, cell cycle arrest, the formation of peroxides, 8-hydroxy-2-deoxyguanosine (8-OHdG) levels, the generation of DNA strand breaks, and DNA Polymerase β (Pol β) expression. The results obtained indicate that when co-treated with BaP, DAS inhibited BaP-induced cell proliferation (p < 0.05) to levels similar to the negative control. BaP treatment results in a two-fold increase in the accumulation of cells in the G2/M-phase of the cell cycle, which is restored to baseline levels, similar to untreated cells and vehicle-treated cells, when pretreated with 6 μM and 60 μM DAS, respectively. Co-treatment with DAS (60 μM and 600 μM) inhibited BaP-induced reactive oxygen species (ROS) formation by 132% and 133%, respectively, as determined by the accumulation of H2O2 in the extracellular medium and an increase in 8-OHdG levels of treated cells. All DAS concentrations inhibited BaP-induced DNA strand breaks through co-treatment and pre-treatment methods at all time points evaluated. Co-Treatment with 60 μM DAS increased DNA Pol β expression in response to BaP-induced lipid peroxidation and oxidative DNA damage. These results indicate that DAS effectively inhibited BaP-induced cell proliferation, cell cycle transitions, ROS, and DNA damage in an MCF-10A cell line. These results provide more experimental evidence for garlic's antitumor abilities and corroborate many epidemiological studies regarding the association between the increased intake of garlic and the reduced risk of several types of cancer.
Collapse
|
5
|
Garlic constituents for cancer prevention and therapy: From phytochemistry to novel formulations. Pharmacol Res 2021; 175:105837. [PMID: 34450316 DOI: 10.1016/j.phrs.2021.105837] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 12/12/2022]
Abstract
Garlic (Allium sativum L.) is one of the oldest plants cultivated for its dietary and medicinal values. This incredible plant is endowed with various pharmacological attributes, such as antimicrobial, antiarthritic, antithrombotic, antitumor, hypoglycemic, and hypolipidemic activities. Among the various beneficial pharmacological effects of garlic, the anticancer activity is presumably the most studied. The consumption of garlic provides strong protection against cancer risk. Taking into account the multi-targeted actions and absence of considerable toxicity, a few active metabolites of garlic are probably to play crucial roles in the killing of cancerous cells. Garlic contains several bioactive molecules with anticancer actions and these include diallyl trisulfide, allicin, diallyl disulfide, diallyl sulfide, and allyl mercaptan. The effects of various garlic-derived products, their phytoconstituents and nanoformulations have been evaluated against skin, prostate, ovarian, breast, gastric, colorectal, oral, liver, and pancreatic cancers. Garlic extract, its phytocompounds and their nanoformulations have been shown to inhibit the different stages of cancer, including initiation, promotion, and progression. Besides, these bioactive metabolites alter the peroxidation of lipid, activity of nitric oxide synthetase, nuclear factor-κB, epidermal growth factor receptor, and protein kinase C, cell cycle, and survival signaling. The current comprehensive review portrays the functions of garlic, its bioactive constituents and nanoformulations against several types of cancers and explores the possibility of developing these agents as anticancer pharmaceuticals.
Collapse
|
6
|
Bastaki SMA, Ojha S, Kalasz H, Adeghate E. Chemical constituents and medicinal properties of Allium species. Mol Cell Biochem 2021; 476:4301-4321. [PMID: 34420186 DOI: 10.1007/s11010-021-04213-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 06/21/2021] [Indexed: 11/24/2022]
Abstract
Allium species, belonging to Alliaceae family, are among the oldest cultivated vegetables used as food. Garlic, onions, leeks and chives, which belong to this family, have been reported to have medicinal properties. The Allium species constituents have been shown to have antibacterial and antioxidant activities, and, in addition, other biological properties. These activities are related to their rich organosulfur compounds. These organosulfur compounds are believed to prevent the development of cancer, cardiovascular, neurological, diabetes, liver diseases as well as allergy and arthritis. There have also been reports on toxicities of these compounds. The major active compounds of Allium species includes, diallyl disulfide, diallyl trisulfide, diallyl sulfide, dipropyl disulfide, dipropyl trisulfide, 1-propenylpropyl disulfide, allyl methyl disulfide and dimethyl disulfide. The aim of this review is to focus on a variety of experimental and clinical reports on the effectiveness, toxicities and possible mechanisms of actions of the active compounds of garlic, onions, leek and chives.
Collapse
Affiliation(s)
- Salim M A Bastaki
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, UAE University, P.O. Box 17666, Al Ain, Abu Dhabi, UAE.
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, UAE University, P.O. Box 17666, Al Ain, Abu Dhabi, UAE
| | - Huba Kalasz
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1445 Budapest, Hungary
| | - E Adeghate
- Department of Anatomy, College of Medicine and Health Sciences, UAE University, P.O. Box 17666, Al Ain, UAE
| |
Collapse
|
7
|
De Greef D, Barton EM, Sandberg EN, Croley CR, Pumarol J, Wong TL, Das N, Bishayee A. Anticancer potential of garlic and its bioactive constituents: A systematic and comprehensive review. Semin Cancer Biol 2020; 73:219-264. [PMID: 33301861 DOI: 10.1016/j.semcancer.2020.11.020] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/25/2020] [Accepted: 11/30/2020] [Indexed: 02/06/2023]
Abstract
Vegetables of the Allium genus, such as garlic (Allium sativum L.), onions, shallots, leaks, and chives, have been used for many years for food consumption and for medicinal purposes. Historical medical texts have indicated the therapeutic applications of garlic as an antitumor, laxative, diuretic, antibacterial and antifungal agent. Specifically, garlic's antitumor abilities have been traced back 3500 years as a chemotherapeutic agent used in Egypt. Other beneficial effects of garlic consumption include lowering blood pressure, blood cholesterol, sugar and lipids. The processing and aging of garlic result in the production of non-toxic organosulfur by-products. These sulfur-containing compounds, such as allicin, diallyl sulfide, diallyl disulfide, diallyl trisulfide, alliin, S-allylcysteine, and S-allylmercaptocysteine, impact various stages of carcinogenesis. The anticancer mechanisms of action of these garlic-derived phytochemicals include altering mitochondrial permeability, inhibiting angiogenesis, enhancing antioxidative and proapoptotic properties, and regulating cell proliferation. All these effects of garlic's sulfur-compounds have been demonstrated in various human cancers. The intent of this literature research is to explore the potential of garlic-derived products and bioactive organosulfur compounds as cancer chemopreventive and chemotherapeutic agents. This investigation employs criteria for systematic review and critically analyzes published in vitro, in vivo and clinical studies. Concerns and limitations that have arisen in past studies regarding standards of measurement, bioavailability, and method of delivery are addressed. Overall, it is hoped that through this systematic and comprehensive review, future researchers can be acquainted with the updated data assembled on anticancer properties of garlic and its phytoconstituents.
Collapse
Affiliation(s)
| | - Emily M Barton
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Elise N Sandberg
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | | | - Joshua Pumarol
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Tin Lok Wong
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Niranjan Das
- Department of Chemistry, Iswar Chandra Vidyasagar College, Belonia 799 155, Tripura, India
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA.
| |
Collapse
|
8
|
Srinivasan K. Antimutagenic and cancer preventive potential of culinary spices and their bioactive compounds. PHARMANUTRITION 2017. [DOI: 10.1016/j.phanu.2017.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
9
|
Alvarado A, Faustino-Rocha AI, Colaço B, Oliveira PA. Experimental mammary carcinogenesis - Rat models. Life Sci 2017; 173:116-134. [PMID: 28188729 DOI: 10.1016/j.lfs.2017.02.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 01/26/2017] [Accepted: 02/06/2017] [Indexed: 12/22/2022]
Abstract
Mammary cancer is one of the most common cancers, victimizing more than half a million of women worldwide every year. Despite all the studies in this field, the current therapeutic approaches are not effective and have several devastating effects for patients. In this way, the need to better understand the mammary cancer biopathology and find effective therapies led to the development of several rodent models over years. With this review, the authors intended to provide the readers with an overview of the rat models used to study mammary carcinogenesis, with a special emphasis on chemically-induced models.
Collapse
Affiliation(s)
- Antonieta Alvarado
- Área de Patología, Decanato de Ciencias Veterinarias, Universidad Centroccidental "Lisandro Alvarado", UCLA, Lara, Venezuela; Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Ana I Faustino-Rocha
- Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences, UTAD, Vila Real, Portugal
| | - Bruno Colaço
- Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; Department of Zootechnics, School of Agrarian and Veterinary Sciences, UTAD, Vila Real, Portugal
| | - Paula A Oliveira
- Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences, UTAD, Vila Real, Portugal.
| |
Collapse
|
10
|
Kim SH, Kaschula CH, Priedigkeit N, Lee AV, Singh SV. Forkhead Box Q1 Is a Novel Target of Breast Cancer Stem Cell Inhibition by Diallyl Trisulfide. J Biol Chem 2016; 291:13495-508. [PMID: 27129776 PMCID: PMC4919436 DOI: 10.1074/jbc.m116.715219] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 04/29/2016] [Indexed: 11/06/2022] Open
Abstract
Diallyl trisulfide (DATS), a metabolic byproduct of garlic, is known to inhibit the growth of breast cancer cells in vitro and in vivo This study demonstrates that DATS targets breast cancer stem cells (bCSC). Exposure of MCF-7 and SUM159 human breast cancer cells to pharmacological concentrations of DATS (2.5 and 5 μm) resulted in dose-dependent inhibition of bCSC, as evidenced by a mammosphere assay and flow cytometric analysis of aldehyde dehydrogenase 1 (ALDH1) activity and the CD44(high)/CD24(low)/epithelial specific antigen-positive fraction. DATS-mediated inhibition of bCSC was associated with a decrease in the protein level of FoxQ1. Overexpression of FoxQ1 in MCF-7 and SUM159 cells increased ALDH1 activity and the CD49f(+)/CD24(-) fraction. Inhibition of ALDH1 activity and/or mammosphere formation upon DATS treatment was significantly attenuated by overexpression of FoxQ1. In agreement with these results, stable knockdown of FoxQ1 using small hairpin RNA augmented bCSC inhibition by DATS. Expression profiling for cancer stem cell-related genes suggested that FoxQ1 may negatively regulate the expression of Dachshund homolog 1 (DACH1), whose expression is lost in invasive breast cancer. Chromatin immunoprecipitation confirmed recruitment of FoxQ1 at the DACH1 promoter. Moreover, inducible expression of DACH1 augmented DATS-mediated inhibition of bCSC. Expression of FoxQ1 protein was significantly higher in triple-negative breast cancer cases compared with normal mammary tissues. Moreover, an inverse association was observed between FoxQ1 and DACH1 gene expression in breast cancer cell lines and tumors. DATS administration inhibited ALDH1 activity in vivo in SUM159 xenografts. These results indicate that FoxQ1 is a novel target of bCSC inhibition by DATS.
Collapse
Affiliation(s)
- Su-Hyeong Kim
- From the Department of Pharmacology and Chemical Biology and University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213 and
| | - Catherine H Kaschula
- the Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| | - Nolan Priedigkeit
- From the Department of Pharmacology and Chemical Biology and University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213 and
| | - Adrian V Lee
- From the Department of Pharmacology and Chemical Biology and University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213 and
| | - Shivendra V Singh
- From the Department of Pharmacology and Chemical Biology and University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213 and
| |
Collapse
|
11
|
Hung FM, Shang HS, Tang NY, Lin JJ, Lu KW, Lin JP, Ko YC, Yu CC, Wang HL, Liao JC, Lu HF, Chung JG. Effects of diallyl trisulfide on induction of apoptotic death in murine leukemia WEHI-3 cells in vitro and alterations of the immune responses in normal and leukemic mice in vivo. ENVIRONMENTAL TOXICOLOGY 2015; 30:1343-1353. [PMID: 24890016 DOI: 10.1002/tox.22005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 05/11/2014] [Indexed: 06/03/2023]
Abstract
Diallyl trisulfide (DATS), a chemopreventive dietary constituent and extracted from garlic, has been shown to against cultured many types of human cancer cell liens but the fate of apoptosis in murine leukemia cells in vitro and immune responses in leukemic mice remain elusive. Herein, we clarified the actions of DATS on growth inhibition of murine leukemia WEHI-3 cells in vitro and used WEHI-3 cells to generate leukemic mice in vivo, following to investigate the effects of DATS in animal model. In in vitro study, DATS induced apoptosis of WEHI-3 cells through the G0/G1 phase arrest and induction of caspase-3 activation. In in vivo study DATS decreased the weight of spleen of leukemia mice but did not affect the spleen weight of normal mice. DATS promoted the immune responses such as promotions of the macrophage phagocytosis and NK cell activities in WEHI-3 leukemic and normal mice. However, DATS only promotes NK cell activities in normal mice. DATS increases the surface markers of CD11b and Mac-3 in leukemia mice but only promoted CD3 in normal mice. In conclusion, the present study indicates that DATS induces cell death through induction of apoptosis in mice leukemia WHEI-3 cells. DATS also promotes immune responses in leukemia and normal mice in vivo.
Collapse
MESH Headings
- Allyl Compounds/pharmacology
- Allyl Compounds/therapeutic use
- Animals
- Anticarcinogenic Agents/pharmacology
- Anticarcinogenic Agents/therapeutic use
- Antigens, Differentiation/immunology
- Apoptosis/drug effects
- Caspase 3/metabolism
- Cell Cycle Checkpoints/drug effects
- Cell Line, Tumor
- Cell Survival/drug effects
- Cytotoxicity, Immunologic/drug effects
- Garlic/chemistry
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Leukemia, Experimental/immunology
- Leukemia, Experimental/prevention & control
- Lymphocyte Activation/drug effects
- Macrophages, Peritoneal/drug effects
- Macrophages, Peritoneal/immunology
- Mice
- Mice, Inbred BALB C
- Neoplasm Transplantation
- Phagocytosis/drug effects
- Phagocytosis/immunology
- Spleen/drug effects
- Spleen/immunology
- Sulfides/pharmacology
- Sulfides/therapeutic use
Collapse
Affiliation(s)
- Fang-Ming Hung
- Department of Surgical Intensive Care Unit, Far Eastern Memorial Hospital, New Taipei, 220, Taiwan
| | - Hung-Sheng Shang
- Department of Pathology, National Defense Medical Center, Division of Clinical Pathology, Tri-Service General Hospital, Taipei, Taiwan
| | - Nou-Ying Tang
- School of Chinese Medicine, China Medical University, Taichung, 404, Taiwan
| | - Jen-Jyh Lin
- Graduate Institute of Chinese Medicine, China Medical University, Taichung, 404, Taiwan
- Division of Cardiology, Department of Medicine, China Medical University Hospital, Taichung, 404, Taiwan
| | - Kung-Wen Lu
- School of Post-Baccalaureate Chinese Medicine, China Medical University, Taichung, 404, Taiwan
| | - Jing-Pin Lin
- School of Chinese Medicine, China Medical University, Taichung, 404, Taiwan
| | - Yang-Ching Ko
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, St. Martin De Porres Hospital, Chiayi, 600, Taiwan
| | - Chien-Chih Yu
- School of Pharmacy, China Medical University, Taichung, 404, Taiwan
| | - Hai-Lung Wang
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University, Hsinchu, 300, Taiwan
| | - Jung-Chi Liao
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University, Hsinchu, 300, Taiwan
| | - Hsu-Feng Lu
- Department of Clinical Pathology, Cheng Hsin General Hospital, Taipei, 112, Taiwan
- Department of Restaurant, Hotel and Institutional Management, Fu-Jen Catholic University, New Taipei, 242, Taiwan
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung, 404, Taiwan
- Department of Biotechnology, Asia University, Taichung, 413, Taiwan
| |
Collapse
|
12
|
Faustino-Rocha AI, Ferreira R, Oliveira PA, Gama A, Ginja M. N-Methyl-N-nitrosourea as a mammary carcinogenic agent. Tumour Biol 2015; 36:9095-117. [PMID: 26386719 DOI: 10.1007/s13277-015-3973-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 08/21/2015] [Indexed: 02/06/2023] Open
Abstract
The administration of chemical carcinogens is one of the most commonly used methods to induce tumors in several organs in laboratory animals in order to study oncologic diseases of humans. The carcinogen agent N-methyl-N-nitrosourea (MNU) is the oldest member of the nitroso compounds that has the ability to alkylate DNA. MNU is classified as a complete, potent, and direct alkylating compound. Depending on the animals' species and strain, dose, route, and age at the administration, MNU may induce tumors' development in several organs. The aim of this manuscript was to review MNU as a carcinogenic agent, taking into account that this carcinogen agent has been frequently used in experimental protocols to study the carcinogenesis in several tissues, namely breast, ovary, uterus, prostate, liver, spleen, kidney, stomach, small intestine, colon, hematopoietic system, lung, skin, retina, and urinary bladder. In this paper, we also reviewed the experimental conditions to the chemical induction of tumors in different organs with this carcinogen agent, with a special emphasis in the mammary carcinogenesis.
Collapse
Affiliation(s)
- Ana I Faustino-Rocha
- Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes and Alto Douro, UTAD, 5001-911, Vila Real, Portugal. .,Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), UTAD, 5001-911, Vila Real, Portugal.
| | - Rita Ferreira
- Organic Chemistry of Natural Products and Agrifood (QOPNA), Mass Spectrometry Center, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Paula A Oliveira
- Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes and Alto Douro, UTAD, 5001-911, Vila Real, Portugal.,Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), UTAD, 5001-911, Vila Real, Portugal
| | - Adelina Gama
- Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes and Alto Douro, UTAD, 5001-911, Vila Real, Portugal.,Animal and Veterinary Research Center (CECAV), School of Agrarian and Veterinary Sciences, UTAD, 5001-911, Vila Real, Portugal
| | - Mário Ginja
- Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes and Alto Douro, UTAD, 5001-911, Vila Real, Portugal.,Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), UTAD, 5001-911, Vila Real, Portugal
| |
Collapse
|
13
|
Abstract
The Allium genus includes garlic, onions, shallots, leeks, and chives. These vegetables are popular in cuisines worldwide and are valued for their potential medicinal properties. Epidemiologic studies, while limited in their abilities to assess Allium consumption, indicate some associations of Allium vegetable consumption with decreased risk of cancer, particularly cancers of the gastrointestinal tract. Limited intervention studies have been conducted to support these associations. The majority of supportive evidence on Allium vegetables cancer-preventive effects comes from mechanistic studies. These studies highlight potential mechanisms of individual sulfur-containing compounds and of various preparations and extracts of these vegetables, including decreased bioactivation of carcinogens, antimicrobial activities, and redox modification. Allium vegetables and their components have effects at each stage of carcinogenesis and affect many biologic processes that modify cancer risk. This review discusses the cancer-preventive effects of Allium vegetables, particularly garlic and onions, and their bioactive sulfur compounds and highlights research gaps.
Collapse
Affiliation(s)
- Holly L Nicastro
- Cancer Prevention Fellowship Program, Nutritional Science Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda, MD.
| | - Sharon A Ross
- Nutritional Science Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda, Maryland
| | - John A Milner
- USDA/ARS Beltsville Human Nutrition Research Center, Beltsville, Maryland
| |
Collapse
|
14
|
Schäfer G, Kaschula CH. The immunomodulation and anti-inflammatory effects of garlic organosulfur compounds in cancer chemoprevention. Anticancer Agents Med Chem 2014; 14:233-40. [PMID: 24237225 PMCID: PMC3915757 DOI: 10.2174/18715206113136660370] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 04/22/2013] [Accepted: 06/10/2013] [Indexed: 02/07/2023]
Abstract
Garlic (Allium sativum) has been used for centuries as a prophylactic and therapeutic medicinal agent. Importantly, garlic has been suggested to have both cancer-preventive potential as well as significant enhancing effects on the immune system. While these observations are supported experimentally both in vitro and in vivo, the impact of garlic in assisting the immune system in the prevention of cancer still lacks experimental confirmation. Studies addressing the immunomodulatory effects of garlic reveal conflicting data as to pro- or anti-inflammatory responses depending on the particular experimental set-ups and the garlic preparation used (i.e. garlic extract versus chemically pure garlic compounds). Here we provide an overview of the chemistry of the major garlic organosulfur compounds, summarize the current understanding and propose a link between the immunomodulating activity of garlic and the prevention of cancer. We hypothesize that garlic rather elicits anti-inflammatory and anti-oxidative responses that aid in priming the organism towards eradication of an emerging tumor.
Collapse
Affiliation(s)
| | - Catherine H Kaschula
- Department of Chemistry, University of Cape Town, Rondebosch, 7701, South Africa.
| |
Collapse
|
15
|
Ebrahimpour S, Tabari MA, Youssefi MR, Aghajanzadeh H, Behzadi MY. Synergistic effect of aged garlic extract and naltrexone on improving immune responses to experimentally induced fibrosarcoma tumor in BALB/c mice. Pharmacognosy Res 2013; 5:189-94. [PMID: 23901215 PMCID: PMC3719261 DOI: 10.4103/0974-8490.112426] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 02/11/2013] [Accepted: 05/22/2013] [Indexed: 11/27/2022] Open
Abstract
Background: Garlic, a medicinal plant, and Naltrexone (NTX), an opioid receptor antagonist, both have immunomodulatory and antitumor effects. Current study was designed to evaluate synergistic antitumor effects of aged garlic extract (AGE) and NTX. Materials and Methods: WEHI-164 fibrosarcoma cells were implanted subcutaneously on day 0 into right flank of 80 BALB/c mice at age of 8 weeks. Mice were randomly categorized in four separate groups: The first group received AGE (100 mg/kg, i.p.), the second group received NTX (0.5 mg/kg, i.p.), the third group received both of them, and the fourth group received phosphate buffered saline as control group. Treatments were administered three times per week. Tumor growth was measured and morbidity was recorded. Subpopulations of CD4+/CD8+ T cells were determined using flowcytometery. WEHI-164 cell specific cytotoxicity of splenocytes and in vitro production of interferon-gamma (IFN-γ) and interleukin-4 (IL-4) cytokines were measured. All statistical analyses were conducted with SPSS 16 software and P < 0.05 was considered to be statistically significant. Results: The mice who received AGE+NTX had significantly longer survival time compared with the mice treated with AGE or NTX alone. An enhanced inhibitory effect on tumor growth was seen in combination therapy group. The CD4+/CD8+ ratio and in vitro IFN-γ production of splenocytes were significantly increased in AGE+NTX and NTX groups. WEHI-164 specific cytotoxicity of splenocytes was also significantly increased at 25:1 E:T ratio in AGE+NTX treated mice. Coadministration of AGE with NTX resulted in improvement of immune responses against experimentally implanted fibrosarcoma tumors in BALB/c mice. Conclusions: AGE showed synergistic effects with NTX on inhibition of tumor growth and increment of survival times.
Collapse
Affiliation(s)
- Soheil Ebrahimpour
- Infection Disease and Tropical Medicine Research Center, Babol University of Medical Sciences, Babol, Iran
| | | | | | | | | |
Collapse
|
16
|
Molecular mechanisms for the anti-cancer effects of diallyl disulfide. Food Chem Toxicol 2013; 57:362-70. [DOI: 10.1016/j.fct.2013.04.001] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 03/31/2013] [Accepted: 04/01/2013] [Indexed: 12/30/2022]
|
17
|
Fallah-Rostami F, Tabari MA, Esfandiari B, Aghajanzadeh H, Behzadi MY. Immunomodulatory activity of aged garlic extract against implanted fibrosarcoma tumor in mice. NORTH AMERICAN JOURNAL OF MEDICAL SCIENCES 2013; 5:207-12. [PMID: 23626957 PMCID: PMC3632025 DOI: 10.4103/1947-2714.109191] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Background: Garlic is known as a medicinal herb with broad therapeutic properties ranging from antibacterial to anticancer and even anticoagulant. Aim: Current study was designed to evaluate antitumor effects of aged garlic extract (AGE) on fibrosarcoma tumor in BALB/c mice. Materials and Methods: WEHI-164 fibrosarcoma cells were implanted subcutaneously on day zero into right flank of 40 BALB/c mice aged eight weeks. Mice were randomly categorized in two separate groups: 1st received AGE (100 mg/kg, intraperitoneally), 2nd group as control received phosphate buffered saline, (PBS). Treatments were done three times per week. Tumor growth was measured and morbidity was recorded. Subpopulations of CD4+/CD8+ T cells were determined using flow cytometry. WEHI-164 cell specific cytotoxicity of splenocytes and in vitro production of gamma-interferon, (IFN-γ) and Interleukin-4, (IL-4) cytokines were measured. Results: The mice received AGE had significantly longer survival time compared to control mice. The inhibitory effect on tumor growth was seen in AGE treated mice. The CD4+/CD8+ ratio and in vitro IFN-γ production of splenocytes were significantly increased in AGE group. Conclusions: Administration of AGE resulted in improved immune responses against experimentally implanted fibrosarcoma tumors in BALB/c mice. AGE showed significant effects on inhibition of tumor growth and longevity of survival times.
Collapse
Affiliation(s)
- Fatemeh Fallah-Rostami
- Center for Development and Cooperation of Research and Technology, Ministry of Health and Medical Education, Tehran, Iran
| | | | | | | | | |
Collapse
|
18
|
Aras U, Gandhi YA, Masso-Welch PA, Morris ME. Chemopreventive and anti-angiogenic effects of dietary phenethyl isothiocyanate in an N-methyl nitrosourea-induced breast cancer animal model. Biopharm Drug Dispos 2012; 34:98-106. [PMID: 23138465 DOI: 10.1002/bdd.1826] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 10/18/2012] [Accepted: 11/02/2012] [Indexed: 12/21/2022]
Abstract
The effect of phenethyl isothiocyanate (PEITC), a component of cruciferous vegetables, on the initiation and progression of cancer was investigated in a chemically induced estrogen-dependent breast cancer model. Breast cancer was induced in female Sprague Dawley rats (8 weeks old) by the administration of N-methyl nitrosourea (NMU). Animals were administered 50 or 150 µmol/kg oral PEITC and monitored for tumor appearance for 18 weeks. The PEITC treatment prolonged the tumor-free survival time and decreased the tumor incidence and multiplicity. The time to the first palpable tumor was prolonged from 69 days in the control, to 84 and 88 days in the 50 and 150 µmol/kg PEITC-treated groups. The tumor incidence in the control, 50 µmol/kg, and 150 µmol/kg PEITC-treated groups was 56.6%, 25.0% and 17.2%, while the tumor multiplicity was 1.03, 0.25 and 0.21, respectively. Differences were statistically significant (p < 0.05) from the control, but there were no significant differences between the two dose levels. The intratumoral capillary density decreased from 4.21 ± 0.30 vessels per field in the controls to 2.46 ± 0.25 in the 50 µmol/kg and 2.36 ± 0.23 in the 150 µmol/kg PEITC-treated animals. These studies indicate that supplementation with PEITC prolongs the tumor-free survival, reduces tumor incidence and burden, and is chemoprotective in NMU-induced estrogen-dependent breast cancer in rats. For the first time, it is reported that PEITC has anti-angiogenic effects in a chemically induced breast cancer animal model, representing a potentially significant mechanism contributing to its chemopreventive activity.
Collapse
Affiliation(s)
- Urvi Aras
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214-8033, USA
| | | | | | | |
Collapse
|
19
|
Diallyl trisulfide induces apoptosis in human breast cancer cells through ROS-mediated activation of JNK and AP-1. Biochem Pharmacol 2012; 84:1241-50. [DOI: 10.1016/j.bcp.2012.08.024] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 08/27/2012] [Accepted: 08/29/2012] [Indexed: 11/20/2022]
|
20
|
Altonsy MO, Habib TN, Andrews SC. Diallyl Disulfide-Induced Apoptosis in a Breast-Cancer Cell Line (MCF-7) May Be Caused by Inhibition of Histone Deacetylation. Nutr Cancer 2012; 64:1251-60. [DOI: 10.1080/01635581.2012.721156] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
21
|
Kim SH, Jung EY, Kang DH, Chang UJ, Hong YH, Suh HJ. Physical stability, antioxidative properties, and photoprotective effects of a functionalized formulation containing black garlic extract. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2012; 117:104-10. [PMID: 23099480 DOI: 10.1016/j.jphotobiol.2012.08.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 08/17/2012] [Accepted: 08/20/2012] [Indexed: 11/18/2022]
Abstract
When garlic is fermented, certain aspects of its bioactivity are changed. Black garlic is a type of fermented garlic used as a food ingredient in Asian cuisine. Black garlic's popularity has spread around the world as it has become a sought-after ingredient used in high-end cuisine. The formulations containing 10% black garlic extract or 10% normal garlic extract showed stable pH, color, precipitation, and organoleptic features, although these characteristics changed slightly. The 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging activities of the black garlic formulation were significantly (p<0.05) higher compared to those of the base formulation and normal garlic formulation. Mice treated with the black garlic formulation (119.63 μM/g) had significant (p<0.05) decreases in thiobarbituric acid reactive substance (TBARS) levels by lipid peroxidation compared to ultraviolet B (UVB)-control mice (142.37 μM/g). Moreover, significant (p<0.05) prevention of glutathione reduced form (GSH) depletion was observed in the black garlic formulation treated mice (vehicle: 3.46 mM/g vs. black garlic: 5.60mM/g). The formulation containing 10% black garlic extract retained physical stability and had high anti-radical efficiencies. Furthermore, it is possible to suggest that this formulation may be effective in protecting skin from UVB photodamage.
Collapse
Affiliation(s)
- Seon Hee Kim
- Department of Beauty and Coordiation, Suwon Science College, Gyeonggi 445-742, Republic of Korea
| | | | | | | | | | | |
Collapse
|
22
|
Joshi CN, Martin DN, Shaver P, Madamanchi C, Muller-Borer BJ, Tulis DA. Control of vascular smooth muscle cell growth by connexin 43. Front Physiol 2012; 3:220. [PMID: 22737133 PMCID: PMC3380337 DOI: 10.3389/fphys.2012.00220] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 06/01/2012] [Indexed: 12/04/2022] Open
Abstract
Connexin 43 (Cx43), the principal gap junction protein in vascular smooth muscle cells (VSMCs), regulates movement of ions and other signaling molecules through gap junction intercellular communication (GJIC) and plays important roles in maintaining normal vessel function; however, many of the signaling mechanisms controlling Cx43 in VSMCs are not clearly described. The goal of this study was to investigate mechanisms of Cx43 regulation with respect to VSMC proliferation. Treatment of rat primary VSMCs with the cAMP analog 8Br-cAMP, the soluble guanylate cyclase (sGC) stimulator BAY 41-2272 (BAY), or the Cx inducer diallyl disulfide (DADS) significantly reduced proliferation after 72 h compared with vehicle controls. Bromodeoxyuridine uptake revealed reduction (p < 0.05) in DNA synthesis after 6 h and flow cytometry showed reduced (40%) S-phase cell numbers after 16 h in DADS-treated cells compared with vehicle controls. Cx43 expression significantly increased after 270 min treatment with 8Br-cAMP, 8Br-cGMP, BAY or DADS. Inhibition of PKA, PKG or PKC reversed 8Br-cAMP-stimulated increases in Cx43 expression, whereas only PKG or PKC inhibition reversed 8Br-cGMP- and BAY-stimulated increases in total Cx43. Interestingly, stimulation of Cx43 expression by DADS was not dependent on PKA, PKG or PKC. Using fluorescence recovery after photobleaching, only 8Br-cAMP or DADS increased GJIC with 8Br-cAMP mediated by PKC and DADS mediated by PKG. Further, DADS significantly increased phosphorylation at MAPK-sensitive Serine (Ser)255 and Ser279, the cell cycle regulatory kinase-sensitive Ser262 and PKC-sensitive Ser368 after 30 min while 8Br-cAMP significantly increased phosphorylation only at Ser279 compared with controls. This study demonstrates that 8Br-cAMP- and DADS-enhanced GJIC rather than Cx43 expression and/or phosphorylation plays important roles in the regulation of VSMC proliferation and provides new insights into the growth-regulatory capacities of Cx43 in VSM.
Collapse
Affiliation(s)
- Chintamani N Joshi
- Department of Physiology, Brody School of Medicine, East Carolina University Greenville, NC, USA
| | | | | | | | | | | |
Collapse
|
23
|
Boukouvalas J, Albert V. Regiospecific synthesis of cepanolide, a cancer chemoprotective micronutrient found in green onions. Tetrahedron Lett 2012. [DOI: 10.1016/j.tetlet.2012.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
24
|
Munday R. Harmful and beneficial effects of organic monosulfides, disulfides, and polysulfides in animals and humans. Chem Res Toxicol 2011; 25:47-60. [PMID: 22004350 DOI: 10.1021/tx200373u] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Many organic sulfides (mono-, di-, and polysulfides) are present in our environment. Simple derivatives are produced by some plants and animals, while complex sulfides are secondary metabolites of several genera of bacteria and fungi. Sulfides play an important role in the smell and taste of food, and many such compounds are used as food flavorings. Some sulfides are toxic, and there is evidence that such toxicity is caused by the ability of these substances to generate reactive oxygen species. Some sulfides, however, have been shown to protect against toxicants and carcinogens. These beneficial effects are believed to involve, at least in part, the ability of sulfides to inhibit the enzymatic activation of pro-toxicants and to increase tissue activities of enzymes that protect against electrophiles. Some sulfides also have potential as cancer chemotherapeutics. In this review, the toxic and beneficial effects of sulfides in animals are described, and the possible value of sulfides in cancer chemoprotection and cancer chemotherapy is discussed.
Collapse
Affiliation(s)
- Rex Munday
- AgResearch , Ruakura Research Centre, Private Bag 3123, Hamilton, New Zealand.
| |
Collapse
|
25
|
Kunthavai Nachiyar R, Subramanian P, Tamilselvam K, Manivasagam T. Influence of S-allyl cysteine on biochemical circadian rhythms in young and aged rats. BIOL RHYTHM RES 2011. [DOI: 10.1080/09291016.2010.491246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
26
|
HAMLAOUI-GASMI SONIA, MOKNI MEHERZIA, AOUANI EZZEDINE, AMRI MOHAMED, MARZOUKI LAMJED. MODULATION OF HEMATOLOGICAL PARAMETERS BY GARLIC BASED ON ROUTE OF ADMINISTRATION IN RAT. J Food Biochem 2011. [DOI: 10.1111/j.1745-4514.2010.00394.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Omar SH, Al-Wabel NA. Organosulfur compounds and possible mechanism of garlic in cancer. Saudi Pharm J 2009; 18:51-8. [PMID: 23960721 DOI: 10.1016/j.jsps.2009.12.007] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Accepted: 12/07/2009] [Indexed: 11/27/2022] Open
Abstract
Garlic (Allium sativum), a member of the family Liliaceae, contains an abundance of chemical compounds that have been shown to possess beneficial effects to protect against several diseases, including cancer. Evidence supports the protective effects of garlic in stomach, colorectal, breast cancer in humans. The protective effects appear to be related to the presence of organosulfur compounds, predominantly allyl derivatives, which also have been shown to inhibit carcinogenesis in forestomach, esophagus, colon, mammary gland and lung of experimental animals. The exact mechanisms of the cancer-preventive effects are not clear, although several hypotheses have been proposed. Organosulfur compounds modulate the activity of several metabolizing enzymes that activate (cytochrome P450s) or detoxify (glutathione S-transferases) carcinogens and inhibit the formation of DNA adducts in several target tissues. Antiproliferative activity has been described in several tumor cell lines, which is possibly mediated by induction of apoptosis and alterations of the cell cycle. Organosulfur compounds in garlic are thus possible cancer-preventive agents. Clinical trials will be required to define the effective dose that has no toxicity in humans.
Collapse
Affiliation(s)
- S H Omar
- College of Pharmacy, Al-Qassim University, P.O. Box 31922, Buraidah 51418, Saudi Arabia
| | | |
Collapse
|
28
|
Butt MS, Sultan MT, Butt MS, Iqbal J. Garlic: nature's protection against physiological threats. Crit Rev Food Sci Nutr 2009; 49:538-51. [PMID: 19484634 DOI: 10.1080/10408390802145344] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Currently reliance on natural products is gaining popularity to combat various physiological threats including oxidative stress, cardiovascular complexities, cancer insurgence, and immune dysfunction. The use of traditional remedies may encounter more frequently due to an array of scientific evidence in their favor. Garlic (Allium sativum) holds a unique position in history and was recognized for its therapeutic potential. Recent advancements in the field of immunonutrition, physiology, and pharmacology further explored its importance as a functional food against various pathologies. Extensive research work has been carried out on the health promoting properties of garlic, often referred to its sulfur containing metabolites i.e. allicin and its derivatives. Garlic in its preparations are effective against health risks and even used as dietary supplements such as age garlic extract (AGE) and garlic oil etc. Its components/formulations can scavenge free radicals and protect membranes from damage and maintains cell integrity. It also provides cardiovascular protection mediated by lowering of cholesterol, blood pressure, anti-platelet activities, and thromboxane formation thus providing protection against atherosclerosis and associated disorders. Besides this, it possesses antimutagenic and antiproliferative properties that are interesting in chemopreventive interventions. Several mechanisms have been reviewed in this context like activation of detoxification phase-I and II enzymes, reactive oxygen species (ROS) generation, and reducing DNA damage etc. Garlic could be useful in preventing the suppression of immune response associated with increased risk of malignancy as it stimulates the proliferation of lymphocytes, macrophage phagocytosis, stimulates the release of interleukin-2, tumor necrosis factor-alpha and interferon-gamma, and enhances natural killer cells. In this paper much emphasis has been placed on garlic's ability to ameliorate oxidative stress, core role in cardiovascular cure, chemopreventive strategies, and indeed its prospective as immune booster.
Collapse
Affiliation(s)
- Masood Sadiq Butt
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan.
| | | | | | | |
Collapse
|
29
|
MOKNI M, LIMAM F, AMRI M, AOUANI E. PLASMA LIPID MODULATING ACTIVITY OF INTRAPERITONEALLY ADMINISTERED AQUEOUS EXTRACT FROM RAW GARLIC: ACUTE STUDIES IN NORMO-LIPIDEMIC RAT. J Food Biochem 2009. [DOI: 10.1111/j.1745-4514.2009.00223.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Iciek M, Kwiecień I, Włodek L. Biological properties of garlic and garlic-derived organosulfur compounds. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2009; 50:247-265. [PMID: 19253339 DOI: 10.1002/em.20474] [Citation(s) in RCA: 253] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Medicinal properties of garlic (Allium sativum) have been widely known and used since ancient times till the present. Garlic enhances immune functions and has antibacterial, antifungal and antivirus activities. It is known to prevent platelet aggregation, and to have hypotensive and cholesterol- and triglyceride-lowering properties, although the latter features have been questioned. This review is focused on anticancer efficacy of Allium sativum, and attempts to explain the mechanisms of this action. Medicinal properties of garlic rely upon organosulfur compounds mostly derived from alliin. Organosulfur compounds originating from garlic inhibit carcinogen activation, boost phase 2 detoxifying processes, cause cell cycle arrest mostly in G2/M phase, stimulate the mitochondrial apoptotic pathway, increase acetylation of histones. Garlic-derived sulfur compounds influence also gap-junctional intercellular communication and participate in the development of multidrug resistance. This review presents also other little known aspects of molecular action of garlic-derived compounds, like modulation of cellular redox state, involvement in signal transduction and post-translational modification of proteins by sulfane sulfur or by formation of mixed disulfides (S-thiolation reactions).
Collapse
Affiliation(s)
- Małgorzata Iciek
- Chair of Medical Biochemistry, Jagiellonian University, Medical College, Kraków, Poland
| | | | | |
Collapse
|
31
|
Manivasagam T, Subramanian P, Suthakar G, Essa MM. Influence of Diallyl Disulphide on Temporal Patterns of Circulatory Lipid Peroxidation Products and Antioxidants in N-Nitrosodiethylamine-Induced Hepatocarcinogenesis in Rats. Toxicol Mech Methods 2008; 17:25-32. [DOI: 10.1080/15376510600885042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
32
|
Stan SD, Kar S, Stoner GD, Singh SV. Bioactive food components and cancer risk reduction. J Cell Biochem 2008; 104:339-56. [PMID: 18092339 DOI: 10.1002/jcb.21623] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Research over the last three decades has provided convincing evidence to support the premise that diets rich in fruits and vegetables may be protective against the risk of different types of cancers. Initial evidence for protective effect of fruits and vegetables against cancer risk came from population-based case-control studies, which prompted intense research aimed at (a) identification of bioactive component(s) responsible for the anticancer effects of fruits and vegetables, (b) elucidation of the mechanisms by which bioactive food components may prevent cancer, and (c) determination of their efficacy for prevention of cancer in animal models. The bioactive components responsible for cancer chemopreventive effects of various edible plants have now been identified. For instance, anticancer effect of Allium vegetables including garlic is attributed to organosulfur compounds (e.g., diallyl trisulfide). Interestingly, unlike cancer chemotherapy drugs, many bioactive food components selectively target cancer cells. Molecular basis for selectivity of anticancer bioactive food components towards cancer cells remains elusive, but these agents appear promiscuous and target multiple signal transduction pathways to inhibit cancer cell growth in vitro and in vivo. Despite convincing observational and experimental evidence, however, limited effort has been directed towards clinical investigations to determine efficacy of bioactive food components for prevention of human cancers. This article reviews current knowledge on cancer chemopreventive effects of a few highly promising dietary constituents, including garlic-derived organosulfides, berry compounds, and cruciferous vegetable-derived isothiocyanates, and serves to illustrate complexity of the signal transduction mechanisms in cancer chemoprevention by these promising bioactive food components.
Collapse
Affiliation(s)
- Silvia D Stan
- Department of Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | | | | | | |
Collapse
|
33
|
Garlic (Allium sativum) extract inhibits lipopolysaccharide-induced Toll-like receptor 4 dimerization. Biosci Biotechnol Biochem 2008; 72:368-75. [PMID: 18256479 DOI: 10.1271/bbb.70434] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Garlic has long been used as a folk medicine. Numerous studies have demonstrated that a garlic extract and its sulfur-containing compounds inhibited nuclear factor kappa B (NF-kappaB) activation induced by various receptor agonists including lipopolysaccharide (LPS). Toll-like receptors (TLRs) play a key role in sensing diverse microbial products and inducing innate immune responses. The dimerization of TLR4 is required for the activation of downstream signaling pathways, including NF-kappaB. Therefore, TLR4 dimerization may be one of the first lines of regulation in activating LPS-induced signaling pathways. We report here biochemical evidence that the ethyl acetate fraction of garlic inhibited the LPS-induced dimerization of TLR4, resulting in the inhibition of NF-kappaB activation and the expression of cyclooxygenase 2 and inducible nitric oxide synthase. Our results demonstrate for the first time that a garlic extract can directly inhibit the TLRs-mediated signaling pathway at the receptor level. These results shed a new insight into understanding how garlic modulates the immune responses that could modify the risk of many chronic diseases.
Collapse
|
34
|
S-Allylcysteine reduces breast tumor cell adhesion and invasion. Biochem Biophys Res Commun 2008; 367:446-51. [PMID: 18190785 DOI: 10.1016/j.bbrc.2007.12.175] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Accepted: 12/21/2007] [Indexed: 11/24/2022]
Abstract
Previous studies show that aqueous garlic extract and its derivatives (e.g. S-allylcysteine [SAC]) prevent carcinogen-induced breast tumorigenesis. However, investigations testing the effect of SAC on later stages of breast tumorigenesis and/or metastasis have produced mixed results. Here we show that SAC significantly reduced anchorage-dependent and -independent growth of MDA-MB-231 breast tumor cells in a dose- and time-dependent fashion, and sub-lethal SAC-treatment altered mammary tumor cell adhesion and invasion through components of the extracellular matrix. We provide evidence to suggest increased expression of E-cadherin and reduced MMP-2 expression and activity are partially responsible for inhibition of mammary tumor cell invasion by SAC. Because E-cadherin and MMP-2 are important in cancer metastasis, these results suggest a link between SAC induction of E-cadherin and reduction of MMP2 activity with the inhibition of cell motility and invasion; thus providing evidence that events leading to breast cancer metastasis are repressed by sub-lethal SAC-treatment.
Collapse
|
35
|
Morihara N, Nishihama T, Ushijima M, Ide N, Takeda H, Hayama M. Garlic as an anti-fatigue agent. Mol Nutr Food Res 2007; 51:1329-34. [DOI: 10.1002/mnfr.200700062] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
36
|
Stoner GD, Wang LS, Chen T. Chemoprevention of esophageal squamous cell carcinoma. Toxicol Appl Pharmacol 2007; 224:337-49. [PMID: 17475300 PMCID: PMC2128258 DOI: 10.1016/j.taap.2007.01.030] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2006] [Revised: 01/19/2007] [Accepted: 01/26/2007] [Indexed: 12/12/2022]
Abstract
Esophageal squamous cell carcinoma (SCC) is responsible for approximately one-sixth of all cancer-related mortality worldwide. This malignancy has a multifactorial etiology involving several environmental, dietary and genetic factors. Since esophageal cancer has often metastasized at the time of diagnosis, current treatment modalities offer poor survival and cure rates. Chemoprevention offers a viable alternative that could well be effective against the disease. Clinical investigations have shown that primary chemoprevention of this disease is feasible if potent inhibitory agents are identified. The Fischer 344 (F-344) rat model of esophageal SCC has been used extensively to investigate the biology of the disease, and to identify chemopreventive agents that could be useful in human trials. Multiple compounds that inhibit tumor initiation by esophageal carcinogens have been identified using this model. These include several isothiocyanates, diallyl sulfide and polyphenolic compounds. These compounds influence the metabolic activation of esophageal carcinogens resulting in reduced genetic (DNA) damage. Recently, a few agents have been shown to inhibit the progression of preneoplastic lesions in the rat esophagus into tumors. These agents include inhibitors of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), vascular endothelial growth factor (VEGF) and c-Jun [a component of activator protein-1 (AP-1)]. Using a food-based approach to cancer prevention, we have shown that freeze-dried berry preparations inhibit both the initiation and promotion/progression stages of esophageal SCC in F-344 rats. These observations have led to a clinical trial in China to evaluate the ability of freeze-dried strawberries to influence the progression of esophageal dysplasia to SCC.
Collapse
Affiliation(s)
- Gary D Stoner
- Division of Hematology and Oncology, Department of Internal Medicine, Ohio State University College of Medicine and Comprehensive Cancer Center, Columbus, OH 43210, USA.
| | | | | |
Collapse
|
37
|
Herman-Antosiewicz A, Stan SD, Hahm ER, Xiao D, Singh SV. Activation of a novel ataxia-telangiectasia mutated and Rad3 related/checkpoint kinase 1-dependent prometaphase checkpoint in cancer cells by diallyl trisulfide, a promising cancer chemopreventive constituent of processed garlic. Mol Cancer Ther 2007; 6:1249-61. [PMID: 17406033 DOI: 10.1158/1535-7163.mct-06-0477] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Diallyl trisulfide (DATS), a cancer chemopreventive constituent of garlic, inhibits growth of cancer cells by interfering with cell cycle progression, but the mechanism is not fully understood. Here, we show the existence of a novel ataxia-telangiectasia mutated and Rad3 related (ATR)/checkpoint kinase 1 (Chk1)-dependent checkpoint partially responsible for DATS-mediated prometaphase arrest in cancer cells, which is different from the recently described gamma irradiation-induced mitotic exit checkpoint. The PC-3 human prostate cancer cells synchronized in prometaphase by nocodazole treatment and released to DATS-containing medium remained arrested in prometaphase, whereas the cells released to normal medium exited mitosis and resumed cell cycle. The mitotic arrest was maintained even after 4 h of culture of DATS-treated cells (4-h treatment) in drug-free medium. The DATS-arrested mitotic cells exhibited accumulation of anaphase-promoting complex/cyclosome (APC/C) substrates cyclin A and cyclin B1 and hyperphosphorylation of securin, which was accompanied by increased phosphorylation of the APC/C regulatory subunits Cdc20 and Cdh1. The DATS-mediated accumulation of cyclin B1 and hyperphosphorylation of securin, Cdc20, and Cdh1 were partially but markedly attenuated by knockdown of Chk1 or ATR protein. The U2OS osteosarcoma cells expressing doxycycline-inducible kinase dead ATR were significantly more resistant not only to DATS-mediated prometaphase arrest but also to the accumulation of cyclin B1 and hyperphosphorylation of securin, Cdc20, and Cdh1 compared with cells expressing wild-type ATR. However, securin protein knockdown failed to rescue cells from DATS-induced prometaphase arrest. In conclusion, the present study describes a novel signaling pathway involving ATR/Chk1 in the regulation of DATS-induced prometaphase arrest.
Collapse
Affiliation(s)
- Anna Herman-Antosiewicz
- Department of Pharmacology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
38
|
Srinivasan K. Role of Spices Beyond Food Flavoring: Nutraceuticals with Multiple Health Effects. FOOD REVIEWS INTERNATIONAL 2007. [DOI: 10.1081/fri-200051872] [Citation(s) in RCA: 160] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- K. Srinivasan
- a Department of Biochemistry and Nutrition , Central Food Technological Research Institute , Mysore , India
| |
Collapse
|
39
|
Xiao D, Li M, Herman-Antosiewicz A, Antosiewicz J, Xiao H, Lew KL, Zeng Y, Marynowski SW, Singh SV. Diallyl trisulfide inhibits angiogenic features of human umbilical vein endothelial cells by causing Akt inactivation and down-regulation of VEGF and VEGF-R2. Nutr Cancer 2007; 55:94-107. [PMID: 16965246 DOI: 10.1207/s15327914nc5501_12] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
We have shown recently that diallyl trisulfide (DATS), a cancer-chemopreventive constituent of garlic, inactivates Akt to trigger mitochondrial translocation of proapoptotic protein BAD in human prostate cancer cells. Because Akt activation is implicated in the promotion of endothelial cell survival and angiogenesis, we hypothesized that DATS may inhibit angiogenesis. In the present study, we tested this hypothesis using human umbilical vein endothelial cells (HUVECs) as a model. Survival of HUVECs was reduced significantly in the presence of DATS in a concentration-dependent manner, with an IC50 of approximately 4 microM. The DATS-mediated suppression of HUVEC survival was associated with apoptosis induction characterized by accumulation of subdiploid cells, cytoplasmic histone-associated DNA fragmentation, and cleavage of caspase-3 and poly-(ADP-ribose)-polymerase. The DATS-induced DNA fragmentation was significantly attenuated in the presence of pan-caspase inhibitor zVAD-fmk and specific inhibitors of caspase-9 (zLEHD-fmk) and caspase-8 (zIETD-fmk). DATS treatment inhibited the formation of capillary-like tube structure and migration by HUVECs in association with suppression of vascular endothelial growth factor (VEGF) secretion and VEGF receptor-2 protein level and inactivation of Akt kinase. DATS treatment also caused activation of extracellular signal-regulated kinase 1/2 (ERK1/2) but not c-Jun NH2-terminal kinase (JNK) or p38 mitogen-activated protein kinase (p38MAPK).DATS-mediatedapoptosis induction and inhibition of HUVEC tube formation was partially but statistically significantly attenuated by pharmacologic inhibition of ERK1/2 but not JNK or p38MAPK. The present study demonstrates, for the first time, that DATS has the ability to inhibit angiogenic features of human endothelial cells.
Collapse
Affiliation(s)
- Dong Xiao
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Xiao D, Lew KL, Kim YA, Zeng Y, Hahm ER, Dhir R, Singh SV. Diallyl trisulfide suppresses growth of PC-3 human prostate cancer xenograft in vivo in association with Bax and Bak induction. Clin Cancer Res 2006; 12:6836-43. [PMID: 17121905 DOI: 10.1158/1078-0432.ccr-06-1273] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The present study was undertaken to determine the effect of garlic constituent diallyl trisulfide (DATS) on growth of PC-3 human prostate cancer xenograft in vivo. EXPERIMENTAL DESIGN DATS was given orally (6 micromoL, thrice weekly) to male athymic mice s.c. implanted with PC-3 cells. Tumor sections from control and DATS-treated mice were examined for apoptotic bodies by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay. Protein levels of apoptosis and cell cycle regulating proteins in tumor tissues of control and DATS-treated mice were determined by immunoblotting. The effect of DATS treatment on in vivo angiogenesis was determined by immunohistochemical analysis of CD31 in tumors. RESULTS Oral gavage of DATS significantly retarded growth of PC-3 xenografts in athymic mice without causing weight loss. For instance, 20 days after starting therapy, the average tumor volume in control mice was approximately 3-fold higher compared with DATS-treated mice. Tumors from DATS-treated mice exhibited a markedly higher count of apoptotic bodies compared with control tumors. Consistent with the results in cultured PC-3 cells, the DATS-mediated suppression of PC-3 xenograft growth correlated with induction of proapoptotic proteins Bax and Bak. Although DATS treatment inhibited migration of cultured PC-3 cells in association with down-regulation of vascular endothelial growth factor receptor-2 protein, formation of new blood vessels was comparable in tumors of control and DATS-treated mice as judged by CD31 immunostaining. CONCLUSIONS The present study indicates that DATS administration inhibits growth of PC-3 xenografts in vivo in association with induction of Bax and Bak.
Collapse
Affiliation(s)
- Dong Xiao
- Department of Pharmacology and University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Zhao J, Huang WG, He J, Tan H, Liao QJ, Su Q. Diallyl disulfide suppresses growth of HL-60 cell through increasing histone acetylation and p21WAF1 expression in vivo and in vitro. Acta Pharmacol Sin 2006; 27:1459-66. [PMID: 17049122 DOI: 10.1111/j.1745-7254.2006.00433.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
AIM To examine the differentiation induction and growth inhibition of HL-60 cells by diallyl disulfide (DADS), and its relationship with the alterations of histone acetylation and p21(WAF1) expression in vitro and in vivo. METHODS Differentiation was studied by nitroblue tetrazolium (NBT) reduction of HL-60 cell in vitro. HL-60 cells 5x10(6) were injected into the right side of the peritoneal cavity of severe combined immunodeficiency (SCID) mice. When the peritoneal neoplasms were detected, the SCID mice were randomly divided into 3 groups and received an ip injection of vehicle alone (NS), DADS or sodium butyrate (SB). The growth inhibition of peritoneal neoplasms induced by DADS was observed by a growth curve. The cycle distribution of HL-60 cells in SCID mice was monitored by flow cytometry. The expression of acetylated histone H3, H4 and p21(WAF1) were measured by Western blot. RESULTS After treatment with DADS for 0-72 h, the NBT reduction ability of HL-60 cells increased in a time-dependent manner, compared with no treatment of HL-60 cells. In the HL-60 cells treated with DADS for 24 h, the expression of acetylated histone H3, H4, and p21(WAF1) increased obviously. After treatment with DADS, tumor growth was markedly suppressed. HL-60 cells from mice treated with DADS were blocked in the G1 phase, from 25.4% to 63.4%. The tumors from the mice treated with DADS showed an increase of acetylated histone H3, H4, and p21(WAF1). CONCLUSION DADS could induce differentiation and inhibit the growth of HL-60 cells through increasing the expression of acetylated histone H3, H4, and p21(WAF1) in vitro and in vivo.
Collapse
Affiliation(s)
- Jie Zhao
- Cancer Research Institute, Nanhua University, Hengyang 421001, China
| | | | | | | | | | | |
Collapse
|
42
|
Arora A, Kalra N, Shukla Y. Regulation of p21/ras protein expression by diallyl sulfide in DMBA induced neoplastic changes in mouse skin. Cancer Lett 2006; 242:28-36. [PMID: 16448747 DOI: 10.1016/j.canlet.2005.10.049] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2005] [Accepted: 10/24/2005] [Indexed: 11/26/2022]
Abstract
Diallyl sulfide (DAS), a naturally occurring organosulfide, present in garlic, is known to possess pleiotropic biological effects. DAS is known to inhibit chemically induced tumors in a number of animal models. The chemopreventive properties of DAS seem to occur through a number of mechanisms, but its role on primary events on oncogenic activation is not well understood. In the present study, we demonstrated the modulatory effect of DAS on the expression of H-ras gene product, p21/ras protein as one of the mechanisms of its chemopreventive action in chemically induced mouse skin tumors. Our results showed that DAS administration leads to modulation of the DMBA-induced levels of p21/ras oncoprotein as early as 24h after the DMBA application, suggesting down-regulation of the p21/ras by DAS. Furthermore, the modulatory effects of DAS were also evident in DMBA-induced mouse skin tumors. DAS administration led to increase in the levels of cytosolic p21/ras and decrease in the levels of p21/ras in membrane fractions. DAS administration was also found to down regulate the DMBA-induced H-ras mRNA level in mouse skin tumors. The immunohistochemical staining of the skin/tumor showed 55.82 and 46.86% decrease in the area positive for p21/ras expression levels in DAS pre- and post-supplemented groups, respectively. Flow-cytometric analysis, further confirms our results as indicated by a shift in the mean fluorescence intensity (MFI) towards lower fluorescence in DAS administered groups in comparison to the DMBA treated group. Thus, one mechanism of the growth inhibitory properties of DAS is through the suppression of development of tumors that harbor ras mutations by inhibiting the membrane association of oncogenic p21/ras protein.
Collapse
Affiliation(s)
- Annu Arora
- Environmental Carcinogenesis Division, Industrial Toxicology Research Centre, P.O. Box 80, M.G. Marg, Lucknow 226001, India
| | | | | |
Collapse
|
43
|
Antosiewicz J, Herman-Antosiewicz A, Marynowski SW, Singh SV. c-Jun NH(2)-terminal kinase signaling axis regulates diallyl trisulfide-induced generation of reactive oxygen species and cell cycle arrest in human prostate cancer cells. Cancer Res 2006; 66:5379-86. [PMID: 16707465 DOI: 10.1158/0008-5472.can-06-0356] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We have shown previously that generation of reactive oxygen species (ROS) is a critical event in G(2)-M phase cell cycle arrest caused by diallyl trisulfide (DATS), which is a highly promising anticancer constituent of processed garlic. Using DU145 and PC-3 human prostate cancer cells as a model, we now report a novel mechanism involving c-Jun NH(2)-terminal kinase (JNK) signaling axis, which is known for its role in regulation of cell survival and apoptosis, in DATS-induced ROS production. The DATS-induced ROS generation, G(2)-M phase cell cycle arrest and degradation, and hyperphosphorylation of Cdc25C were significantly attenuated in the presence of EUK134, a combined mimetic of superoxide dismutase and catalase. Interestingly, the DATS-induced ROS generation and G(2)-M phase cell cycle arrest were also inhibited significantly in the presence of desferrioxamine, an iron chelator, but this protection was not observed with iron-saturated desferrioxamine. DATS treatment caused a marked increase in the level of labile iron that was accompanied by degradation of light chain of iron storage protein ferritin. Interestingly, DATS-mediated degradation of ferritin, increase in labile iron pool, ROS generation, and/or cell cycle arrest were significantly attenuated by ectopic expression of a catalytically inactive mutant of JNK kinase 2 and RNA interference of stress-activated protein kinase/extracellular signal-regulated kinase 1 (SEK1), upstream kinases in JNK signal transduction pathway. In conclusion, the present study provides experimental evidence to indicate existence of a novel pathway involving JNK signaling axis in regulation of DATS-induced ROS generation.
Collapse
Affiliation(s)
- Jedrzej Antosiewicz
- Department of Pharmacology and Urology and University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | |
Collapse
|
44
|
Shukla Y, Kalra N. Cancer chemoprevention with garlic and its constituents. Cancer Lett 2006; 247:167-81. [PMID: 16793203 DOI: 10.1016/j.canlet.2006.05.009] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2006] [Revised: 05/03/2006] [Accepted: 05/15/2006] [Indexed: 12/12/2022]
Abstract
Advance metastasized cancers are generally incurable; hence an effort to prolong the process of carcinogenesis through chemoprevention has emerged consistent with this notion. In recent years, a considerable attention has been placed to identify naturally occurring chemopreventive substances capable of inhibiting, retarding or reversing the process of carcinogenesis. A number of phenolic substances, particularly those present in dietary and medicinal plants, have been shown to possess substantial anticarcinogenic and antimutagenic activities. Epidemiological observations and laboratory studies, both in cell culture and animal models have indicated anticarcinogenic potential of garlic and its constituents, which has been traditionally used for varied human ailments around the world. Chemical analysis has indicated that protective effects of garlic appear to be related to the presence of organosulfur compounds mainly allyl derivatives. Several mechanisms have been presented to explain cancer chemopreventive effects of garlic-derived products. These include modulation in activity of several metabolizing enzymes that activate and detoxify carcinogens and inhibit DNA adduct formation, antioxidative and free radicals scavenging properties and regulation of cell proliferation, apoptosis and immune responses. Recent data show that garlic-derived products modulate cell-signaling pathways in a fashion that controls the unwanted proliferation of cells thereby imparting strong cancer chemopreventive as well as cancer therapeutic effects. This review discusses mechanistic basis of cancer chemopreventive effects of garlic-derived products, their implication in cancer management and ways and means to take these agents from bench to real life situations.
Collapse
Affiliation(s)
- Yogeshwer Shukla
- Environmental Carcinogenesis Division, Industrial Toxicology Research Centre, P.O. Box 80, M.G. Marg, Lucknow 226001, India.
| | | |
Collapse
|
45
|
Arunkumar A, Vijayababu MR, Venkataraman P, Senthilkumar K, Arunakaran J. Chemoprevention of rat prostate carcinogenesis by diallyl disulfide, an organosulfur compound of garlic. Biol Pharm Bull 2006; 29:375-9. [PMID: 16462049 DOI: 10.1248/bpb.29.375] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Diallyl disulfide (DADS), an important component of garlic (Allium sativam) has been demonstrated to exert a potential chemopreventive activity against human cancers. DADS inhibits proliferation of both androgen dependent and independent prostate cancer cells in vitro. However there is no report available on the role of DADS on prostate cancer initiation in in vivo model. So the present chemoprevention study was conducted to evaluate the activity of diallyl disulfide as an anticancer agent in prostate carcinogenesis of male Sprague-Dawley rats. Testosterone and N-Methyl N-Nitroso Urea (MNU) were used to induce prostate carcinogenesis that involves a multi step process like, hyperplasia, dysplasia and prostatic intraepithelial neoplasia (PIN). The rats were induced prostate carcinogenesis by injection of testosterone and single dose of MNU and again the testosterone was continued throughout the experimental period. Forty percentage of animals carried PIN in dorsolateral prostate, while dysplasia and hyperplasia (55 to 65%) were common in ventral as well as dorsolateral prostates of the hormone and carcinogen treated rats. Rats treated with hormone and carcinogen along with DADS developed PIN at incidence of 10% in the ventral and dorsolateral prostates about 20 to 10%. Dysplasia and hyperplasia were less common in these rats. The results of this study provide evidence that DADS may have chemopreventive activity in rat prostate carcinogenesis.
Collapse
Affiliation(s)
- Arumugam Arunkumar
- Department of Endocrinology, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani, Chennai 600-113, India
| | | | | | | | | |
Collapse
|
46
|
El-Bayoumy K, Sinha R, Pinto JT, Rivlin RS. Cancer chemoprevention by garlic and garlic-containing sulfur and selenium compounds. J Nutr 2006; 136:864S-869S. [PMID: 16484582 DOI: 10.1093/jn/136.3.864s] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
As early as 1550 B.C., Egyptians realized the benefits of garlic as a remedy for a variety of diseases. Many epidemiological studies support the protective role of garlic and related allium foods against the development of certain human cancers. Natural garlic and garlic cultivated with selenium fertilization have been shown in laboratory animals to have protective roles in cancer prevention. Certain organoselenium compounds and their sulfur analogs have been identified in plants. Organoselenium compounds synthesized in our laboratory were compared with their sulfur analogs for chemopreventive efficacy. Diallyl selenide was at least 300-fold more effective than diallyl sulfide in protecting against 7,12-dimethylbenz[a]anthracene (DMBA)-induced mammary adenocarcinomas in rats. In addition, benzyl selenocyanate inhibited the development of DMBA-induced mammary adenocarcinomas and azoxymethane-induced colon cancer in rats and benzo[a]pyrene-induced forestomach tumors in mice. The sulfur analog, benzyl thiocyanate, had no effect under the same experimental conditions. Furthermore, we showed that 1,4-phenylenebis(methylene)selenocyanate, but not its sulfur analog, significantly inhibited DMBA-DNA adduct formation and suppressed DMBA-induced mammary carcinogenesis. Collectively, these results indicate that structurally distinctive organoselenium compounds are superior to their corresponding sulfur analogs in cancer chemoprevention. Additionally, synthetic aromatic selenocyanates are more effective cancer chemopreventive agents than the naturally occurring selenoamino acids. Because plants are capable of utilizing selenium in a manner similar to that in sulfur assimilation pathways, future studies should aim at determining whether, under appropriate conditions, these potent cancer chemopreventive synthetic selenium compounds can be synthesized by garlic and related allium foods.
Collapse
Affiliation(s)
- Karam El-Bayoumy
- Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA.
| | | | | | | |
Collapse
|
47
|
Wargovich MJ. Diallylsulfide and allylmethylsulfide are uniquely effective among organosulfur compounds in inhibiting CYP2E1 protein in animal models. J Nutr 2006; 136:832S-834S. [PMID: 16484575 DOI: 10.1093/jn/136.3.832s] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Garlic is a popular culinary herb that is also used throughout the world as a traditional medicine for the prevention and treatment of disease. Epidemiologic studies have suggested that long-term consumption of garlic reduces risk for certain cancers, most notably stomach and colon cancer. This article summarizes the key findings behind one important mechanism explaining the anticarcinogenic effects of garlic-derived agents in animal models: the inhibition of cytochrome p4502E1 (CYP2E1), with some commentary on other aspects of carcinogen metabolism modified by these unique phytochemicals.
Collapse
Affiliation(s)
- Michael J Wargovich
- Department of Pathology and Microbiology, University of South Carolina School of Medicine and South Carolina Cancer Center, Columbia, SC, USA.
| |
Collapse
|
48
|
Xiao D, Herman-Antosiewicz A, Antosiewicz J, Xiao H, Brisson M, Lazo JS, Singh SV. Diallyl trisulfide-induced G(2)-M phase cell cycle arrest in human prostate cancer cells is caused by reactive oxygen species-dependent destruction and hyperphosphorylation of Cdc 25 C. Oncogene 2005; 24:6256-68. [PMID: 15940258 DOI: 10.1038/sj.onc.1208759] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Molecular mechanism of cell cycle arrest caused by diallyl trisulfide (DATS), a garlic-derived cancer chemopreventive agent, has been investigated using PC-3 and DU 145 human prostate cancer cells as a model. Treatment of PC-3 and DU 145 cells, but not a normal prostate epithelial cell line (PrEC), with growth suppressive concentrations of DATS caused enrichment of the G(2)-M fraction. The DATS-induced cell cycle arrest in PC-3 cells was associated with increased Tyr(15) phosphorylation of cyclin-dependent kinase 1 (Cdk 1) and inhibition of Cdk 1/cyclinB 1 kinase activity. The DATS-treated PC-3 and DU 145 cells also exhibited a decrease in the protein level of Cdc 25 C and an increase in its Ser(216) phosphorylation. The DATS-mediated decrease in protein level and Ser(216) phosphorylation of Cdc 25 C as well as G(2)-M phase cell cycle arrest were significantly attenuated in the presence of N-acetylcysteine implicating reactive oxygen species (ROS) in cell cycle arrest caused by DATS. ROS generation was observed in DATS-treated PC-3 and DU 145 cells. DATS treatment also caused an increase in the protein level of Cdk inhibitor p21, but DATS-induced G(2)-M phase arrest was not affected by antisense-mediated suppression of p21 protein level. In conclusion, the results of the present study indicate that DATS-induced G(2)-M phase cell cycle arrest in human prostate cancer cells is caused by ROS-mediated destruction and hyperphosphorylation of Cdc 25 C.
Collapse
Affiliation(s)
- Dong Xiao
- Department of Pharmacology and University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Hosono T, Fukao T, Ogihara J, Ito Y, Shiba H, Seki T, Ariga T. Diallyl trisulfide suppresses the proliferation and induces apoptosis of human colon cancer cells through oxidative modification of beta-tubulin. J Biol Chem 2005; 280:41487-93. [PMID: 16219763 DOI: 10.1074/jbc.m507127200] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Allyl sulfides are characteristic flavor components obtained from garlic. These sulfides are thought to be responsible for their epidemiologically proven anticancer effect on garlic eaters. This study was aimed at clarifying the molecular basis of this anticancer effect of garlic by using human colon cancer cell lines HCT-15 and DLD-1. The growth of the cells was significantly suppressed by diallyl trisulfide (DATS, HCT-15 IC50 = 11.5 microM, DLD-1 IC50 = 13.3 microM); however, neither diallyl monosulfide nor diallyl disulfide showed such an effect. The proportion of HCT-15 and that of DLD-1 cells residing at the G1 and S phases were decreased by DATS, and their populations at the G2/M phase were markedly increased for up to 12 h. The cells with a sub-G1 DNA content were increased thereafter. Caspase-3 activity was also dramatically increased by DATS. Fluorescence-activated cell sorter analysis performed on the cells arrested at the G1/S boundary revealed cell cycle-dependent induction of apoptosis through the transition of the G2/M phase to the G1 phase by DATS. DATS inhibited tubulin polymerization in an in vitro cell-free system. DATS disrupted microtubule network formation of the cells, and microtubule fragments could be seen at the interphase. Peptide mass mapping by liquid chromatography-tandem mass spectrometry analysis for DATS-treated tubulin demonstrated that there was a specific oxidative modification of cysteine residues Cys-12beta and Cys-354beta to form S-allylmercaptocysteine with a peptide mass increase of 72.1 Da. The potent antitumor activity of DATS was also demonstrated in nude mice bearing HCT-15 xenografts. This is the first paper describing intracellular target molecules directly modified by garlic components.
Collapse
Affiliation(s)
- Takashi Hosono
- Department of Applied Life Sciences, Nihon University Graduate School of Bioresource Sciences, Kanagawa 252-8510, Japan
| | | | | | | | | | | | | |
Collapse
|
50
|
Xiao D, Singh SV. Diallyl trisulfide, a constituent of processed garlic, inactivates Akt to trigger mitochondrial translocation of BAD and caspase-mediated apoptosis in human prostate cancer cells. Carcinogenesis 2005; 27:533-40. [PMID: 16169930 DOI: 10.1093/carcin/bgi228] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We have shown previously that apoptosis induction by diallyl trisulfide (DATS), a constituent of processed garlic, in PC-3 and DU145 human prostate cancer cells is associated with c-Jun N-terminal kinase and extracellular signal-regulated kinase-mediated phosphorylation of Bcl-2. However, pharmacological inhibition of these kinases offers only partial protection against the cell death caused by DATS. Here, we demonstrate that DATS inactivates Akt to trigger apoptosis in prostate cancer cells. Treatment of PC-3/DU145 cells with apoptosis inducing concentration of DATS (40 microM) resulted in a rapid decrease in Ser(473) and Thr(308) phosphorylation of Akt leading to inhibition of its kinase activity. The DATS-mediated inactivation of Akt was associated with downregulation of insulin-like growth factor receptor 1 protein level and inhibition of its autophosphorylation. DATS treatment (40 microM) also caused a decrease in Ser(155) and Ser(136) phosphorylation of BAD (a proapoptotic protein), which is a downstream target of Akt. Phosphorylation sequesters BAD in the cytoplasm owing to increased binding with 14-3-3 proteins. The interaction between BAD and 14-3-3beta was reduced markedly upon a 4 h treatment with 40 microM DATS in both cell lines. Consistent with these results, DATS treatment (40 microM, 4 h) promoted mitochondrial translocation of BAD as revealed by immunocytochemistry. Ectopic expression of constitutively active Akt conferred statistically significant protection against DATS-induced apoptosis. The DATS-induced apoptosis in both cell lines was significantly attenuated in the presence of pan caspase inhibitor zVAD-fmk and caspase 9 specific inhibitor zLEHD-fmk. In conclusion, the present study demonstrates that DATS-induced apoptosis in human prostate cancer cells is mediated, at least in part, by inactivation of Akt signaling axis.
Collapse
Affiliation(s)
- Dong Xiao
- Department of Pharmacology and University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | |
Collapse
|