1
|
Urbin MA. Adaptation in the spinal cord after stroke: Implications for restoring cortical control over the final common pathway. J Physiol 2024. [PMID: 38787922 DOI: 10.1113/jp285563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
Control of voluntary movement is predicated on integration between circuits in the brain and spinal cord. Although damage is often restricted to supraspinal or spinal circuits in cases of neurological injury, both spinal motor neurons and axons linking these cells to the cortical origins of descending motor commands begin showing changes soon after the brain is injured by stroke. The concept of 'transneuronal degeneration' is not new and has been documented in histological, imaging and electrophysiological studies dating back over a century. Taken together, evidence from these studies agrees more with a system attempting to survive rather than one passively surrendering to degeneration. There tends to be at least some preservation of fibres at the brainstem origin and along the spinal course of the descending white matter tracts, even in severe cases. Myelin-associated proteins are observed in the spinal cord years after stroke onset. Spinal motor neurons remain morphometrically unaltered. Skeletal muscle fibres once innervated by neurons that lose their source of trophic input receive collaterals from adjacent neurons, causing spinal motor units to consolidate and increase in size. Although some level of excitability within the distributed brain network mediating voluntary movement is needed to facilitate recovery, minimal structural connectivity between cortical and spinal motor neurons can support meaningful distal limb function. Restoring access to the final common pathway via the descending input that remains in the spinal cord therefore represents a viable target for directed plasticity, particularly in light of recent advances in rehabilitation medicine.
Collapse
Affiliation(s)
- Michael A Urbin
- Human Engineering Research Laboratories, VA RR&D Center of Excellence, VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
2
|
Wang Q, Zhao S, He Z, Zhang S, Jiang X, Zhang T, Liu T, Liu C, Han J. Modeling functional difference between gyri and sulci within intrinsic connectivity networks. Cereb Cortex 2023; 33:933-947. [PMID: 35332916 DOI: 10.1093/cercor/bhac111] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 11/12/2022] Open
Abstract
Recently, the functional roles of the human cortical folding patterns have attracted increasing interest in the neuroimaging community. However, most existing studies have focused on the gyro-sulcal functional relationship on a whole-brain scale but possibly overlooked the localized and subtle functional differences of brain networks. Actually, accumulating evidences suggest that functional brain networks are the basic unit to realize the brain function; thus, the functional relationships between gyri and sulci still need to be further explored within different functional brain networks. Inspired by these evidences, we proposed a novel intrinsic connectivity network (ICN)-guided pooling-trimmed convolutional neural network (I-ptFCN) to revisit the functional difference between gyri and sulci. By testing the proposed model on the task functional magnetic resonance imaging (fMRI) datasets of the Human Connectome Project, we found that the classification accuracy of gyral and sulcal fMRI signals varied significantly for different ICNs, indicating functional heterogeneity of cortical folding patterns in different brain networks. The heterogeneity may be contributed by sulci, as only sulcal signals show heterogeneous frequency features across different ICNs, whereas the frequency features of gyri are homogeneous. These results offer novel insights into the functional difference between gyri and sulci and enlighten the functional roles of cortical folding patterns.
Collapse
Affiliation(s)
- Qiyu Wang
- School of Automation, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Shijie Zhao
- School of Automation, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Zhibin He
- School of Automation, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Shu Zhang
- School of Computer Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Xi Jiang
- School of Life Science and Technology, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
| | - Tuo Zhang
- School of Automation, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Tianming Liu
- Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research Center, The University of Georgia, Athens, GA 30605, United States
| | - Cirong Liu
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
| | - Junwei Han
- School of Automation, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| |
Collapse
|
3
|
Hug F, Avrillon S, Ibáñez J, Farina D. Common synaptic input, synergies and size principle: Control of spinal motor neurons for movement generation. J Physiol 2023; 601:11-20. [PMID: 36353890 PMCID: PMC10098498 DOI: 10.1113/jp283698] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
Understanding how movement is controlled by the CNS remains a major challenge, with ongoing debate about basic features underlying this control. In current established views, the concepts of motor neuron recruitment order, common synaptic input to motor neurons and muscle synergies are usually addressed separately and therefore seen as independent features of motor control. In this review, we analyse the body of literature in a broader perspective and we identify a unified approach to explain apparently divergent observations at different scales of motor control. Specifically, we propose a new conceptual framework of the neural control of movement, which merges the concept of common input to motor neurons and modular control, together with the constraints imposed by recruitment order. This framework is based on the following assumptions: (1) motor neurons are grouped into functional groups (clusters) based on the common inputs they receive; (2) clusters may significantly differ from the classical definition of motor neuron pools, such that they may span across muscles and/or involve only a portion of a muscle; (3) clusters represent functional modules used by the CNS to reduce the dimensionality of the control; and (4) selective volitional control of single motor neurons within a cluster receiving common inputs cannot be achieved. Here, we discuss this framework and its underlying theoretical and experimental evidence.
Collapse
Affiliation(s)
- François Hug
- Université Côte d'Azur, LAMHESS, Nice, France.,School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Simon Avrillon
- Department of Bioengineering, Imperial College London, London, UK
| | - Jaime Ibáñez
- Department of Bioengineering, Imperial College London, London, UK.,BSICoS, IIS Aragón, Universidad de Zaragoza, Zaragoza, Spain.,Department for Clinical and movement neurosciences, Institute of Neurology, University College London, London, UK
| | - Dario Farina
- Department of Bioengineering, Imperial College London, London, UK
| |
Collapse
|
4
|
Fisher KM, Garner JP, Darian-Smith C. Small sensory spinal lesions that affect hand function in monkeys greatly alter primary afferent and motor neuron connections in the cord. J Comp Neurol 2022; 530:3039-3055. [PMID: 35973735 PMCID: PMC9561953 DOI: 10.1002/cne.25395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/20/2022] [Accepted: 07/15/2022] [Indexed: 11/08/2022]
Abstract
Small sensory spinal injuries induce plasticity across the neuraxis, but little is understood about their effect on segmental connections or motor neuron (MN) function. Here, we begin to address this at two levels. First, we compared afferent input distributions from the skin and muscles of the digits with corresponding MN pools to determine their spatial relationship, in both the normal state and 4-6 months after a unilateral dorsal root/dorsal column lesion (DRL/DCL), affecting digits 1-3. Second, we looked at specific changes to MN inputs and membrane properties that likely impact functional recovery. Monkeys received a targeted unilateral DRL/DCL, and 4-6 months later, cholera toxin subunit B (CT-B) was injected bilaterally into either the distal pads of digits 1-3, or related intrinsic hand muscles, to label inputs to the cord, and corresponding MNs. In controls (unlesioned side), cutaneous and proprioceptive afferents from digits 1-3 showed different distribution patterns but similar rostrocaudal spread within the dorsal horn from C1 to T2. In contrast, MNs were distributed across just two segments (C7-8). Following the lesion, sensory inputs were significantly diminished across all 10 segments, though this did not alter MN distributions. Afferent and monoamine inputs, as well as KCC2 cotransporters, were also significantly altered on the cell membrane of CT-B labeled MNs postlesion. In contrast, inhibitory neurotransmission and perineuronal net integrity were not altered at this prechronic timepoint. Our findings indicate that even a small sensory injury can significantly impact sensory and motor spinal neurons and provide new insight into the complex process of recovery.
Collapse
Affiliation(s)
- Karen M. Fisher
- Department of Comparative Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA94305-5342
| | - Joseph P. Garner
- Department of Comparative Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA94305-5342
| | - Corinna Darian-Smith
- Department of Comparative Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA94305-5342
| |
Collapse
|
5
|
Seo G, Kishta A, Mugler E, Slutzky MW, Roh J. Myoelectric interface training enables targeted reduction in abnormal muscle co-activation. J Neuroeng Rehabil 2022; 19:67. [PMID: 35778757 PMCID: PMC9250207 DOI: 10.1186/s12984-022-01045-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 06/02/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Abnormal patterns of muscle co-activation contribute to impaired movement after stroke. Previously, we developed a myoelectric computer interface (MyoCI) training paradigm to improve stroke-induced arm motor impairment by reducing the abnormal co-activation of arm muscle pairs. However, it is unclear to what extent the paradigm induced changes in the overall intermuscular coordination in the arm, as opposed to changing just the muscles trained with the MyoCI. This study examined the intermuscular coordination patterns of thirty-two stroke survivors who participated in 6 weeks of MyoCI training. METHODS We used non-negative matrix factorization to identify the arm muscle synergies (coordinated patterns of muscle activity) during a reaching task before and after the training. We examined the extent to which synergies changed as the training reduced motor impairment. In addition, we introduced a new synergy analysis metric, disparity index (DI), to capture the changes in the individual muscle weights within a synergy. RESULTS There was no consistent pattern of change in the number of synergies across the subjects after the training. The composition of muscle synergies, calculated using a traditional synergy similarity metric, also did not change after the training. However, the disparity of muscle weights within synergies increased after the training in the participants who responded to MyoCI training-that is, the specific muscles that the MyoCI was targeting became less correlated within a synergy. This trend was not observed in participants who did not respond to the training. CONCLUSIONS These findings suggest that MyoCI training reduced arm impairment by decoupling only the muscles trained while leaving other muscles relatively unaffected. This suggests that, even after injury, the nervous system is capable of motor learning on a highly fractionated level. It also suggests that MyoCI training can do what it was designed to do-enable stroke survivors to reduce abnormal co-activation in targeted muscles. Trial registration This study was registered at ClinicalTrials.gov (NCT03579992, Registered 09 July 2018-Retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT03579992?term=NCT03579992&draw=2&rank=1 ).
Collapse
Affiliation(s)
- Gang Seo
- Department of Biomedical Engineering, Cullen College of Engineering, University of Houston, 3517 Cullen Blvd, SERC Room 2011, Houston, TX, 77204-5060, USA
| | - Ameen Kishta
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Emily Mugler
- Department of Neurology, Northwestern University, 320 E. Superior Ave., Searle 11-473, Chicago, IL, 60611, USA
| | - Marc W Slutzky
- Department of Neurology, Northwestern University, 320 E. Superior Ave., Searle 11-473, Chicago, IL, 60611, USA. .,Department of Neuroscience, Northwestern University, Chicago, IL, USA. .,Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, USA. .,Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
| | - Jinsook Roh
- Department of Biomedical Engineering, Cullen College of Engineering, University of Houston, 3517 Cullen Blvd, SERC Room 2011, Houston, TX, 77204-5060, USA.
| |
Collapse
|
6
|
Ohtsuka H, Nakajima T, Komiyama T, Suzuki S, Irie S, Ariyasu R. Execution of natural manipulation in the air enhances the beta-rhythm intermuscular coherences of the human arm depending on muscle pairs. J Neurophysiol 2022; 127:946-957. [PMID: 35294314 DOI: 10.1152/jn.00421.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Natural manipulation tasks in air consist of two kinematic components: a grasping component, with activation of the hand muscles, and a lifting component, with activation of the proximal muscles. However, it remains unclear whether the synchronized motor commands to the hand/proximal arm muscles are divergently controlled during the task. Therefore, we examined how intermuscular coherence was modulated depending on the muscle combinations during grip and lift (G&L) tasks. Electromyograms (EMGs) were recorded from the biceps brachii (BB), triceps brachii (TB), flexor digitorum superficialis (FDS), and extensor digitorum communis (EDC) muscles. The participants were required to maintain G&L tasks involving a small cubical box with the thumb and index and middle fingers. Consequently, we found that the beta-rhythm coherence (15-35 Hz) in BB-TB, BB-FDS, and TB-EDC pairs during G&L was significantly larger than that during the isolated task with cocontraction of the two target muscles but not BB-EDC, TB-FDS, and FDS-EDC (task and muscle pair specificities). These increases in beta-rhythm coherence were also observed in intramuscular EMG recordings. Furthermore, the results from the execution of several mimic G&L tasks revealed that the separated task-related motor signals and combinations between the motor signals/sensations of the fingertips or object load had minor contributions to the increase in the coherence. These results suggest that during G&L the central nervous system regulates synchronous drive onto motoneurons depending on the muscle pairs and that the multiple combination effect of the sensations of touch/object load and motor signals in the task promotes the synchrony of these pairs.NEW & NOTEWORTHY Natural manipulation in air consists of two kinematic components: grasping, with activation of hand muscles, and lifting, with activation of proximal muscles. We show that during the maintenance of object manipulation in air the central nervous system regulates the synchronous drive onto human motoneuron pools depending on the hand/proximal muscle pairs and that the multiple combination effect of the sensations of touch/object load and motor signals in the task promotes the synchrony of these pairs.
Collapse
Affiliation(s)
- Hiroyuki Ohtsuka
- Department of Integrative Physiology, Kyorin University School of Medicine, Mitaka City, Tokyo, Japan.,Department of Physical Therapy, Showa University School of Nursing and Rehabilitation Sciences, Yokohama City, Kanagawa, Japan
| | - Tsuyoshi Nakajima
- Department of Integrative Physiology, Kyorin University School of Medicine, Mitaka City, Tokyo, Japan
| | - Tomoyoshi Komiyama
- Division of Health and Sports Sciences, Faculty of Education, Chiba University, Chiba City, Chiba, Japan.,Division of Health and Sports Education, The United Graduate School of Education, Tokyo Gakugei University, Koganei City, Tokyo, Japan
| | - Shinya Suzuki
- Department of Integrative Physiology, Kyorin University School of Medicine, Mitaka City, Tokyo, Japan
| | - Shun Irie
- Department of Integrative Physiology, Kyorin University School of Medicine, Mitaka City, Tokyo, Japan
| | - Ryohei Ariyasu
- Department of Integrative Physiology, Kyorin University School of Medicine, Mitaka City, Tokyo, Japan
| |
Collapse
|
7
|
Wang T, Chen Y, Cui H. From Parametric Representation to Dynamical System: Shifting Views of the Motor Cortex in Motor Control. Neurosci Bull 2022; 38:796-808. [PMID: 35298779 PMCID: PMC9276910 DOI: 10.1007/s12264-022-00832-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/29/2021] [Indexed: 11/01/2022] Open
Abstract
In contrast to traditional representational perspectives in which the motor cortex is involved in motor control via neuronal preference for kinetics and kinematics, a dynamical system perspective emerging in the last decade views the motor cortex as a dynamical machine that generates motor commands by autonomous temporal evolution. In this review, we first look back at the history of the representational and dynamical perspectives and discuss their explanatory power and controversy from both empirical and computational points of view. Here, we aim to reconcile the above perspectives, and evaluate their theoretical impact, future direction, and potential applications in brain-machine interfaces.
Collapse
Affiliation(s)
- Tianwei Wang
- Center for Excellence in Brain Science and Intelligent Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China.,Shanghai Center for Brain and Brain-inspired Intelligence Technology, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yun Chen
- Center for Excellence in Brain Science and Intelligent Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China.,Shanghai Center for Brain and Brain-inspired Intelligence Technology, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - He Cui
- Center for Excellence in Brain Science and Intelligent Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China. .,Shanghai Center for Brain and Brain-inspired Intelligence Technology, Shanghai, 200031, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
8
|
York G, Osborne H, Sriya P, Astill S, de Kamps M, Chakrabarty S. The effect of limb position on a static knee extension task can be explained with a simple spinal cord circuit model. J Neurophysiol 2022; 127:173-187. [PMID: 34879209 PMCID: PMC8802899 DOI: 10.1152/jn.00208.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The influence of proprioceptive feedback on muscle activity during isometric tasks is the subject of conflicting studies. We performed an isometric knee extension task experiment based on two common clinical tests for mobility and flexibility. The task was carried out at four preset angles of the knee, and we recorded from five muscles for two different hip positions. We applied muscle synergy analysis using nonnegative matrix factorization on surface electromyograph recordings to identify patterns in the data that changed with internal knee angle, suggesting a link between proprioception and muscle activity. We hypothesized that such patterns arise from the way proprioceptive and cortical signals are integrated in neural circuits of the spinal cord. Using the MIIND neural simulation platform, we developed a computational model based on current understanding of spinal circuits with an adjustable afferent input. The model produces the same synergy trends as observed in the data, driven by changes in the afferent input. To match the activation patterns from each knee angle and position of the experiment, the model predicts the need for three distinct inputs: two to control a nonlinear bias toward the extensors and against the flexors, and a further input to control additional inhibition of rectus femoris. The results show that proprioception may be involved in modulating muscle synergies encoded in cortical or spinal neural circuits.NEW & NOTEWORTHY The role of sensory feedback in motor control when limbs are held in a fixed position is disputed. We performed a novel experiment involving fixed position tasks based on two common clinical tests. We identified patterns of muscle activity during the tasks that changed with different leg positions and then inferred how sensory feedback might influence the observations. We developed a computational model that required three distinct inputs to reproduce the activity patterns observed experimentally. The model provides a neural explanation for how the activity patterns can be changed by sensory feedback.
Collapse
Affiliation(s)
- Gareth York
- 1School of Biomedical Sciences Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Hugh Osborne
- 2Institute for Artificial Intelligence and Biological Computation School of Computing, University of Leeds, Leeds, United Kingdom
| | - Piyanee Sriya
- 1School of Biomedical Sciences Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Sarah Astill
- 1School of Biomedical Sciences Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Marc de Kamps
- 2Institute for Artificial Intelligence and Biological Computation School of Computing, University of Leeds, Leeds, United Kingdom
| | - Samit Chakrabarty
- 2Institute for Artificial Intelligence and Biological Computation School of Computing, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
9
|
Bunno Y, Suzuki T. Thenar Muscle Motor Imagery Increases Spinal Motor Neuron Excitability of the Abductor Digiti Minimi Muscle. Front Hum Neurosci 2021; 15:753200. [PMID: 34924979 PMCID: PMC8674616 DOI: 10.3389/fnhum.2021.753200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/05/2021] [Indexed: 11/28/2022] Open
Abstract
When a person attempts intended finger movements, unintended finger movement also occur, a phenomenon called “enslaving”. Given that motor imagery (MI) and motor execution (ME) share a common neural foundation, we hypothesized that the enslaving effect on the spinal motor neuron excitability occurs during MI. To investigate this hypothesis, electromyography (EMG) and F-wave analysis were conducted in 11 healthy male volunteers. Initially, the EMG activity of the left abductor digiti minimi (ADM) muscle during isometric opposition pinch movement by the left thumb and index finger at 50% maximal effort was compared with EMG activity during the Rest condition. Next, the F-wave and background EMG recordings were performed under the Rest condition, followed by the MI condition. Specifically, in the Rest condition, subjects maintained relaxation. In the MI condition, they imagined isometric left thenar muscle activity at 50% maximal voluntary contraction (MVC). During ME, ADM muscle activity was confirmed. During the MI condition, both F-wave persistence and the F-wave/M-wave amplitude ratio obtained from the ADM muscle were significantly increased compared with that obtained during the Rest condition. No difference was observed in the background EMG between the Rest and MI conditions. These results suggest that MI of isometric intended finger muscle activity at 50% MVC facilitates spinal motor neuron excitability corresponding to unintended finger muscle. Furthermore, MI may induce similar modulation of spinal motor neuron excitability as actual movement.
Collapse
Affiliation(s)
- Yoshibumi Bunno
- Graduate School of Health Sciences, Graduate School of Kansai University of Health Sciences, Osaka, Japan
| | - Toshiaki Suzuki
- Graduate School of Health Sciences, Graduate School of Kansai University of Health Sciences, Osaka, Japan
| |
Collapse
|
10
|
Sobinov AR, Bensmaia SJ. The neural mechanisms of manual dexterity. Nat Rev Neurosci 2021; 22:741-757. [PMID: 34711956 DOI: 10.1038/s41583-021-00528-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2021] [Indexed: 01/22/2023]
Abstract
The hand endows us with unparalleled precision and versatility in our interactions with objects, from mundane activities such as grasping to extraordinary ones such as virtuoso pianism. The complex anatomy of the human hand combined with expansive and specialized neuronal control circuits allows a wide range of precise manual behaviours. To support these behaviours, an exquisite sensory apparatus, spanning the modalities of touch and proprioception, conveys detailed and timely information about our interactions with objects and about the objects themselves. The study of manual dexterity provides a unique lens into the sensorimotor mechanisms that endow the nervous system with the ability to flexibly generate complex behaviour.
Collapse
Affiliation(s)
- Anton R Sobinov
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA.,Neuroscience Institute, University of Chicago, Chicago, IL, USA
| | - Sliman J Bensmaia
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA. .,Neuroscience Institute, University of Chicago, Chicago, IL, USA. .,Committee on Computational Neuroscience, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
11
|
Ribeiro Gomes AR, Olivier E, Killackey HP, Giroud P, Berland M, Knoblauch K, Dehay C, Kennedy H. Refinement of the Primate Corticospinal Pathway During Prenatal Development. Cereb Cortex 2021; 30:656-671. [PMID: 31343065 DOI: 10.1093/cercor/bhz116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/08/2019] [Accepted: 05/08/2019] [Indexed: 11/14/2022] Open
Abstract
Perturbation of the developmental refinement of the corticospinal (CS) pathway leads to motor disorders. While non-primate developmental refinement is well documented, in primates invasive investigations of the developing CS pathway have been confined to neonatal and postnatal stages when refinement is relatively modest. Here, we investigated the developmental changes in the distribution of CS projection neurons in cynomolgus monkey (Macaca fascicularis). Injections of retrograde tracer at cervical levels of the spinal cord at embryonic day (E) 95 and E105 show that: (i) areal distribution of back-labeled neurons is more extensive than in the neonate and dense labeling is found in prefrontal, limbic, temporal, and occipital cortex; (ii) distributions of contralateral and ipsilateral projecting CS neurons are comparable in terms of location and numbers of labeled neurons, in contrast to the adult where the contralateral projection is an order of magnitude higher than the ipsilateral projection. Findings from one largely restricted injection suggest a hitherto unsuspected early innervation of the gray matter. In the fetus there was in addition dense labeling in the central nucleus of the amygdala, the hypothalamus, the subthalamic nucleus, and the adjacent region of the zona incerta, subcortical structures with only minor projections in the adult control.
Collapse
Affiliation(s)
- Ana Rita Ribeiro Gomes
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute, Bron, France
| | - Etienne Olivier
- Institute of Neuroscience, Université Catholique de Louvain, Belgium
| | - Herbert P Killackey
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Pascale Giroud
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute, Bron, France
| | - Michel Berland
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute, Bron, France
| | - Kenneth Knoblauch
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute, Bron, France
| | - Colette Dehay
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute, Bron, France
| | - Henry Kennedy
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute, Bron, France.,Institute of Neuroscience, Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
12
|
Simultaneous Recording of Motor Evoked Potentials in Hand, Wrist and Arm Muscles to Assess Corticospinal Divergence. Brain Topogr 2021; 34:415-429. [PMID: 33945041 DOI: 10.1007/s10548-021-00845-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 04/25/2021] [Indexed: 10/21/2022]
Abstract
The purpose of this study was to further develop methods to assess corticospinal divergence and muscle coupling using transcranial magnetic stimulation (TMS). Ten healthy right-handed adults participated (7 females, age 34.0 ± 12.9 years). Monophasic single pulses were delivered to 14 sites over the right primary motor cortex at 40, 60, 80 and 100% of maximum stimulator output (MSO), using MRI-based neuronavigation. Motor evoked potentials (MEPs) were recorded simultaneously from 9 muscles of the contralateral hand, wrist and arm. For each intensity, corticospinal divergence was quantified by the average number of muscles that responded to TMS per cortical site, coactivation across muscle pairs as reflected by overlap of cortical representations, and correlation of MEP amplitudes across muscle pairs. TMS to each muscle's most responsive site elicited submaximal MEPs in most other muscles. The number of responsive muscles per cortical site and the extent of coactivation increased with increasing intensity (ANOVA, p < 0.001). In contrast, correlations of MEP amplitudes did not differ across the 60, 80 and 100% MSO intensities (ANOVA, p = 0.34), but did differ across muscle pairs (ANOVA, p < 0.001). Post hoc analysis identified 4 sets of muscle pairs (Tukey homogenous subsets, p < 0.05). Correlations were highest for pairs involving two hand muscles and lowest for pairs that included an upper arm muscle. Correlation of MEP amplitudes may quantify varying levels of muscle coupling. In future studies, this approach may be a biomarker to reveal altered coupling induced by neural injury, neural repair and/or motor learning.
Collapse
|
13
|
Strick PL, Dum RP, Rathelot JA. The Cortical Motor Areas and the Emergence of Motor Skills: A Neuroanatomical Perspective. Annu Rev Neurosci 2021; 44:425-447. [PMID: 33863253 DOI: 10.1146/annurev-neuro-070918-050216] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
What changes in neural architecture account for the emergence and expansion of dexterity in primates? Dexterity, or skill in performing motor tasks, depends on the ability to generate highly fractionated patterns of muscle activity. It also involves the spatiotemporal coordination of activity in proximal and distal muscles across multiple joints. Many motor skills require the generation of complex movement sequences that are only acquired and refined through extensive practice. Improvements in dexterity have enabled primates to manufacture and use tools and humans to engage in skilled motor behaviors such as typing, dance, musical performance, and sports. Our analysis leads to the following synthesis: The neural substrate that endows primates with their enhanced motor capabilities is due, in part, to (a) major organizational changes in the primary motor cortex and (b) the proliferation of output pathways from other areas of the cerebral cortex, especially from the motor areas on the medial wall of the hemisphere.
Collapse
Affiliation(s)
- Peter L Strick
- Department of Neurobiology, Systems Neuroscience Center, and Brain Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA;
| | - Richard P Dum
- Department of Neurobiology, Systems Neuroscience Center, and Brain Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA;
| | - Jean-Alban Rathelot
- Institut des Neurosciences de la Timone, CNRS, and Aix-Marseille Université, 13005 Marseille, France
| |
Collapse
|
14
|
Maitland S, Baker SN. Ipsilateral Motor Evoked Potentials as a Measure of the Reticulospinal Tract in Age-Related Strength Changes. Front Aging Neurosci 2021; 13:612352. [PMID: 33746734 PMCID: PMC7966512 DOI: 10.3389/fnagi.2021.612352] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/11/2021] [Indexed: 12/31/2022] Open
Abstract
Background: The reticulospinal tract (RST) is essential for balance, posture, and strength, all functions which falter with age. We hypothesized that age-related strength reductions might relate to differential changes in corticospinal and reticulospinal connectivity. Methods: We divided 83 participants (age 20-84) into age groups <50 (n = 29) and ≥50 (n = 54) years; five of which had probable sarcopenia. Transcranial Magnetic Stimulation (TMS) was applied to the left cortex, inducing motor evoked potentials (MEPs) in the biceps muscles bilaterally. Contralateral (right, cMEPs) and ipsilateral (left, iMEPs) MEPs are carried by mainly corticospinal and reticulospinal pathways respectively; the iMEP/cMEP amplitude ratio (ICAR) therefore measured the relative importance of the two descending tracts. Grip strength was measured with a dynamometer and normalized for age and sex. Results: We found valid iMEPs in 74 individuals (n = 44 aged ≥50, n = 29 < 50). Younger adults had a significant negative correlation between normalized grip strength and ICAR (r = -0.37, p = 0.045); surprisingly, in older adults, the correlation was also significant, but positive (r = 0.43, p = 0.0037). Discussion: Older individuals who maintain or strengthen their RST are stronger than their peers. We speculate that reduced RST connectivity could predict those at risk of age-related muscle weakness; interventions that reinforce the RST could be a candidate for treatment or prevention of sarcopenia.
Collapse
Affiliation(s)
- Stuart Maitland
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Stuart N Baker
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
15
|
Cortical and Subcortical Neural Interactions Between Trunk and Upper-limb Muscles in Humans. Neuroscience 2020; 451:126-136. [PMID: 33075460 DOI: 10.1016/j.neuroscience.2020.10.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 10/01/2020] [Accepted: 10/05/2020] [Indexed: 12/28/2022]
Abstract
Activities of daily living require simultaneous and coordinated activation of trunk and upper-limb segments, which involves complex interlimb interaction within the central nervous system. Although many studies have reported associations between activity of trunk and limb muscles during functional tasks, evidence on cortical and subcortical contributions to trunk-limb neural interactions is still not fully clear. Therefore, the aim of this study was to examine interactions between trunk and upper-limb muscles in the: (i) corticospinal circuits by using motor evoked potential (MEP) elicited through transcranial magnetic stimulation; and (ii) subcortical circuits by using cervicomedullary motor evoked potential (CMEP) elicited through cervicomedullary junction magnetic stimulation. Responses were evoked in the erector spinae (trunk) and flexor carpi radialis (upper-limb) muscles in twelve able-bodied individuals: (1) while participants were relaxed; (2) during trunk muscle contractions while arms were at rest; and (3) during upper-limb muscle contractions while the trunk was at rest. Our results showed that trunk muscle CMEP responses were not affected by upper-limb muscle contractions, while MEP responses were modulated. This indicates that at least the subcortical circuits may not attribute to facilitation of the trunk muscles during upper-limb contractions. On the other hand, in the upper-limb muscles, both CMEP and MEP responses were modulated during trunk contractions. These results indicate that cortical and subcortical mechanisms attributed to facilitation of upper-limb muscles during trunk contractions. In conclusion, our study demonstrated evidence that trunk-limb neural interactions may be attributed to cortical and/or subcortical mechanisms depending on the contracted muscle.
Collapse
|
16
|
Roux F, Niare M, Charni S, Giussani C, Durand J. Functional architecture of the motor homunculus detected by electrostimulation. J Physiol 2020; 598:5487-5504. [DOI: 10.1113/jp280156] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/21/2020] [Indexed: 11/08/2022] Open
Affiliation(s)
- Franck‐Emmanuel Roux
- CNRS (CERCO) UMR Unité 5549 Université Paul Sabatier Toulouse France
- Pôle Neurosciences (Neurochirurgie) Centres Hospitalo‐Universitaires Toulouse France
| | - Mahamadou Niare
- CNRS (CERCO) UMR Unité 5549 Université Paul Sabatier Toulouse France
- Pôle Neurosciences (Neurochirurgie) Centres Hospitalo‐Universitaires Toulouse France
| | - Saloua Charni
- CNRS (CERCO) UMR Unité 5549 Université Paul Sabatier Toulouse France
- Pôle Neurosciences (Neurochirurgie) Centres Hospitalo‐Universitaires Toulouse France
| | - Carlo Giussani
- Neurosurgery School of Medicine Ospedale San Gerardo Università degli Studi di Milano Bicocca Monza Italy
| | | |
Collapse
|
17
|
Takahashi M, Shinoda Y. Neural Circuits of Inputs and Outputs of the Cerebellar Cortex and Nuclei. Neuroscience 2020; 462:70-88. [PMID: 32768619 DOI: 10.1016/j.neuroscience.2020.07.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 11/28/2022]
Abstract
This article is dedicated to the memory of Masao Ito. Masao Ito made numerous important contributions revealing the function of the cerebellum in motor control. His pioneering contributions to cerebellar physiology began with his discovery of inhibition and disinhibition of target neurons by cerebellar Purkinje cells, and his discovery of the presence of long-term depression in parallel fiber-Purkinje cell synapses. Purkinje cells formed the nodal point of Masao Ito's landmark model of motor control by the cerebellum. These discoveries became the basis for his ideas regarding the flocculus hypothesis, the adaptive motor control system, and motor learning by the cerebellum, inspiring many new experiments to test his hypotheses. This article will trace the achievements of Ito and colleagues in analyzing the neural circuits of the input-output organization of the cerebellar cortex and nuclei, particularly with respect to motor control. The article will discuss some of the important issues that have been solved and also those that remain to be solved for our understanding of motor control by the cerebellum.
Collapse
Affiliation(s)
- Mayu Takahashi
- Department of Systems Neurophysiology, Tokyo Medical and Dental University, Graduate School of Medicine, Tokyo Japan.
| | - Yoshikazu Shinoda
- Department of Systems Neurophysiology, Tokyo Medical and Dental University, Graduate School of Medicine, Tokyo Japan
| |
Collapse
|
18
|
Berger DJ, Masciullo M, Molinari M, Lacquaniti F, d'Avella A. Does the cerebellum shape the spatiotemporal organization of muscle patterns? Insights from subjects with cerebellar ataxias. J Neurophysiol 2020; 123:1691-1710. [PMID: 32159425 DOI: 10.1152/jn.00657.2018] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The role of the cerebellum in motor control has been investigated extensively, but its contribution to the muscle pattern organization underlying goal-directed movements is still not fully understood. Muscle synergies may be used to characterize multimuscle pattern organization irrespective of time (spatial synergies), in time irrespective of the muscles (temporal synergies), and both across muscles and in time (spatiotemporal synergies). The decomposition of muscle patterns as combinations of different types of muscle synergies offers the possibility to identify specific changes due to neurological lesions. In this study, we recorded electromyographic activity from 13 shoulder and arm muscles in subjects with cerebellar ataxias (CA) and in age-matched healthy subjects (HS) while they performed reaching movements in multiple directions. We assessed whether cerebellar damage affects the organization of muscle patterns by extracting different types of muscle synergies from the muscle patterns of each HS and using these synergies to reconstruct the muscle patterns of all other participants. We found that CA muscle patterns could be accurately captured only by spatial muscle synergies of HS. In contrast, there were significant differences in the reconstruction R2 values for both spatiotemporal and temporal synergies, with an interaction between the two synergy types indicating a larger difference for spatiotemporal synergies. Moreover, the reconstruction quality using spatiotemporal synergies correlated with the severity of impairment. These results indicate that cerebellar damage affects the temporal and spatiotemporal organization, but not the spatial organization, of the muscle patterns, suggesting that the cerebellum plays a key role in shaping their spatiotemporal organization.NEW & NOTEWORTHY In recent studies, the decomposition of muscle activity patterns has revealed a modular organization of the motor commands. We show, for the first time, that muscle patterns of subjects with cerebellar damage share with healthy controls spatial, but not temporal and spatiotemporal, modules. Moreover, changes in spatiotemporal organization characterize the severity of the subject's impairment. These results suggest that the cerebellum has a specific role in shaping the spatiotemporal organization of the muscle patterns.
Collapse
Affiliation(s)
- Denise J Berger
- Laboratory of Neuromotor Physiology, IRCCS Fondazione Santa Lucia, Rome, Italy.,Department of Systems Medicine and Centre of Space Bio-medicine, University of Rome Tor Vergata, Rome, Italy
| | | | - Marco Molinari
- Neuro-Robot Rehabilitation Lab, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Francesco Lacquaniti
- Laboratory of Neuromotor Physiology, IRCCS Fondazione Santa Lucia, Rome, Italy.,Department of Systems Medicine and Centre of Space Bio-medicine, University of Rome Tor Vergata, Rome, Italy
| | - Andrea d'Avella
- Laboratory of Neuromotor Physiology, IRCCS Fondazione Santa Lucia, Rome, Italy.,Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| |
Collapse
|
19
|
Ahdab R, Ayache SS, Hosseini H, Mansour AG, Kerschen P, Farhat WH, Chalah MA, Lefaucheur JP. Precise finger somatotopy revealed by focal motor cortex injury. Neurophysiol Clin 2019; 50:27-31. [PMID: 31826823 DOI: 10.1016/j.neucli.2019.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 11/16/2019] [Accepted: 11/16/2019] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Somatotopy is considered the hallmark of the primary motor cortex. While this is fundamentally true for the major body parts (head, upper and lower extremities), evidence supporting the existence of within-limb somatotopy is scarce. METHOD We report a young man presenting recurrent ischemic strokes with selective finger weakness in whom serial motor cortex mapping procedures were performed. RESULT Following the first stroke, which largely spared the motor cortex, motor mapping displayed overlap of the motor representations of the hand muscles. The second focal stroke, affecting the lateral part of the hand knob, resulted in selective loss of the first dorsal interosseous muscle motor evoked potentials while sparing those of the adductor digiti minimi muscle. This observation is in apparent contradiction with the first mapping results that suggested complete overlap of motor representations. DISCUSSION Our mapping results provide evidence for the existence of very precise within-limb somatotopy and confirm the proposed homuncular order, whereby lateral fingers are represented laterally and medial fingers medially. The discrepancy between the initial and subsequent mapping results is discussed in light of functional organization of the primary motor cortex.
Collapse
Affiliation(s)
- Rechdi Ahdab
- EA 4391, excitabilité nerveuse et thérapeutique, université Paris-Est-Créteil, Créteil, France; Service de physiologie - Explorations fonctionnelles, hôpital Henri-Mondor, AP-HP, Créteil, France; Neurology Division, Lebanese American University Medical Center, Beirut, Lebanon
| | - Samar S Ayache
- EA 4391, excitabilité nerveuse et thérapeutique, université Paris-Est-Créteil, Créteil, France; Service de physiologie - Explorations fonctionnelles, hôpital Henri-Mondor, AP-HP, Créteil, France; Neurology Division, Lebanese American University Medical Center, Beirut, Lebanon.
| | - Hassan Hosseini
- EA 4391, excitabilité nerveuse et thérapeutique, université Paris-Est-Créteil, Créteil, France; Service de neurologie, hôpital Henri-Mondor, AP-HP, Créteil, France
| | - Anthony G Mansour
- Department of Neurology, Hamidy Medical Center, Tripoli, Lebanon; Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Philippe Kerschen
- EA 4391, excitabilité nerveuse et thérapeutique, université Paris-Est-Créteil, Créteil, France; Service de neurologie, hôpital Henri-Mondor, AP-HP, Créteil, France
| | - Wassim H Farhat
- EA 4391, excitabilité nerveuse et thérapeutique, université Paris-Est-Créteil, Créteil, France; Service de physiologie - Explorations fonctionnelles, hôpital Henri-Mondor, AP-HP, Créteil, France
| | - Moussa A Chalah
- EA 4391, excitabilité nerveuse et thérapeutique, université Paris-Est-Créteil, Créteil, France; Service de physiologie - Explorations fonctionnelles, hôpital Henri-Mondor, AP-HP, Créteil, France
| | - Jean-Pascal Lefaucheur
- EA 4391, excitabilité nerveuse et thérapeutique, université Paris-Est-Créteil, Créteil, France; Service de physiologie - Explorations fonctionnelles, hôpital Henri-Mondor, AP-HP, Créteil, France
| |
Collapse
|
20
|
Aoyama T, Kaneko F, Ohashi Y, Kohno Y. Neural mechanism of selective finger movement independent of synergistic movement. Exp Brain Res 2019; 237:3485-3492. [PMID: 31741000 DOI: 10.1007/s00221-019-05693-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 11/13/2019] [Indexed: 10/25/2022]
Abstract
Muscle synergy is important for simplifying functional movement, which constitutes spatiotemporal patterns of activity across muscles. To execute selective finger movements that are independent of synergistic movement patterns, we hypothesized that inhibitory neural activity is necessary to suppress enslaved finger movement caused by synergist muscles. To test this hypothesis, we focused on a pair of synergist muscles used in the hand opening movement, namely the index finger abductor and little finger abductor (abductor digiti minimi; ADM), and examined whether inhibitory neural activity in ADM occurs during selective index finger abduction/adduction movements and/or its imagery using transcranial magnetic stimulation and F-wave analysis. During the index finger adduction movement, background EMG activity, F-wave persistence, and motor evoked potential (MEP) amplitude in ADM were elevated. However, during the index finger abduction movement, ADM MEP amplitude remained unchanged despite increased background EMG activity and F-wave persistence. These results suggest that increased spinal excitability in ADM is counterbalanced by cortical-mediated inhibition only during selective index finger abduction movement. This assumption was further supported by the results of motor imagery experiments. Although F-wave persistence in ADM increased only during motor imagery of index finger abduction, ADM MEP amplitude during motor imagery of index finger abduction was significantly lower than that during adduction. Overall, our findings indicate that cortical-mediated inhibition contributes to the execution of selective finger movements that are independent of synergistic hand movement patterns.
Collapse
Affiliation(s)
- Toshiyuki Aoyama
- Department of Physical Therapy, Ibaraki Prefectural University of Health Sciences, 4669-2 Ami, Ami-Machi, Inashiki-gun, Ibaraki, Japan.
| | - Fuminari Kaneko
- Department of Rehabilitation Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Yukari Ohashi
- Department of Physical Therapy, Ibaraki Prefectural University of Health Sciences, 4669-2 Ami, Ami-Machi, Inashiki-gun, Ibaraki, Japan
| | - Yutaka Kohno
- Center for Medical Sciences, Ibaraki Prefectural University of Health Sciences, 4669-2 Ami, Ami-Machi, Inashiki-gun, Ibaraki, Japan
| |
Collapse
|
21
|
Battaglia-Mayer A, Caminiti R. Corticocortical Systems Underlying High-Order Motor Control. J Neurosci 2019; 39:4404-4421. [PMID: 30886016 PMCID: PMC6554627 DOI: 10.1523/jneurosci.2094-18.2019] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 03/05/2019] [Accepted: 03/08/2019] [Indexed: 12/14/2022] Open
Abstract
Cortical networks are characterized by the origin, destination, and reciprocity of their connections, as well as by the diameter, conduction velocity, and synaptic efficacy of their axons. The network formed by parietal and frontal areas lies at the core of cognitive-motor control because the outflow of parietofrontal signaling is conveyed to the subcortical centers and spinal cord through different parallel pathways, whose orchestration determines, not only when and how movements will be generated, but also the nature of forthcoming actions. Despite intensive studies over the last 50 years, the role of corticocortical connections in motor control and the principles whereby selected cortical networks are recruited by different task demands remain elusive. Furthermore, the synaptic integration of different cortical signals, their modulation by transthalamic loops, and the effects of conduction delays remain challenging questions that must be tackled to understand the dynamical aspects of parietofrontal operations. In this article, we evaluate results from nonhuman primate and selected rodent experiments to offer a viewpoint on how corticocortical systems contribute to learning and producing skilled actions. Addressing this subject is not only of scientific interest but also essential for interpreting the devastating consequences for motor control of lesions at different nodes of this integrated circuit. In humans, the study of corticocortical motor networks is currently based on MRI-related methods, such as resting-state connectivity and diffusion tract-tracing, which both need to be contrasted with histological studies in nonhuman primates.
Collapse
Affiliation(s)
| | - Roberto Caminiti
- Department of Physiology and Pharmacology, University of Rome, Sapienza, 00185 Rome, Italy, and
- Neuroscience and Behavior Laboratory, Istituto Italiano di Tecnologia, 00161 Rome, Italy
| |
Collapse
|
22
|
Yokoyama H, Kaneko N, Ogawa T, Kawashima N, Watanabe K, Nakazawa K. Cortical Correlates of Locomotor Muscle Synergy Activation in Humans: An Electroencephalographic Decoding Study. iScience 2019; 15:623-639. [PMID: 31054838 PMCID: PMC6547791 DOI: 10.1016/j.isci.2019.04.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 02/09/2019] [Accepted: 04/04/2019] [Indexed: 01/17/2023] Open
Abstract
Muscular control during walking is believed to be simplified by the coactivation of muscles called muscle synergies. Although significant corticomuscular connectivity during walking has been reported, the level at which the cortical activity is involved in muscle activity (muscle synergy or individual muscle level) remains unclear. Here we examined cortical correlates of muscle activation during walking by brain decoding of activation of muscle synergies and individual muscles from electroencephalographic signals. We demonstrated that the activation of locomotor muscle synergies was decoded from slow cortical waves. In addition, the decoding accuracy for muscle synergies was greater than that for individual muscles and the decoding of individual muscle activation was based on muscle-synergy-related cortical information. These results indicate the cortical correlates of locomotor muscle synergy activation. These findings expand our understanding of the relationships between brain and locomotor muscle synergies and could accelerate the development of effective brain-machine interfaces for walking rehabilitation.
Collapse
Affiliation(s)
- Hikaru Yokoyama
- Department of Electrical and Electronic Engineering, Tokyo University of Agriculture and Technology, Koganei-shi, Tokyo 184-8588, Japan; Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Naotsugu Kaneko
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Tetsuya Ogawa
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Noritaka Kawashima
- Department of Rehabilitation for the Movement Functions, Research Institute of National Rehabilitation Center for the Disabled, Tokorozawa-shi, Saitama 359-0042, Japan
| | - Katsumi Watanabe
- Faculty of Science and Engineering, Waseda University, Shinjuku-ku Tokyo 169-8555, Japan; Art & Design, University of New South Wales, Sydney, NSW 2021, Australia; Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Kimitaka Nakazawa
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan.
| |
Collapse
|
23
|
Abstract
Hand dexterity has uniquely developed in higher primates and is thought to rely on the direct corticomotoneuronal (CM) pathway. Recent studies have shown that rodents and carnivores lack the direct CM pathway but can control certain levels of dexterous hand movements through various indirect CM pathways. Some homologous pathways also exist in higher primates, and among them, propriospinal (PrS) neurons in the mid-cervical segments (C3-C4) are significantly involved in hand dexterity. When the direct CM pathway was lesioned caudal to the PrS and transmission of cortical commands to hand motoneurons via the PrS neurons remained intact, dexterous hand movements could be significantly recovered. This recovery model was intensively studied, and it was found that, in addition to the compensation by the PrS neurons, a large-scale reorganization in the bilateral cortical motor-related areas and mesolimbic structures contributed to recovery. Future therapeutic strategies should target these multihierarchical areas.
Collapse
Affiliation(s)
- Tadashi Isa
- Department of Neuroscience and Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan;
| |
Collapse
|
24
|
Na J, Sugihara I, Shinoda Y. The entire trajectories of single pontocerebellar axons and their lobular and longitudinal terminal distribution patterns in multiple aldolase C-positive compartments of the rat cerebellar cortex. J Comp Neurol 2019; 527:2488-2511. [PMID: 30887503 DOI: 10.1002/cne.24685] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 03/12/2019] [Accepted: 03/12/2019] [Indexed: 11/06/2022]
Abstract
The mammalian cerebellar cortex is compartmentalized, both anatomically and histochemically, into multiple parasagittal bands. To characterize the multiple zonal patterns of pontocerebellar mossy fiber projection, single neurons in the basilar pontine nucleus (BPN) were labeled by injecting biotinylated dextran amine into the BPN, and the entire axonal trajectory of single labeled neurons (n = 25) was reconstructed in relation to aldolase C compartments of Purkinje cells in rats. Single pontocerebellar axons, after passing through the contralateral middle cerebellar peduncle, ran transversely in the deep cerebellar white matter toward and often across the midline, and on their ways, gave rise to 2-10 primary collaterals at almost right angles in specific lobules only contralaterally or bilaterally with contralateral predominance. Each primary collateral further branched in a parasagittal plane to form a strip-shaped longitudinal termination zone with rosette-type swellings clustered in aldolase C-positive compartments in a single or multiple lobules, mainly in compartment 4+//5+, 5+//6+, and 6+//7+. Axons arising from the central, rostral, and lateral part of the BPN projected with multiple branches, mainly to simple lobule, crus II and paramedian lobule, to crus I and dorsal paraflocculus, and to ventral paraflocculus and lobule IXc, respectively. The results showed the pontocerebellar projection is closely related to lobular and compartmental organization of the cerebellum. A comparison of single axon morphologies of different mossy fiber systems indicates that the projection pattern of single pontocerebellar neurons with multiple collaterals innervating different longitudinal compartments arranged in a mediolateral direction represents a general feature of mossy fiber projection.
Collapse
Affiliation(s)
- Jie Na
- Department of Systems Neurophysiology, Tokyo Medical and Dental University Graduate School of Medicine, Tokyo, Japan.,Laboratory of Brain and Cognitive Science, Shenyang Normal University, Shenyang, China
| | - Izumi Sugihara
- Department of Systems Neurophysiology, Tokyo Medical and Dental University Graduate School of Medicine, Tokyo, Japan
| | - Yoshikazu Shinoda
- Department of Systems Neurophysiology, Tokyo Medical and Dental University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
25
|
Aoi S, Ohashi T, Bamba R, Fujiki S, Tamura D, Funato T, Senda K, Ivanenko Y, Tsuchiya K. Neuromusculoskeletal model that walks and runs across a speed range with a few motor control parameter changes based on the muscle synergy hypothesis. Sci Rep 2019; 9:369. [PMID: 30674970 PMCID: PMC6344546 DOI: 10.1038/s41598-018-37460-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 12/07/2018] [Indexed: 01/14/2023] Open
Abstract
Humans walk and run, as well as change their gait speed, through the control of their complicated and redundant musculoskeletal system. These gaits exhibit different locomotor behaviors, such as a double-stance phase in walking and flight phase in running. The complex and redundant nature of the musculoskeletal system and the wide variation in locomotion characteristics lead us to imagine that the motor control strategies for these gaits, which remain unclear, are extremely complex and differ from one another. It has been previously proposed that muscle activations may be generated by linearly combining a small set of basic pulses produced by central pattern generators (muscle synergy hypothesis). This control scheme is simple and thought to be shared between walking and running at different speeds. Demonstrating that this control scheme can generate walking and running and change the speed is critical, as bipedal locomotion is dynamically challenging. Here, we provide such a demonstration by using a motor control model with 69 parameters developed based on the muscle synergy hypothesis. Specifically, we show that it produces both walking and running of a human musculoskeletal model by changing only seven key motor control parameters. Furthermore, we show that the model can walk and run at different speeds by changing only the same seven parameters based on the desired speed. These findings will improve our understanding of human motor control in locomotion and provide guiding principles for the control design of wearable exoskeletons and prostheses.
Collapse
Affiliation(s)
- Shinya Aoi
- Department of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto University, Kyoto daigaku-Katsura, Nishikyo-ku, Kyoto, 615-8540, Japan.
| | - Tomohiro Ohashi
- Department of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto University, Kyoto daigaku-Katsura, Nishikyo-ku, Kyoto, 615-8540, Japan
| | - Ryoko Bamba
- Department of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto University, Kyoto daigaku-Katsura, Nishikyo-ku, Kyoto, 615-8540, Japan
| | - Soichiro Fujiki
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Daiki Tamura
- Department of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto University, Kyoto daigaku-Katsura, Nishikyo-ku, Kyoto, 615-8540, Japan
| | - Tetsuro Funato
- Department of Mechanical Engineering and Intelligent Systems, Graduate School of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Choufugaoka, Choufu-shi, Tokyo, 182-8585, Japan
| | - Kei Senda
- Department of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto University, Kyoto daigaku-Katsura, Nishikyo-ku, Kyoto, 615-8540, Japan
| | - Yury Ivanenko
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, 00179, Rome, Italy
| | - Kazuo Tsuchiya
- Department of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto University, Kyoto daigaku-Katsura, Nishikyo-ku, Kyoto, 615-8540, Japan
| |
Collapse
|
26
|
McKellar CE, Lillvis JL, Bath DE, Fitzgerald JE, Cannon JG, Simpson JH, Dickson BJ. Threshold-Based Ordering of Sequential Actions during Drosophila Courtship. Curr Biol 2019; 29:426-434.e6. [PMID: 30661796 DOI: 10.1016/j.cub.2018.12.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 11/01/2018] [Accepted: 12/13/2018] [Indexed: 01/09/2023]
Abstract
Goal-directed animal behaviors are typically composed of sequences of motor actions whose order and timing are critical for a successful outcome. Although numerous theoretical models for sequential action generation have been proposed, few have been supported by the identification of control neurons sufficient to elicit a sequence. Here, we identify a pair of descending neurons that coordinate a stereotyped sequence of engagement actions during Drosophila melanogaster male courtship behavior. These actions are initiated sequentially but persist cumulatively, a feature not explained by existing models of sequential behaviors. We find evidence consistent with a ramp-to-threshold mechanism, in which increasing neuronal activity elicits each action independently at successively higher activity thresholds.
Collapse
Affiliation(s)
- Claire E McKellar
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Joshua L Lillvis
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Daniel E Bath
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - James E Fitzgerald
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - John G Cannon
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Julie H Simpson
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA.
| | - Barry J Dickson
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA; Queensland Brain Institute, University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
27
|
Brain Stem Neural Circuits of Horizontal and Vertical Saccade Systems and their Frame of Reference. Neuroscience 2018; 392:281-328. [PMID: 30193861 DOI: 10.1016/j.neuroscience.2018.08.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/20/2018] [Accepted: 08/24/2018] [Indexed: 11/23/2022]
Abstract
Sensory signals for eye movements (visual and vestibular) are initially coded in different frames of reference but finally translated into common coordinates, and share the same final common pathway, namely the same population of extraocular motoneurons. From clinical studies in humans and lesion studies in animals, it is generally accepted that voluntary saccadic eye movements are organized in horizontal and vertical Cartesian coordinates. However, this issue is not settled yet, because neural circuits for vertical saccades remain unidentified. We recently determined brainstem neural circuits from the superior colliculus to ocular motoneurons for horizontal and vertical saccades with combined electrophysiological and neuroanatomical techniques. Comparing well-known vestibuloocular pathways with our findings of commissural excitation and inhibition between both superior colliculi, we proposed that the saccade system uses the same frame of reference as the vestibuloocular system, common semicircular canal coordinate. This proposal is mainly based on marked similarities (1) between output neural circuitry from one superior colliculus to extraocular motoneurons and that from a respective canal to its innervating extraocular motoneurons, (2) of patterns of commissural reciprocal inhibitions between upward saccade system on one side and downward system on the other, and between anterior canal system on one side and posterior canal system on the other, and (3) between the neural circuits of saccade and quick phase of vestibular nystagmus sharing brainstem burst neurons. In support of the proposal, commissural excitation of the superior colliculi may help to maintain Listing's law in saccades in spite of using semicircular canal coordinate.
Collapse
|
28
|
Muscle Synergies Obtained from Comprehensive Mapping of the Cortical Forelimb Representation Using Stimulus Triggered Averaging of EMG Activity. J Neurosci 2018; 38:8759-8771. [PMID: 30150363 DOI: 10.1523/jneurosci.2519-17.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 07/16/2018] [Accepted: 08/20/2018] [Indexed: 01/01/2023] Open
Abstract
Neuromuscular control of voluntary movement may be simplified using muscle synergies similar to those found using non-negative matrix factorization. We recently identified synergies in electromyography (EMG) recordings associated with both voluntary movement and movement evoked by high-frequency long-duration intracortical microstimulation applied to the forelimb representation of the primary motor cortex (M1). The goal of this study was to use stimulus-triggered averaging (StTA) of EMG activity to investigate the synergy profiles and weighting coefficients associated with poststimulus facilitation, as synergies may be hard-wired into elemental cortical output modules and revealed by StTA. We applied StTA at low (LOW, ∼15 μA) and high intensities (HIGH, ∼110 μA) to 247 cortical locations of the M1 forelimb region in two male rhesus macaques while recording the EMG of 24 forelimb muscles. Our results show that 10-11 synergies accounted for 90% of the variation in poststimulus EMG facilitation peaks from the LOW-intensity StTA dataset while only 4-5 synergies were needed for the HIGH-intensity dataset. Synergies were similar across monkeys and current intensities. Most synergy profiles strongly activated only one or two muscles; all joints were represented and most, but not all, joint directions of motion were represented. Cortical maps of the synergy weighting coefficients suggest only a weak organization. StTA of M1 resulted in highly diverse muscle activations, suggestive of the limiting condition of requiring a synergy for each muscle to account for the patterns observed.SIGNIFICANCE STATEMENT Coordination of muscle activity and the neural origin of potential muscle synergies remains a fundamental question of neuroscience. We previously demonstrated that high-frequency long-duration intracortical microstimulation-evoked synergies were unrelated to voluntary movement synergies and were not clearly organized in the cortex. Here we present stimulus-triggered averaging facilitation-related muscle synergies, suggesting that when fundamental cortical output modules are activated, synergies approach the limit of single-muscle control. Thus, we conclude that if the CNS controls movement via linear synergies, those synergies are unlikely to be called from M1. This information is critical for understanding neural control of movement and the development of brain-machine interfaces.
Collapse
|
29
|
Moezzi B, Schaworonkow N, Plogmacher L, Goldsworthy MR, Hordacre B, McDonnell MD, Iannella N, Ridding MC, Triesch J. Simulation of electromyographic recordings following transcranial magnetic stimulation. J Neurophysiol 2018; 120:2532-2541. [PMID: 29975165 DOI: 10.1152/jn.00626.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) is a technique that enables noninvasive manipulation of neural activity and holds promise in both clinical and basic research settings. The effect of TMS on the motor cortex is often measured by electromyography (EMG) recordings from a small hand muscle. However, the details of how TMS generates responses measured with EMG are not completely understood. We aim to develop a biophysically detailed computational model to study the potential mechanisms underlying the generation of EMG signals following TMS. Our model comprises a feed-forward network of cortical layer 2/3 cells, which drive morphologically detailed layer 5 corticomotoneuronal cells, which in turn project to a pool of motoneurons. EMG signals are modeled as the sum of motor unit action potentials. EMG recordings from the first dorsal interosseous muscle were performed in four subjects and compared with simulated EMG signals. Our model successfully reproduces several characteristics of the experimental data. The simulated EMG signals match experimental EMG recordings in shape and size, and change with stimulus intensity and contraction level as in experimental recordings. They exhibit cortical silent periods that are close to the biological values and reveal an interesting dependence on inhibitory synaptic transmission properties. Our model predicts several characteristics of the firing patterns of neurons along the entire pathway from cortical layer 2/3 cells down to spinal motoneurons and should be considered as a viable tool for explaining and analyzing EMG signals following TMS. NEW & NOTEWORTHY A biophysically detailed model of EMG signal generation following transcranial magnetic stimulation (TMS) is proposed. Simulated EMG signals match experimental EMG recordings in shape and amplitude. Motor-evoked potential and cortical silent period properties match experimental data. The model is a viable tool to analyze, explain, and predict EMG signals following TMS.
Collapse
Affiliation(s)
- Bahar Moezzi
- Computational and Theoretical Neuroscience Laboratory, School of Information Technology and Mathematical Sciences, University of South Australia , Adelaide , Australia.,Robinson Research Institute, School of Medicine, University of Adelaide , Adelaide , Australia
| | | | | | - Mitchell R Goldsworthy
- Robinson Research Institute, School of Medicine, University of Adelaide , Adelaide , Australia.,Discipline of Psychiatry, School of Medicine, University of Adelaide , Adelaide , Australia
| | - Brenton Hordacre
- Robinson Research Institute, School of Medicine, University of Adelaide , Adelaide , Australia.,Division of Health Sciences, University of South Australia , Adelaide , Australia
| | - Mark D McDonnell
- Computational and Theoretical Neuroscience Laboratory, School of Information Technology and Mathematical Sciences, University of South Australia , Adelaide , Australia
| | - Nicolangelo Iannella
- Computational and Theoretical Neuroscience Laboratory, School of Information Technology and Mathematical Sciences, University of South Australia , Adelaide , Australia.,School of Mathematical Sciences, University of Nottingham , Nottingham , United Kingdom
| | - Michael C Ridding
- Robinson Research Institute, School of Medicine, University of Adelaide , Adelaide , Australia
| | - Jochen Triesch
- Frankfurt Institute for Advanced Studies , Frankfurt , Germany
| |
Collapse
|
30
|
Min K, Iwamoto M, Kakei S, Kimpara H. Muscle Synergy-Driven Robust Motion Control. Neural Comput 2018; 30:1104-1131. [PMID: 29381443 DOI: 10.1162/neco_a_01063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Humans are able to robustly maintain desired motion and posture under dynamically changing circumstances, including novel conditions. To accomplish this, the brain needs to optimize the synergistic control between muscles against external dynamic factors. However, previous related studies have usually simplified the control of multiple muscles using two opposing muscles, which are minimum actuators to simulate linear feedback control. As a result, they have been unable to analyze how muscle synergy contributes to motion control robustness in a biological system. To address this issue, we considered a new muscle synergy concept used to optimize the synergy between muscle units against external dynamic conditions, including novel conditions. We propose that two main muscle control policies synergistically control muscle units to maintain the desired motion against external dynamic conditions. Our assumption is based on biological evidence regarding the control of multiple muscles via the corticospinal tract. One of the policies is the group control policy (GCP), which is used to control muscle group units classified based on functional similarities in joint control. This policy is used to effectively resist external dynamic circumstances, such as disturbances. The individual control policy (ICP) assists the GCP in precisely controlling motion by controlling individual muscle units. To validate this hypothesis, we simulated the reinforcement of the synergistic actions of the two control policies during the reinforcement learning of feedback motion control. Using this learning paradigm, the two control policies were synergistically combined to result in robust feedback control under novel transient and sustained disturbances that did not involve learning. Further, by comparing our data to experimental data generated by human subjects under the same conditions as those of the simulation, we showed that the proposed synergy concept may be used to analyze muscle synergy-driven motion control robustness in humans.
Collapse
Affiliation(s)
- Kyuengbo Min
- Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | | | - Shinji Kakei
- Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | | |
Collapse
|
31
|
D'Amico JM, Dongés SC, Taylor JL. Paired corticospinal-motoneuronal stimulation increases maximal voluntary activation of human adductor pollicis. J Neurophysiol 2017; 119:369-376. [PMID: 29046429 DOI: 10.1152/jn.00919.2016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Paired corticospinal-motoneuronal stimulation (PCMS), which delivers repeated pairs of transcranial magnetic stimuli (TMS) and maximal motor nerve stimuli, can alter corticospinal transmission to low-threshold motoneurons in the human spinal cord. To determine whether similar changes occur for high-threshold motoneurons, we tested whether maximal voluntary activation and force can be affected by PCMS in healthy individuals. On 2 separate days, healthy participants ( n = 14) performed brief thumb adduction maximal voluntary contractions (MVCs) before and after a control protocol (TMS only) or PCMS designed to facilitate corticospinal transmission to adductor pollicis. Peripheral nerve stimulation alone was not performed. During each MVC, a superimposed twitch was elicited by a supramaximal stimulus delivered to the ulnar nerve. With muscles relaxed following the maximal contraction, a similar stimulus elicited a resting twitch. Voluntary activation was calculated as (1 - superimposed twitch/resting twitch) × 100%. Although voluntary activation decreased over time in both conditions, the decrease was less after PCMS (-0.4 ± 4.1%) than after the control protocol (-4.9 ± 4.9%; P = 0.007). This was supported by a greater increase in electromyographic response after PCMS than control (7 ± 13% vs. -3 ± 10%; P = 0.043). However, maximal force was not affected. The findings indicate a modest effect of PCMS on maximal neural drive to adductor pollicis, suggesting that PCMS can affect corticospinal transmission to high-threshold motoneurons. NEW & NOTEWORTHY Paired corticospinal-motoneuronal stimulation (PCMS) induces changes in the human spinal cord. To date, the reported effects of PCMS have been limited to low-threshold motoneurons and low-force tasks in healthy and spinal cord injured individuals. For the first time, we show that these plastic changes are not limited to lower threshold motoneurons, but occur across the entire motoneuron pool as demonstrated by the increases in voluntary activation and muscle activity during maximal voluntary contractions of adductor pollicis.
Collapse
Affiliation(s)
- Jessica M D'Amico
- Neuroscience Research Australia, Randwick, New South Wales , Australia
| | - Siobhan C Dongés
- Neuroscience Research Australia, Randwick, New South Wales , Australia.,Department of Physiology, School of Medical Sciences, University of New South Wales , Sydney , Australia
| | - Janet L Taylor
- Neuroscience Research Australia, Randwick, New South Wales , Australia.,Department of Physiology, School of Medical Sciences, University of New South Wales , Sydney , Australia.,School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
| |
Collapse
|
32
|
Omrani M, Kaufman MT, Hatsopoulos NG, Cheney PD. Perspectives on classical controversies about the motor cortex. J Neurophysiol 2017; 118:1828-1848. [PMID: 28615340 PMCID: PMC5599665 DOI: 10.1152/jn.00795.2016] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 06/06/2017] [Accepted: 06/13/2017] [Indexed: 11/22/2022] Open
Abstract
Primary motor cortex has been studied for more than a century, yet a consensus on its functional contribution to movement control is still out of reach. In particular, there remains controversy as to the level of control produced by motor cortex ("low-level" movement dynamics vs. "high-level" movement kinematics) and the role of sensory feedback. In this review, we present different perspectives on the two following questions: What does activity in motor cortex reflect? and How do planned motor commands interact with incoming sensory feedback during movement? The four authors each present their independent views on how they think the primary motor cortex (M1) controls movement. At the end, we present a dialogue in which the authors synthesize their views and suggest possibilities for moving the field forward. While there is not yet a consensus on the role of M1 or sensory feedback in the control of upper limb movements, such dialogues are essential to take us closer to one.
Collapse
Affiliation(s)
- Mohsen Omrani
- Brain Health Institute, Rutgers University, Piscataway, New Jersey;
| | | | - Nicholas G Hatsopoulos
- Department of Organismal Biology & Anatomy, Committees on Computational Neuroscience and Neurobiology, University of Chicago, Chicago, Illinois; and
| | - Paul D Cheney
- Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
33
|
Amundsen Huffmaster SL, Van Acker GM, Luchies CW, Cheney PD. Muscle synergies obtained from comprehensive mapping of the primary motor cortex forelimb representation using high-frequency, long-duration ICMS. J Neurophysiol 2017; 118:455-470. [PMID: 28446586 DOI: 10.1152/jn.00784.2016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 03/20/2017] [Accepted: 04/21/2017] [Indexed: 01/01/2023] Open
Abstract
Simplifying neuromuscular control for movement has previously been explored by extracting muscle synergies from voluntary movement electromyography (EMG) patterns. The purpose of this study was to investigate muscle synergies represented in EMG recordings associated with direct electrical stimulation of single sites in primary motor cortex (M1). We applied single-electrode high-frequency, long-duration intracortical microstimulation (HFLD-ICMS) to the forelimb region of M1 in two rhesus macaques using parameters previously found to produce forelimb movements to stable spatial end points (90-150 Hz, 90-150 μA, 1,000-ms stimulus train lengths). To develop a comprehensive representation of cortical output, stimulation was applied systematically across the full extent of M1. We recorded EMG activity from 24 forelimb muscles together with movement kinematics. Nonnegative matrix factorization (NMF) was applied to the mean stimulus-evoked EMG, and the weighting coefficients associated with each synergy were mapped to the cortical location of the stimulating electrode. Synergies were found for three data sets including 1) all stimulated sites in the cortex, 2) a subset of sites that produced stable movement end points, and 3) EMG activity associated with voluntary reaching. Two or three synergies accounted for 90% of the overall variation in voluntary movement EMG whereas four or five synergies were needed for HFLD-ICMS-evoked EMG data sets. Maps of the weighting coefficients from the full HFLD-ICMS data set show limited regional areas of higher activation for particular synergies. Our results demonstrate fundamental NMF-based muscle synergies in the collective M1 output, but whether and how the central nervous system might coordinate movements using these synergies remains unclear.NEW & NOTEWORTHY While muscle synergies have been investigated in various muscle activity sets, it is unclear whether and how synergies may be organized in the cortex. We have investigated muscle synergies resulting from high-frequency, long-duration intracortical microstimulation (HFLD-ICMS) applied throughout M1. We compared HFLD-ICMS synergies to synergies from voluntary movement. While synergies can be identified from M1 stimulation, they are not clearly related to voluntary movement synergies and do not show an orderly topographic organization across M1.
Collapse
Affiliation(s)
| | - Gustaf M Van Acker
- University of Kansas Medical Center, Department of Molecular and Integrative Physiology, Kansas City, Kansas
| | - Carl W Luchies
- University of Kansas, Bioengineering Graduate Program, Lawrence, Kansas; and.,University of Kansas, Department of Mechanical Engineering, Lawrence, Kansas
| | - Paul D Cheney
- University of Kansas Medical Center, Department of Molecular and Integrative Physiology, Kansas City, Kansas;
| |
Collapse
|
34
|
Hudson HM, Park MC, Belhaj-Saïf A, Cheney PD. Representation of individual forelimb muscles in primary motor cortex. J Neurophysiol 2017; 118:47-63. [PMID: 28356482 DOI: 10.1152/jn.01070.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 03/20/2017] [Accepted: 03/20/2017] [Indexed: 11/22/2022] Open
Abstract
Stimulus-triggered averaging (StTA) of forelimb muscle electromyographic (EMG) activity was used to investigate individual forelimb muscle representation within the primary motor cortex (M1) of rhesus macaques with the objective of determining the extent of intra-areal somatotopic organization. Two monkeys were trained to perform a reach-to-grasp task requiring multijoint coordination of the forelimb. EMG activity was simultaneously recorded from 24 forelimb muscles including 5 shoulder, 7 elbow, 5 wrist, 5 digit, and 2 intrinsic hand muscles. Microstimulation (15 µA at 15 Hz) was delivered throughout the movement task and individual stimuli were used as triggers for generating StTAs of EMG activity. StTAs were used to map the cortical representations of individual forelimb muscles. As reported previously (Park et al. 2001), cortical maps revealed a central core of distal muscle (wrist, digit, and intrinsic hand) representation surrounded by a horseshoe-shaped proximal (shoulder and elbow) muscle representation. In the present study, we found that shoulder and elbow flexor muscles were predominantly represented in the lateral branch of the horseshoe whereas extensors were predominantly represented in the medial branch. Distal muscles were represented within the core distal forelimb representation and showed extensive overlap. For the first time, we also show maps of inhibitory output from motor cortex, which follow many of the same organizational features as the maps of excitatory output.NEW & NOTEWORTHY While the orderly representation of major body parts along the precentral gyrus has been known for decades, questions have been raised about the possible existence of additional more detailed aspects of somatotopy. In this study, we have investigated this question with respect to muscles of the arm and show consistent features of within-arm (intra-areal) somatotopic organization. For the first time we also show maps of how inhibitory output from motor cortex is organized.
Collapse
Affiliation(s)
- Heather M Hudson
- Department of Physical Medicine and Rehabilitation, University of Kansas Medical Center, Kansas City, Kansas
| | - Michael C Park
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas; and
| | - Abderraouf Belhaj-Saïf
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas; and
| | - Paul D Cheney
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas; and
| |
Collapse
|
35
|
Dean LR, Baker SN. Fractionation of muscle activity in rapid responses to startling cues. J Neurophysiol 2016; 117:1713-1719. [PMID: 28003416 PMCID: PMC5384977 DOI: 10.1152/jn.01009.2015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 12/15/2016] [Accepted: 12/15/2016] [Indexed: 01/12/2023] Open
Abstract
We demonstrate that the ability to activate muscles selectively is preserved during the very rapid reactions produced following a startling cue. This suggests that the contributions from different descending pathways are comparable between these rapid reactions and more typical voluntary movements. Movements in response to acoustically startling cues have shorter reaction times than those following less intense sounds; this is known as the StartReact effect. The neural underpinnings for StartReact are unclear. One possibility is that startling cues preferentially invoke the reticulospinal tract to convey motor commands to spinal motoneurons. Reticulospinal outputs are highly divergent, controlling large groups of muscles in synergistic patterns. By contrast the dominant pathway in primate voluntary movement is the corticospinal tract, which can access small groups of muscles selectively. We therefore hypothesized that StartReact responses would be less fractionated than standard voluntary reactions. Electromyogram recordings were made from 15 muscles in 10 healthy human subjects as they carried out 32 varied movements with the right forelimb in response to startling and nonstartling auditory cues. Movements were chosen to elicit a wide range of muscle activations. Multidimensional muscle activity patterns were calculated at delays from 0 to 100 ms after the onset of muscle activity and subjected to principal component analysis to assess fractionation. In all cases, a similar proportion of the total variance could be explained by a reduced number of principal components for the startling and the nonstartling cue. Muscle activity patterns for a given task were very similar in response to startling and nonstartling cues. This suggests that movements produced in the StartReact paradigm rely on similar contributions from different descending pathways as those following voluntary responses to nonstartling cues. NEW & NOTEWORTHY We demonstrate that the ability to activate muscles selectively is preserved during the very rapid reactions produced following a startling cue. This suggests that the contributions from different descending pathways are comparable between these rapid reactions and more typical voluntary movements.
Collapse
Affiliation(s)
- Lauren R Dean
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Stuart N Baker
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
36
|
van den Noort JC, van Beek N, van der Kraan T, Veeger DHEJ, Stegeman DF, Veltink PH, Maas H. Variable and Asymmetric Range of Enslaving: Fingers Can Act Independently over Small Range of Flexion. PLoS One 2016; 11:e0168636. [PMID: 27992598 PMCID: PMC5167409 DOI: 10.1371/journal.pone.0168636] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 12/05/2016] [Indexed: 12/25/2022] Open
Abstract
The variability in the numerous tasks in which we use our hands is very large. However, independent movement control of individual fingers is limited. To assess the extent of finger independency during full-range finger flexion including all finger joints, we studied enslaving (movement in non-instructed fingers) and range of independent finger movement through the whole finger flexion trajectory in single and multi-finger movement tasks. Thirteen young healthy subjects performed single- and multi-finger movement tasks under two conditions: active flexion through the full range of movement with all fingers free to move and active flexion while the non-instructed finger(s) were restrained. Finger kinematics were measured using inertial sensors (PowerGlove), to assess enslaving and range of independent finger movement. Although all fingers showed enslaving movement to some extent, highest enslaving was found in adjacent fingers. Enslaving effects in ring and little finger were increased with movement of additional, non-adjacent fingers. The middle finger was the only finger affected by restriction in movement of non-instructed fingers. Each finger showed a range of independent movement before the non-instructed fingers started to move, which was largest for the index finger. The start of enslaving was asymmetrical for adjacent fingers. Little finger enslaving movement was affected by multi-finger movement. We conclude that no finger can move independently through the full range of finger flexion, although some degree of full independence is present for smaller movements. This range of independent movement is asymmetric and variable between fingers and between subjects. The presented results provide insight into the role of finger independency for different types of tasks and populations.
Collapse
Affiliation(s)
- Josien C. van den Noort
- Biomedical Signals and Systems, MIRA Institute, University of Twente, Enschede, the Netherlands
- Department of Rehabilitation medicine, VU University medical center, MOVE Research Institute Amsterdam, the Netherlands
- * E-mail:
| | - Nathalie van Beek
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, MOVE Research Institute Amsterdam, The Netherlands
| | - Thomas van der Kraan
- Donders Institute, Department of Neurology and Clinical Neurophysiology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - DirkJan H. E. J. Veeger
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, MOVE Research Institute Amsterdam, The Netherlands
| | - Dick F. Stegeman
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, MOVE Research Institute Amsterdam, The Netherlands
- Donders Institute, Department of Neurology and Clinical Neurophysiology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Peter H. Veltink
- Biomedical Signals and Systems, MIRA Institute, University of Twente, Enschede, the Netherlands
| | - Huub Maas
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, MOVE Research Institute Amsterdam, The Netherlands
| |
Collapse
|
37
|
Maguire CC, Sieben JM, de Bie RA. The influence of walking-aids on the plasticity of spinal interneuronal networks, central-pattern-generators and the recovery of gait post-stroke. A literature review and scholarly discussion. J Bodyw Mov Ther 2016; 21:422-434. [PMID: 28532887 DOI: 10.1016/j.jbmt.2016.09.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/10/2016] [Accepted: 09/20/2016] [Indexed: 12/27/2022]
Abstract
BACKGROUND Many aspects of post-stroke gait-rehabilitation are based on low-level evidence or expert opinion. Neuroscientific principles are often not considered when evaluating the impact of interventions. The use of walking-aids including canes and rollators, although widely used for long periods, has primarily been investigated to assess the immediate kinetic, kinematic or physiological effects. The long-term impact on neural structures und functions remains unclear. METHODS A literature review of the function of and factors affecting plasticity of spinal interneuronal-networks and central-pattern-generators (CPG) in healthy and post-stroke patients. The relevance of these mechanisms for gait recovery and the potential impact of walking-aids is discussed. RESULTS Afferent-input to spinal-networks influences motor-output and spinal and cortical plasticity. Disrupted input may adversely affect post-stroke plasticity and functional recovery. Joint and muscle unloading and decoupling from four-limb CPG control may be particularly relevant. CONCLUSIONS Canes and rollators disrupt afferent-input and may negatively affect the recovery of gait.
Collapse
Affiliation(s)
- Clare C Maguire
- Department of Physiotherapy, Bildungszentrum Gesundheit Basel-Stadt, 4142, Muenchenstein, Switzerland; CAPHRI School for Public Health and Primary Care, Maastricht University, 6200 MD, Maastricht, The Netherlands.
| | - Judith M Sieben
- CAPHRI School for Public Health and Primary Care, Maastricht University, 6200 MD, Maastricht, The Netherlands; Department of Anatomy and Embryology, Maastricht University, 6200 MD, Maastricht, The Netherlands
| | - Robert A de Bie
- CAPHRI School for Public Health and Primary Care, Maastricht University, 6200 MD, Maastricht, The Netherlands; Department of Epidemiology, Maastricht University, 6200 MD, Maastricht, The Netherlands
| |
Collapse
|
38
|
Maximova OA, Bernbaum JG, Pletnev AG. West Nile Virus Spreads Transsynaptically within the Pathways of Motor Control: Anatomical and Ultrastructural Mapping of Neuronal Virus Infection in the Primate Central Nervous System. PLoS Negl Trop Dis 2016; 10:e0004980. [PMID: 27617450 PMCID: PMC5019496 DOI: 10.1371/journal.pntd.0004980] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 08/15/2016] [Indexed: 02/06/2023] Open
Abstract
Background During recent West Nile virus (WNV) outbreaks in the US, half of the reported cases were classified as neuroinvasive disease. WNV neuroinvasion is proposed to follow two major routes: hematogenous and/or axonal transport along the peripheral nerves. How virus spreads once within the central nervous system (CNS) remains unknown. Methodology/Principal Findings Using immunohistochemistry, we examined the expression of viral antigens in the CNS of rhesus monkeys that were intrathalamically inoculated with a wild-type WNV. The localization of WNV within the CNS was mapped to specific neuronal groups and anatomical structures. The neurological functions related to structures containing WNV-labeled neurons were reviewed and summarized. Intraneuronal localization of WNV was investigated by electron microscopy. The known anatomical connectivity of WNV-labeled neurons was used to reconstruct the directionality of WNV spread within the CNS using a connectogram design. Anatomical mapping revealed that all structures identified as containing WNV-labeled neurons belonged to the pathways of motor control. Ultrastructurally, virions were found predominantly within vesicular structures (including autophagosomes) in close vicinity to the axodendritic synapses, either at pre- or post-synaptic positions (axonal terminals and dendritic spines, respectively), strongly indicating transsynaptic spread of the virus between connected neurons. Neuronal connectivity-based reconstruction of the directionality of transsynaptic virus spread suggests that, within the CNS, WNV can utilize both anterograde and retrograde axonal transport to infect connected neurons. Conclusions/Significance This study offers a new insight into the neuropathogenesis of WNV infection in a primate model that closely mimics WNV encephalomyelitis in humans. We show that within the primate CNS, WNV primarily infects the anatomical structures and pathways responsible for the control of movement. Our findings also suggest that WNV most likely propagates within the CNS transsynaptically, by both, anterograde and retrograde axonal transport. West Nile virus (WNV) is a mosquito-borne neurotropic flavivirus that has emerged as a human pathogen of global scale. During recent WNV outbreaks in the US, half of the reported human cases were classified as neuroinvasive disease. Although much research has been done, there are still gaps in our understanding of WNV neuropathogenesis. While WNV neuroinvasion is proposed to occur by the hematogenous route and/or by axonal transport along the peripheral nerves, how virus spreads once within the central nervous system (CNS) remains unknown. In this study, we examined the expression of viral antigens in the CNS of monkeys that were intrathalamically inoculated with WNV. Next, we mapped the localization of WNV-infected neurons to specific anatomical structures, identified the intraneuronal localizations of WNV particles and investigated the role of neuronal connectivity in the spread of WNV within the CNS. Our results revealed that all structures containing WNV-labeled neurons belonged to the pathways of motor control. Virions were found in close vicinity to the axodendritic synapses, strongly indicating transsynaptic spread of the virus. Neuronal connectivity-based reconstruction of the directionality of transsynaptic virus spread suggests that, within the CNS, WNV can utilize both anterograde and retrograde axonal transport to infect connected neurons.
Collapse
Affiliation(s)
- Olga A. Maximova
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (OAM); (AGP)
| | - John G. Bernbaum
- Office of the Chief Scientist, Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, United States of America
| | - Alexander G. Pletnev
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (OAM); (AGP)
| |
Collapse
|
39
|
Abstract
For 100 years, from the 1870s to the 1970s, somatotopic organization was considered the hallmark of the primary motor cortex (M1). M1 neurons were viewed as upper motor neurons, implying that their organization and function were upstream versions of the spinal motoneurons to which they project. Taken together, the notions of somatotopic organization and upper motor neurons established a view of M1 as a sheet of somatotopically arrayed neurons that controlled either the muscles or the movements of different body parts. Evidence accumulating since the 1970s, however, has generated new views of M1 at an accelerating pace. Here, I briefly review evidence leading to three new views of M1. First, whereas the gross somatotopic organization of M1—with the head represented laterally, the lower extremity medially, and the upper extremity in between—is unquestioned, we now view representation within the upper extremity region (from which the most evidence is available) as widely distributed. Second, rather than a fixed array of representation, we now view M1 as capable of considerable, and surprisingly rapid, reorganization. And third, rather than simply controlling the parameters of movement execution, we now view M1 as participating in aspects of sensorimotor transformation that include some representation of the sensory cues leading to voluntary movement. Although these new views account for a good deal of recent experimental evidence, they also open many new questions about the primary motor cortex.
Collapse
Affiliation(s)
- Marc H. Schieber
- Departments of Neurology, of Neurobiology & Anatomy, of Brain & Cognitive Science, and of Physical Medicine & Rehabilitation; Center for Visual Science, Brain Injury Rehabilitation Program, St. Mary’s Hospital, University of Rochester School of Medicine and Dentistry, Rochester, New York,
| |
Collapse
|
40
|
Abstract
Motor cortical organization has commonly been conceived as somatotopically ordered, with single body parts controlled from individual patches of cortical tissue. An opposing viewpoint suggests that motor cortex has a distnbuted, adaptive, and dynamic organi zation that underlies movement planning, performance, adaptation, and learning. Con verging evidence from anatomic, neurophysiologic, and functional neuroimaging sources indicates that the arm area of motor cortical areas in monkeys and humans has multiple, interconnected sites that ostensibly contribute to controlling various parts of the arm. These representations can exhibit rapid and sometimes enduring modifications following injury, changes in somatic sensory input, and motor learning. Activity-dependent changes in the intrinsic motor cortical network of horizontal and vertical connections coupled with ascending thalamic and corticocortical inputs could provide a substrate for dynamic mod ulation of motor cortex functional representations. NEUROSCIENTIST 3:158-165, 1997
Collapse
|
41
|
McCairn KW, Nagai Y, Hori Y, Ninomiya T, Kikuchi E, Lee JY, Suhara T, Iriki A, Minamimoto T, Takada M, Isoda M, Matsumoto M. A Primary Role for Nucleus Accumbens and Related Limbic Network in Vocal Tics. Neuron 2016; 89:300-7. [PMID: 26796690 DOI: 10.1016/j.neuron.2015.12.025] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 10/01/2015] [Accepted: 11/10/2015] [Indexed: 10/22/2022]
Abstract
Inappropriate vocal expressions, e.g., vocal tics in Tourette syndrome, severely impact quality of life. Neural mechanisms underlying vocal tics remain unexplored because no established animal model representing the condition exists. We report that unilateral disinhibition of the nucleus accumbens (NAc) generates vocal tics in monkeys. Whole-brain PET imaging identified prominent, bilateral limbic cortico-subcortical activation. Local field potentials (LFPs) developed abnormal spikes in the NAc and the anterior cingulate cortex (ACC). Vocalization could occur without obvious LFP spikes, however, when phase-phase coupling of alpha oscillations were accentuated between the NAc, ACC, and the primary motor cortex. These findings contrasted with myoclonic motor tics induced by disinhibition of the dorsolateral putamen, where PET activity was confined to the ipsilateral sensorimotor system and LFP spikes always preceded motor tics. We propose that vocal tics emerge as a consequence of dysrhythmic alpha coupling between critical nodes in the limbic and motor networks. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Kevin W McCairn
- Systems Neuroscience and Movement Disorders Laboratory, Korea Brain Research Institute, Daegu 701-300, South Korea; Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan; Systems Neuroscience Section, Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan; Laboratory of Cognitive and Behavioral Neuroscience, Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan.
| | - Yuji Nagai
- Molecular Neuroimaging, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Yukiko Hori
- Molecular Neuroimaging, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Taihei Ninomiya
- Systems Neuroscience and Movement Disorders Laboratory, Korea Brain Research Institute, Daegu 701-300, South Korea; Systems Neuroscience Section, Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan
| | - Erika Kikuchi
- Molecular Neuroimaging, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Ju-Young Lee
- Systems Neuroscience and Movement Disorders Laboratory, Korea Brain Research Institute, Daegu 701-300, South Korea
| | - Tetsuya Suhara
- Molecular Neuroimaging, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Atsushi Iriki
- Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Takafumi Minamimoto
- Molecular Neuroimaging, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Masahiko Takada
- Systems Neuroscience Section, Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan
| | - Masaki Isoda
- Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan; Department of Physiology, Kansai Medical University School of Medicine, Hirakata, Osaka 573-1010, Japan
| | - Masayuki Matsumoto
- Systems Neuroscience Section, Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan; Laboratory of Cognitive and Behavioral Neuroscience, Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
42
|
Hirashima M, Oya T. How does the brain solve muscle redundancy? Filling the gap between optimization and muscle synergy hypotheses. Neurosci Res 2015; 104:80-7. [PMID: 26724372 DOI: 10.1016/j.neures.2015.12.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 12/11/2015] [Accepted: 12/15/2015] [Indexed: 11/19/2022]
Abstract
The question of how the central nervous system coordinates redundant muscles has been a long-standing problem in motor neuroscience. The optimization hypothesis posits that the brain can select the muscle activation pattern that minimizes the motor effort cost from among many solutions that satisfy the requirements of the task. On the other hand, the muscle-synergy hypothesis proposes that neurally established functional groupings of muscles alleviate the computational burden associated with motor control and learning. Although the two hypotheses are not mutually exclusive, the relationship between them has not been well analyzed. This is probably because both hypotheses are formulated mathematically without a clear concept of their neural implementation. Here, we introduce a biologically plausible hypothesis ("the forgetting hypothesis") for how optimization is realized by a population of neurons. We further demonstrate that low-dimensional structure can be detected in an optimal network even if no muscle-synergies are explicitly assumed. Finally, we briefly discuss an inherent difficulty in testing the muscle-synergy hypothesis, which arises when population level optimization is assumed.
Collapse
Affiliation(s)
- Masaya Hirashima
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology, and Osaka University, Suita, Osaka 565-0871, Japan.
| | - Tomomichi Oya
- Department of Neurophysiology, National Institute of Neuroscience, 4-1-1 Ogawa-Higashi-Cho, Kodaira, Tokyo 187-8502, Japan
| |
Collapse
|
43
|
Maeda H, Fukuda S, Kameda H, Murabe N, Isoo N, Mizukami H, Ozawa K, Sakurai M. Corticospinal axons make direct synaptic connections with spinal motoneurons innervating forearm muscles early during postnatal development in the rat. J Physiol 2015; 594:189-205. [PMID: 26503304 DOI: 10.1113/jp270885] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 10/21/2015] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Direct connections between corticospinal (CS) axons and motoneurons (MNs) appear to be present only in higher primates, where they are essential for discrete movement of the digits. Their presence in adult rodents was once claimed but is now questioned. We report that MNs innervating forearm muscles in infant rats receive monosynaptic input from CS axons, but MNs innervating proximal muscles do not, which is a pattern similar to that in primates. Our experiments were carefully designed to show monosynaptic connections. This entailed selective electrical and optogenetic stimulation of CS axons and recording from MNs identified by retrograde labelling from innervated muscles. Morphological evidence was also obtained for rigorous identification of CS axons and MNs. These connections would be transient and would regress later during development. These results shed light on the development and evolution of direct CS-MN connections, which serve as the basis for dexterity in humans. Recent evidence suggests there is no direct connection between corticospinal (CS) axons and spinal motoneurons (MNs) in adult rodents. We previously showed that CS synapses are present throughout the spinal cord for a time, but are eliminated from the ventral horn during development in rodents. This raises the possibility that CS axons transiently make direct connections with MNs located in the ventral horn of the spinal cord. This was tested in the present study. Using cervical cord slices prepared from rats on postnatal days (P) 7-9, CS axons were stimulated and whole cell recordings were made from MNs retrogradely labelled with fluorescent cholera toxin B subunit (CTB) injected into selected groups of muscles. To selectively activate CS axons, electrical stimulation was carefully limited to the CS tract. In addition we employed optogenetic stimulation after injecting an adeno-associated virus vector encoding channelrhodopsin-2 (ChR2) into the sensorimotor cortex on P0. We were then able to record monosynaptic excitatory postsynaptic currents from MNs innervating forearm muscles, but not from those innervating proximal muscles. We also showed close contacts between CTB-labelled MNs and CS axons labelled through introduction of fluorescent protein-conjugated synaptophysin or the ChR2 expression system. We confirmed that some of these contacts colocalized with postsynaptic density protein 95 in their partner dendrites. It is intriguing from both phylogenetic and ontogenetic viewpoints that direct and putatively transient CS-MN connections were found only on MNs innervating the forearm muscles in infant rats, as this is analogous to the connection pattern seen in adult primates.
Collapse
Affiliation(s)
- Hitoshi Maeda
- Department of Physiology, Teikyo University School of Medicine, Tokyo, 173-8605, Japan
| | - Satoshi Fukuda
- Department of Physiology, Teikyo University School of Medicine, Tokyo, 173-8605, Japan
| | - Hiroshi Kameda
- Department of Physiology, Teikyo University School of Medicine, Tokyo, 173-8605, Japan
| | - Naoyuki Murabe
- Department of Physiology, Teikyo University School of Medicine, Tokyo, 173-8605, Japan
| | - Noriko Isoo
- Department of Physiology, Teikyo University School of Medicine, Tokyo, 173-8605, Japan
| | - Hiroaki Mizukami
- Division of Genetic Therapeutics, Jichi Medical University, Tochigi, 329-0498, Japan
| | - Keiya Ozawa
- Division of Genetic Therapeutics, Jichi Medical University, Tochigi, 329-0498, Japan.,Research Hospital, Institute of Medical Science, Tokyo University, Tokyo, 108-8639, Japan
| | - Masaki Sakurai
- Department of Physiology, Teikyo University School of Medicine, Tokyo, 173-8605, Japan
| |
Collapse
|
44
|
Fuglevand AJ, Lester RA, Johns RK. Distinguishing intrinsic from extrinsic factors underlying firing rate saturation in human motor units. J Neurophysiol 2015; 113:1310-22. [PMID: 25475356 PMCID: PMC4346713 DOI: 10.1152/jn.00777.2014] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 12/01/2014] [Indexed: 11/22/2022] Open
Abstract
During voluntary contraction, firing rates of individual motor units (MUs) increase modestly over a narrow force range beyond which little additional increase in firing rate is seen. Such saturation of MU discharge may be a consequence of extrinsic factors that limit net synaptic excitation acting on motor neurons (MNs) or may be due to intrinsic properties of the MNs. Two sets of experiments involving recording of human biceps brachii MUs were carried out to evaluate saturation. In the first set, the extent of saturation was quantified for 136 low-threshold MUs during isometric ramp contractions. Firing rate-force data were best fit by a saturating function for 90% of MUs recorded with a maximum rate of 14.8 ± 2.0 impulses/s. In the second set of experiments, to distinguish extrinsic from intrinsic factors underlying saturation, we artificially augmented descending excitatory drive to biceps MNs by activation of muscle spindle afferents through tendon vibration. We examined the change in firing rate caused by tendon vibration in 96 MUs that were voluntarily activated at rates below and at saturation. Vibration had little effect on the discharge of MUs that were firing at saturation frequencies but strongly increased firing rates of the same units when active at lower frequencies. These results indicate that saturation is likely caused by intrinsic mechanisms that prevent further increases in firing rate in the presence of increasing synaptic excitation. Possible intrinsic cellular mechanisms that limit firing rates of motor units during voluntary effort are discussed.
Collapse
Affiliation(s)
- Andrew J Fuglevand
- Department of Physiology, College of Medicine, University of Arizona, Tucson, Arizona
| | - Rosemary A Lester
- Department of Physiology, College of Medicine, University of Arizona, Tucson, Arizona
| | - Richard K Johns
- Department of Physiology, College of Medicine, University of Arizona, Tucson, Arizona
| |
Collapse
|
45
|
Ozaki I, Kurata K. The effects of voluntary control of respiration on the excitability of the primary motor hand area, evaluated by end-tidal CO2 monitoring. Clin Neurophysiol 2015; 126:2162-9. [PMID: 25698305 DOI: 10.1016/j.clinph.2014.12.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 12/29/2014] [Accepted: 12/31/2014] [Indexed: 10/24/2022]
Abstract
OBJECTIVE To investigate the effects of voluntary deep breathing on the excitability of the hand area in the primary motor cortex (M1). METHODS We applied near-threshold transcranial magnetic stimulation (TMS) over M1 during the early phase of inspiration or expiration in both normal automatic and voluntary deep, but not "forced", breathing in eight healthy participants at rest. We monitored exhaled CO2 levels continuously, and recorded motor-evoked potentials (MEPs) simultaneously from the abductor pollicis brevis, first dorsal interosseous, abductor digiti minimi, flexor digitorum superficialis, and extensor incidis muscles. RESULTS We observed that, during voluntary deep breathing, MEP amplitude increased by up to 50% for all recorded muscles and the latency of MEPs decreased by approximately 1ms, compared with normal automatic breathing. We found no difference in the amplitude or latency of MEPs between inspiratory and expiratory phases in either normal automatic or voluntary deep breathing. CONCLUSIONS Voluntary deep breathing at rest facilitates MEPs following TMS over the hand area of M1, and MEP enhancement occurs throughout the full respiratory cycle. SIGNIFICANCE The M1 hand region is continuously driven by top-down neural signals over the entire respiratory cycle of voluntary deep breathing.
Collapse
Affiliation(s)
- Isamu Ozaki
- Department of Physical Therapy, Faculty of Health Sciences, Aomori University of Health and Welfare, 58-1 Mase, Hamadate, Aomori 030-8505, Japan.
| | - Kiyoshi Kurata
- Department of Physiology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| |
Collapse
|
46
|
Aumann TD, Prut Y. Do sensorimotor β-oscillations maintain muscle synergy representations in primary motor cortex? Trends Neurosci 2014; 38:77-85. [PMID: 25541288 DOI: 10.1016/j.tins.2014.12.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 11/04/2014] [Accepted: 12/01/2014] [Indexed: 11/24/2022]
Abstract
Coherent β-oscillations are a dominant feature of the sensorimotor system yet their function remains enigmatic. We propose that, in addition to cell intrinsic and/or local network interactions, they are supported by activity propagating recurrently around closed neural 'loops' between primary motor cortex (M1), muscles, and back to M1 via somatosensory pathways. Individual loops reciprocally connect individual muscle synergies ('motor primitives') with their representations in M1, and the conduction time around each loop resonates with the periodic spiking of its constituent neurons/muscles. During β-oscillations, this resonance strengthens within-loop connectivity (via long-term potentiation, LTP), whereas non-resonance between different loops weakens connectivity (via long-term depression, LTD) between M1 representations of different muscle synergies. In this way, β-oscillations help maintain accurate and discrete representations of muscle synergies in M1.
Collapse
Affiliation(s)
- Tim D Aumann
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia.
| | - Yifat Prut
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada (IMRIC) and The Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
47
|
Firmin L, Field P, Maier MA, Kraskov A, Kirkwood PA, Nakajima K, Lemon RN, Glickstein M. Axon diameters and conduction velocities in the macaque pyramidal tract. J Neurophysiol 2014; 112:1229-40. [PMID: 24872533 PMCID: PMC4137254 DOI: 10.1152/jn.00720.2013] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Small axons far outnumber larger fibers in the corticospinal tract, but the function of these small axons remains poorly understood. This is because they are difficult to identify, and therefore their physiology remains obscure. To assess the extent of the mismatch between anatomic and physiological measures, we compared conduction time and velocity in a large number of macaque corticospinal neurons with the distribution of axon diameters at the level of the medullary pyramid, using both light and electron microscopy. At the electron microscopic level, a total of 4,172 axons were sampled from 2 adult male macaque monkeys. We confirmed that there were virtually no unmyelinated fibers in the pyramidal tract. About 14% of pyramidal tract axons had a diameter smaller than 0.50 μm (including myelin sheath), most of these remaining undetected using light microscopy, and 52% were smaller than 1 μm. In the electrophysiological study, we determined the distribution of antidromic latencies of pyramidal tract neurons, recorded in primary motor cortex, ventral premotor cortex, and supplementary motor area and identified by pyramidal tract stimulation (799 pyramidal tract neurons, 7 adult awake macaques) or orthodromically from corticospinal axons recorded at the mid-cervical spinal level (192 axons, 5 adult anesthetized macaques). The distribution of antidromic and orthodromic latencies of corticospinal neurons was strongly biased toward those with large, fast-conducting axons. Axons smaller than 3 μm and with a conduction velocity below 18 m/s were grossly underrepresented in our electrophysiological recordings, and those below 1 μm (6 m/s) were probably not represented at all. The identity, location, and function of the majority of corticospinal neurons with small, slowly conducting axons remains unknown.
Collapse
Affiliation(s)
- L Firmin
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, United Kingdom; Research Department of Cell and Developmental Biology, University College London, United Kingdom; FR3636 Centre National de la Recherche Scientifique/Université Paris Descartes and Université Paris Diderot, Sorbonne Paris Cité, France; and
| | - P Field
- Research Department of Cell and Developmental Biology, University College London, United Kingdom
| | - M A Maier
- FR3636 Centre National de la Recherche Scientifique/Université Paris Descartes and Université Paris Diderot, Sorbonne Paris Cité, France; and
| | - A Kraskov
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, United Kingdom
| | - P A Kirkwood
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, United Kingdom
| | - K Nakajima
- Department of Physiology, Faculty of Medicine, Kinki University, Osaka, Japan
| | - R N Lemon
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, United Kingdom
| | - M Glickstein
- Research Department of Cell and Developmental Biology, University College London, United Kingdom;
| |
Collapse
|
48
|
Fang JH, Huang YZ, Hwang IS, Chen JJJ. Selective modulation of motor cortical plasticity during voluntary contraction of the antagonist muscle. Eur J Neurosci 2014; 39:2083-8. [DOI: 10.1111/ejn.12565] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 01/30/2014] [Accepted: 02/18/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Jhih-Hong Fang
- Department of Biomedical Engineering; National Cheng Kung University; Tainan City 701 Taiwan
| | - Ying-Zu Huang
- School of Medicine; Chang Gung University; Taoyuan 333 Taiwan
- Department of Neurology; Chang Gung Memorial Hospital; Taipei 105 Taiwan
| | - Ing-Shiou Hwang
- Department of Physical Therapy; National Cheng Kung University; Tainan City Taiwan
- Institute of Allied Health Sciences; National Cheng Kung University; Tainan City Taiwan
| | - Jia-Jin J. Chen
- Department of Biomedical Engineering; National Cheng Kung University; Tainan City 701 Taiwan
- National Applied Research Laboratories; Taipei Taiwan
| |
Collapse
|
49
|
Jara JH, Genç B, Klessner JL, Ozdinler PH. Retrograde labeling, transduction, and genetic targeting allow cellular analysis of corticospinal motor neurons: implications in health and disease. Front Neuroanat 2014; 8:16. [PMID: 24723858 PMCID: PMC3972458 DOI: 10.3389/fnana.2014.00016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 03/10/2014] [Indexed: 12/11/2022] Open
Abstract
Corticospinal motor neurons (CSMN) have a unique ability to receive, integrate, translate, and transmit the cerebral cortex's input toward spinal cord targets and therefore act as a “spokesperson” for the initiation and modulation of voluntary movements that require cortical input. CSMN degeneration has an immense impact on motor neuron circuitry and is one of the underlying causes of numerous neurodegenerative diseases, such as primary lateral sclerosis (PLS), hereditary spastic paraplegia (HSP), and amyotrophic lateral sclerosis (ALS). In addition, CSMN death results in long-term paralysis in spinal cord injury patients. Detailed cellular analyses are crucial to gain a better understanding of the pathologies underlying CSMN degeneration. However, visualizing and identifying these vulnerable neuron populations in the complex and heterogeneous environment of the cerebral cortex have proved challenging. Here, we will review recent developments and current applications of novel strategies that reveal the cellular and molecular basis of CSMN health and vulnerability. Such studies hold promise for building long-term effective treatment solutions in the near future.
Collapse
Affiliation(s)
- Javier H Jara
- Davee Department of Neurology and Clinical Neurological Sciences, Feinberg School of Medicine, Northwestern University Chicago, IL, USA
| | - Barış Genç
- Davee Department of Neurology and Clinical Neurological Sciences, Feinberg School of Medicine, Northwestern University Chicago, IL, USA
| | - Jodi L Klessner
- Davee Department of Neurology and Clinical Neurological Sciences, Feinberg School of Medicine, Northwestern University Chicago, IL, USA
| | - P Hande Ozdinler
- Davee Department of Neurology and Clinical Neurological Sciences, Feinberg School of Medicine, Northwestern University Chicago, IL, USA ; Robert H. Lurie Cancer Center, Feinberg School of Medicine, Northwestern University Chicago, IL, USA ; Cognitive Neurology and Alzheimer's Disease Center, Feinberg School of Medicine, Northwestern University Chicago IL, USA
| |
Collapse
|
50
|
Abstract
Left-right coordination is essential for locomotor movements and is partly mediated by spinal commissural systems. Such coordination is also essential for reaching and manipulation in primates, but the role of spinal commissural systems here has not been studied. We investigated commissural connectivity to motoneurons innervating forelimb muscles using intracellular recordings in acutely anesthetized macaque monkeys. In 57 of 81 motoneurons, synaptic responses (52 of 57 excitatory) were evoked after contralateral intraspinal microstimulation in the gray matter (cISMS; 300 μA maximum current intensity). Some responses (15 of 57) occurred at latencies compatible with a monosynaptic linkage, including in motoneurons projecting to intrinsic hand muscles (9 cells). Three pieces of evidence suggest that these effects reflected the action of commissural interneurons. In two cells, preceding cISMS with stimulation of the contralateral medial brainstem descending pathways facilitated the motoneuron responses, suggesting that cISMS acted on cell bodies whose excitability was increased by descending inputs. Pairing cISMS with stimulation of the contralateral corticospinal tract yielded no evidence of response occlusion in 16 cells tested, suggesting that the effects were not merely axon reflexes generated by stimulation of corticospinal axon branches, which cross the midline. Finally, stimulation of contralateral peripheral nerves evoked responses in 28 of 52 motoneurons (7 of 9 projecting to the hand). Our results demonstrate the existence of commissural neurons with access to spinal motoneurons in primate cervical spinal cord that receive inputs from the periphery as well as descending pathways. Most importantly, commissural neurons also innervate motoneurons of intrinsic hand muscles.
Collapse
|