1
|
Bilella A, Alvarez-Bolado G, Celio MR. TheFoxb1-expressing neurons of the ventrolateral hypothalamic parvafox nucleus project to defensive circuits. J Comp Neurol 2016; 524:2955-81. [DOI: 10.1002/cne.24057] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 03/03/2016] [Accepted: 06/09/2016] [Indexed: 02/04/2023]
Affiliation(s)
- Alessandro Bilella
- Anatomy Unit and Program in Neuroscience, Department of Medicine, Faculty of Sciences, University of Fribourg; CH-1700 Fribourg Switzerland
| | - Gonzalo Alvarez-Bolado
- Institute of Anatomy and Cell Biology, University of Heidelberg; 69120 Heidelberg Germany
| | - Marco R. Celio
- Anatomy Unit and Program in Neuroscience, Department of Medicine, Faculty of Sciences, University of Fribourg; CH-1700 Fribourg Switzerland
| |
Collapse
|
2
|
Organization of connections between the amygdala, medial prefrontal cortex, and lateral hypothalamus: a single and double retrograde tracing study in rats. Brain Struct Funct 2015; 221:2937-62. [PMID: 26169110 DOI: 10.1007/s00429-015-1081-0] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 07/04/2015] [Indexed: 12/13/2022]
Abstract
The amygdala and medial prefrontal cortex (mPFC) are highly interconnected telencephalic areas critical for cognitive processes, including associative learning and decision making. Both structures strongly innervate the lateral hypothalamus (LHA), an important component of the networks underlying the control of feeding and other motivated behaviors. The amygdala-prefrontal-lateral hypothalamic system is therefore well positioned to exert cognitive control over behavior. However, the organization of this system is not well defined, particularly the topography of specific circuitries between distinct cell groups within these complex, heterogeneous regions. This study used two retrograde tracers to map the connections from the amygdala (central and basolateral area nuclei) and mPFC to the LHA in detail, and to determine whether amygdalar pathways to the mPFC and to LHA originate from the same or different neurons. One tracer was placed into a distinct mPFC area (dorsal anterior cingulate, prelimbic, infralimbic, or rostromedial orbital), and the other into dorsal or ventral LHA. We report that the central nucleus and basolateral area of the amygdala send projections to distinct LHA regions, dorsal and ventral, respectively. The basolateral area, but not central nucleus, also sends substantial projections to the mPFC, topographically organized rostrocaudal to dorsoventral. The entire mPFC, in turn, projects to the LHA, providing a separate route for potential amygdalar influence following mPFC processing. Nearly all amygdalar projections to the mPFC and to the LHA originated from different neurons suggesting amygdala and amygdala-mPFC processing influence the LHA independently, and the balance of these parallel pathways ultimately controls motivated behaviors.
Collapse
|
3
|
García-Fuster MJ, Parks GS, Clinton SM, Watson SJ, Akil H, Civelli O. The melanin-concentrating hormone (MCH) system in an animal model of depression-like behavior. Eur Neuropsychopharmacol 2012; 22:607-13. [PMID: 22209364 PMCID: PMC3319808 DOI: 10.1016/j.euroneuro.2011.12.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 10/20/2011] [Accepted: 12/02/2011] [Indexed: 02/07/2023]
Abstract
Selective breeding for divergence in locomotion in a novel environment (bHR, bred High-Responder; bLR, bred Low-Responder) correlates with stress-reactivity, spontaneous anxiety-like behaviors and predicts vulnerability in a rodent model of depression. Identifying genetic factors that may account for such vulnerability are key determinants not only for the illness outcome but also for the development of better-tailored treatment options. Melanin-concentrating hormone (MCH) is a neuropeptide that exhibits some of the hallmarks of a regulator of affective states. The aim of this study was to ascertain the role of the MCH system in depression-like behaviors in bHR vs. bLR rats. bLR rats showed a 44% increase in hypothalamic pMCH mRNA and a 14% decrease in hippocampal CA1 MCH1R mRNA when compared to bHR rats. Interestingly, the amount of time that rats spent immobile in the FST (depressive-like behavior) correlated positively with the amount of hypothalamic pMCH mRNA and negatively with that of hippocampal CA1 MCH1R. The results indicate that the bLR-bHR is a useful rat model to investigate individual basal genetic differences that participate in the monitoring of emotional responsiveness (i.e., depression- and anxiety-like behaviors). They also point to the MCH system (i.e., chronically higher pMCH expression and consequently receptor down-regulation) as a candidate biomarker for the severity of depressive-like behavior. The data indicate that MCH1R participates in the modulation of depression-like behavior through a process that involves the CA1 region of the hippocampus, supporting the possible use of MCH1R antagonists in the treatment of depression.
Collapse
Affiliation(s)
- M J García-Fuster
- Department of Pharmacology, University of California, Irvine, CA, United States.
| | | | | | | | | | | |
Collapse
|
4
|
Haghparast A, Taslimi Z, Ramin M, Azizi P, Khodagholi F, Hassanpour-Ezatti M. Changes in phosphorylation of CREB, ERK, and c-fos induction in rat ventral tegmental area, hippocampus and prefrontal cortex after conditioned place preference induced by chemical stimulation of lateral hypothalamus. Behav Brain Res 2011; 220:112-8. [PMID: 21295078 DOI: 10.1016/j.bbr.2011.01.045] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 01/23/2011] [Accepted: 01/27/2011] [Indexed: 10/18/2022]
Abstract
Experimental evidence indicates that chemical stimulation of lateral hypothalamus (LH) by carbachol can produce conditioned place preference (CPP) in rats. Several lines of evidence have shown that cAMP-response element binding protein (CREB), extracellular signal-regulated kinase (ERK), and c-fos have pivotal role in CPP induced by drugs of abuse, such as morphine, cocaine, nicotine, and alcohol. Therefore, in the present study, we investigated the changes in phosphorylated-CREB (p-CREB) and -ERK (p-ERK), and c-fos induction within ventral tegmental area (VTA), hippocampus and prefrontal cortex (PFC) after the acquisition of CPP induced by intra-LH administration of carbachol. Animals were unilaterally implanted by cannula into LH. For chemical stimulation of LH, carbachol (250 nmol/0.5 μl saline) was microinjected once each day, during 3-day conditioning phase (acquisition period) of CPP paradigm. After the acquisition period, the brains were removed, and p-CREB and p-ERK, and c-fos induction in the ipsilateral VTA, hippocampus and PFC were measured by Western blot analysis. The results indicated a significant increase in level of phosphorylated CREB (P<0.01) in VTA, and PFC (P<0.05), during LH stimulation-induced CPP, while its level decreased in hippocampus (P<0.05). Also, in aforementioned regions, an increase in c-fos level was observed, but this enhancement in PFC was not significant. Moreover, p-ERK changed in these areas, but not significantly. Our findings suggest that studying the intracellular signals and their changes, such as phosphorylated-CREB, can elucidate a functional relationship between LH and other brain structures involved in reward processing in rats.
Collapse
Affiliation(s)
- Abbas Haghparast
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, P.O. Box 19615-1178, Tehran, Iran.
| | | | | | | | | | | |
Collapse
|
5
|
Abstract
Synaptically released zinc is thought to play an important role in neuronal signaling by modulating excitatory and inhibitory receptors and intracellular signaling proteins. Consequently, neurons that release zinc have been implicated in synaptic plasticity underlying learning and memory as well as neuropathological processes such as epilepsy, stroke, and Alzheimer's disease. To characterize the distribution of these neurons, investigators have relied on a technique that involves the retrograde transport of zinc-selenium crystals from axonal boutons to the cell bodies of origin. However, one major problem with this method is that labeling of cell bodies is obscured by high levels of staining in synaptic boutons, particularly within forebrain structures where this staining is most intense. Here, we used a modification of the retrograde labeling method that eliminates terminal staining for zinc, thereby enabling a clear and comprehensive description of these neurons. Zincergic neurons were found in all cerebral cortical regions and were arranged in a distinct laminar pattern, restricted to layers 2/3, 5, and 6 with no labeling in layer 4. In the hippocampus, labeling was present in CA1, CA3, and the dentate gyrus but not in CA2. Labeled cell bodies were also observed in most amygdaloid nuclei, anterior olfactory nuclei, claustrum, tenia tecta, endopiriform region, lateral ventricle, lateral septum, zona incerta, superior colliculus, and periaqueductal gray. Moreover, retrograde labeling was also noted in the dorsomedial and lateral hypothalamus, regions that previously were thought to be devoid of neurons with a zincergic phenotype. Collectively these data show that zincergic neurons comprise a large population of neurons in the murine forebrain and will provide an anatomical framework for understanding the functional importance of these neurons in the mammalian brain.
Collapse
Affiliation(s)
- Craig E Brown
- Department of Psychology, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | | |
Collapse
|
6
|
Lucas LR, Grillo CA, McEwen BS. Involvement of mesolimbic structures in short-term sodium depletion: in situ hybridization and ligand-binding analyses. Neuroendocrinology 2003; 77:406-15. [PMID: 12845226 DOI: 10.1159/000071312] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2002] [Accepted: 02/24/2003] [Indexed: 11/19/2022]
Abstract
Acute treatment with the diuretic furosemide (Lasix) produces a reduction in plasma Na(+) and volume as well as increased thirst and salt appetite. The resulting hypovolemia stimulates the well-known counter-regulatory physiological response from the renin-angiotensin-aldosterone system. However, the neurochemical players underpinning the behavioral responses of thirst and salt appetite are less clear. Previously, we have reported that salt-replete deoxycorticosterone (DOCA) treatment activates mesolimbic structures associated with reward and goal-seeking behavior. The present study was designed to test whether the same brain regions are affected in a salt-depleted state. In experiment 1, two groups of adult male Sprague-Dawley (SD) rats were injected with Lasix (10 mg/rat, s.c.) and 18 h later were allowed access either to 2% NaCl solution ('Lasix+salt') or only to tap water ('Lasixnosalt') for 2 h. For comparison purposes, a third group received an isotonic saline injection instead of Lasix and was allowed access to the 2% salt solution (Vehicle). All groups were permitted 24 h access to tap water. We found no differences in dynorphin-mRNA levels in any striatal and accumbal regions among any of the treatment groups. However, as found previously in DOCA-treated rats, there were increased enkephalin (ENK)-mRNA and decreased dopamine transporter (DAT) binding levels throughout the striatum in Lasix+salt and decreased ENK-mRNA in Lasixnosalt rats versus Vehicle. In experiment 2, the involvement of the ENKergic and/or dopaminergic system was tested in rats divided into the same three groups described in experiment 1. However, before access to salt or water, the Lasix+salt and the vehicle groups were administered either a delta-opioid, naltrindole or a dopamine D(2) antagonist, raclopride. Only the naltrindole-treated rats showed a blunted intake of salt solution. Thus, these findings along with our neurochemical results suggest that mesolimbic enkephalin might impact salt intake through dopaminergic systems.
Collapse
Affiliation(s)
- Louis R Lucas
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY 10021, USA.
| | | | | |
Collapse
|
7
|
Abstract
Orexin-A and -B are initially identified as endogenous ligands for an orphan G protein coupled receptor. Since the discovery of orexins, investigations of their functions have been guided by their distribution in the lateral hypothalamic area, which has been implicated in feeding behavior. In fact, when administered intracerebroventricularly in early light phase, orexin-A stimulated food consumption. Orexin mRNA is up-regulated by fasting, suggesting their expression is regulated by animal's nutritional status. The orexin neurons project widely in the brain, and thus the physiological role of orexins is likely to be complex. Orexin neurons in the lateral hypothalamic area was shown to receive terminal appositions from NPY-, AgRP-, and a-MSH-IR fibers. The innervation of orexin neurons by peptidergic fibers corresponding to leptin-responsive cell types that reside in the arcuate nucleus may have a role in linking peripheral metabolic cues to autonomic regulatory sites and the cerebral cortical mantle, providing a neuroanatomic basis for regulation of feeding behavior. The wide distribution of orexin-immunoreactive fibers in the brain has also suggested their additional roles. Actually, orexins have been reported to have roles in regulating drinking behavior, neuroendocrine function and the sleep-wake cycle.
Collapse
Affiliation(s)
- T Sakurai
- Institute of Basic Medical Sciences, University of Tsukuba, Ibaraki, Japan.
| |
Collapse
|
8
|
Bayer L, Risold PY, Griffond B, Fellmann D. Rat diencephalic neurons producing melanin-concentrating hormone are influenced by ascending cholinergic projections. Neuroscience 1999; 91:1087-101. [PMID: 10391486 DOI: 10.1016/s0306-4522(98)00678-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Innervation of diencephalic neurons producing melanin-concentrating hormone by choline acetyltransferase-containing axons was examined using double immunohistochemistry. In the rostromedial zona incerta and perifornical regions of the lateral hypothalamic area, many choline acetyltransferase-positive fibers were detected in the immediate vicinity of melanin-concentrating hormone perikarya and their proximal dendrites. Putative contact sites were less abundant in the far lateral hypothalamus, and only scattered close to the third ventricle. After injections of the retrograde tracer FluoroGold, most of these projections appeared to originate in the pedunculopontine and laterodorsal tegmental nuclei. Finally, to determine the putative effect of acetylcholine on the melanin-concentrating hormone neuron population, the cholinergic agonist carbachol was added to the medium of hypothalamic slices in culture. Using competitive reverse transcriptase-polymerase chain reaction, carbachol was found to induce a rapid increase in the melanin-concentrating hormone messenger RNA expression. This response was abolished by both atropine, a muscarinic antagonist, and hexamethonium, a nicotinic antagonist. Thus, the bulk of these results indicates that the diencephalic melanin-concentrating hormone neurons are targeted by activating ascending cholinergic projections.
Collapse
Affiliation(s)
- L Bayer
- CNRS ESA 6025, Laboratoire d'Histologie, Embryologie, Cytogénétique, CNRS FR 51 Institut d'Etude et de Transfert de Gènes, Faculté de Médecine et de Pharmacie, Besançon, France
| | | | | | | |
Collapse
|
9
|
Nambu T, Sakurai T, Mizukami K, Hosoya Y, Yanagisawa M, Goto K. Distribution of orexin neurons in the adult rat brain. Brain Res 1999; 827:243-60. [PMID: 10320718 DOI: 10.1016/s0006-8993(99)01336-0] [Citation(s) in RCA: 829] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Orexin (ORX)-A and -B are recently identified neuropeptides, which are specifically localized in neurons within and around the lateral hypothalamic area (LHA) and dorsomedial hypothalamic nucleus (DMH), the regions classically implicated in feeding behavior. Here, we report a further study of the distribution of ORX-containing neurons in the adult rat brain to provide a general overview of the ORX neuronal system. Immunohistochemical study using anti-ORX antiserum showed ORX-immunoreactive (ir) neurons specifically localized within the hypothalamus, including the perifornical nucleus, LHA, DMH, and posterior hypothalamic area. ORX-ir axons and their varicose terminals showed a widespread distribution throughout the adult rat brain. ORX-ir nerve terminals were observed throughout the hypothalamus, including the arcuate nucleus and paraventricular hypothalamic nucleus, regions implicated in the regulation of feeding behavior. We also observed strong staining of ORX-ir varicose terminals in areas outside the hypothalamus, including the cerebral cortex, medial groups of the thalamus, circumventricular organs (subfornical organ and area postrema), limbic system (hippocampus, amygdala, and indusium griseum), and brain stem (locus coeruleus and raphe nuclei). These results indicate that the ORX system provides a link between the hypothalamus and other brain regions, and that ORX-containing LHA and DMH neurons play important roles in integrating the complex physiology underlying feeding behavior.
Collapse
Affiliation(s)
- T Nambu
- Institute of Basic Medical Sciences, University of Tsukuba, 1-1, Tennohdai, Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | | | | | | | | | | |
Collapse
|
10
|
Risold PY, Thompson RH, Swanson LW. The structural organization of connections between hypothalamus and cerebral cortex. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1997; 24:197-254. [PMID: 9385455 DOI: 10.1016/s0165-0173(97)00007-6] [Citation(s) in RCA: 242] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Motivated behavior requires coordinated somatic, autonomic, and endocrine responses, and may be divided into initiation, procurement, and consummatory phases (Swanson, L.W. and Mogenson, G.J., Neural mechanisms for the functional coupling of autonomic, endocrine and somatomotor responses in adaptative behavior, Brain Res. Rev., 3 (1981) 1-34). Obviously, such behavior may involve the entire central nervous system, although it is important to identify circuitry or systems that mediate the behavior directed toward specific goal objects. This problem has recently been clarified by the identification of hypothalamic subsystems important for the execution of instinctive behaviors related to ingestion, reproduction, and defense. These subsystems are modulated by sensory (reflex), central control (e.g., circadian), and voluntary (cortical) inputs. The latter are dominated by inputs from the ventral temporal lobe and medial prefrontal region, which are both direct and via associated parts of the basal nuclei (ganglia). Hypothalamic output is characterized by descending projections to brainstem and spinal motor systems, and by projections back to the cerebral cortex, which are both direct and via a continuous rostromedial part of the dorsal thalamus. This thalamic region includes the anterior, medial, and midline groups, which in turn innervate a continuous ring of cortex that includes the hippocampal formation and the cingulate, prefrontal, and insular regions. Parts of this thalamic region also innervate the ventral striatum, which receives a massive input from the cortical rings as well.
Collapse
Affiliation(s)
- P Y Risold
- Program for Neural, Informational and Behavioral Sciences, University of Southern California, Los Angeles 90089-2520, USA
| | | | | |
Collapse
|
11
|
Risold PY, Swanson LW. Connections of the rat lateral septal complex. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1997; 24:115-95. [PMID: 9385454 DOI: 10.1016/s0165-0173(97)00009-x] [Citation(s) in RCA: 483] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The organization of lateral septal connections has been re-examined with respect to its newly defined subdivisions, using anterograde (PHAL) and retrograde (fluorogold) axonal tracer methods. The results confirm that progressively more ventral transverse bands in the hippocampus (defined by the orientation of the trisynaptic circuit) innervate progressively more ventral, transversely oriented sheets in the lateral septum. In addition, hippocampal field CA3 projects selectively to the caudal part of the lateral septal nucleus, which occupies topologically lateral regions of the transverse sheets, whereas field CA1 and the subiculum project selectively to the rostral and ventral parts of the lateral septal nucleus, which occupy topologically medial regions of the transverse sheets. Finally, the evidence suggests that progressively more ventral hippocampal bands innervate progressively thicker lateral septal sheets. In contrast, ascending inputs to the lateral septum appear to define at least 20 vertically oriented bands or subdivisions arranged orthogonal to the hippocampal input (Risold, P.Y. and Swanson, L.W., Chemoarchitecture of the rat lateral septal nucleus, Brain Res. Rev., 24 (1997) 91-113). Hypothalamic nuclei forming parts of behavior-specific subsystems share bidirectional connections with specific subdivisions of the lateral septal nucleus (especially the rostral part), suggesting that specific domains in the hippocampus may influence specific hypothalamic behavioral systems. In contrast, the caudal part of the lateral septal nucleus projects to the lateral hypothalamus and to the supramammillary nucleus, which projects back to the hippocampus and receives its major inputs from brainstem cell groups thought to regulate behavioral state. The neural system mediating defensive behavior shows these features rather clearly, and what is known about its organization is discussed in some detail.
Collapse
Affiliation(s)
- P Y Risold
- Department of Biological Sciences, University of Southern California, Los Angeles 90089-2520, USA
| | | |
Collapse
|
12
|
Bernardis LL, Bellinger LL. The lateral hypothalamic area revisited: neuroanatomy, body weight regulation, neuroendocrinology and metabolism. Neurosci Biobehav Rev 1993; 17:141-93. [PMID: 8515901 DOI: 10.1016/s0149-7634(05)80149-6] [Citation(s) in RCA: 188] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
This article reviews findings that have accumulated since the original description of the syndrome that follows destruction of the lateral hypothalamic area (LHA). These data comprise the areas of neuroanatomy, body weight regulation, neuroendocrinology, neurochemistry, and intermediary metabolism. Neurons in the LHA are the largest in the hypothalamus, and are topographically well organized. The LHA belongs to the parasympathetic area of the hypothalamus, and connects with all major parts of the brain and the major hypothalamic nuclei. Rats with LHA lesions regulate their body weight set point in a primary manner and not because of destruction of a "feeding center". The lower body weight is not due to finickiness. In the early stages of the syndrome, catabolism and running activity are enhanced, and so is the activity of the sympathetic nervous system (SNS) as shown by increased norepinephrine excretion that normalizes one mo later. The LHA plays a role in the feedback control of body weight regulation different from ventromedial (VMN) and dorsomedial (DMN). Tissue preparations from the LHA promote glucose utilization and insulin release. Although it does not belong to the classical hypothysiotropic area of the hypothalamus, the LHA does affect neuroendocrine secretions. No plasma data on growth hormone are available following electrolytic lesions LHA but electrical stimulation fails to elicit GH secretion. Nevertheless, antiserum raised against the 1-37 fragment of human GHRF stains numerous perikarya in the dorsolateral LHA. The plasma circadian corticosterone rhythm is disrupted in LHA lesioned rats, but this is unlikely due to destruction of intrinsic oscillators. Stimulation studies show a profound role of the LHA in glucose metabolism (glycolysis, glycogenesis, gluconeogenesis), this mechanism being cholinergic. Its role in lipolysis appears not to be critical. In general, stimulation of the VMN elicits opposite effects. Lesion studies in rats show altered in vitro glucose carbon incorporation into several tissue fractions both a few days, and one mo after lesion production. Several of these changes may be due to the reduced food intake, others appear to be due to a "true" lesion effect.
Collapse
Affiliation(s)
- L L Bernardis
- Neurovisceral-Neuroendocrine Laboratory, Department of Veterans Affairs Medical Center, Buffalo, NY
| | | |
Collapse
|
13
|
Bittencourt JC, Presse F, Arias C, Peto C, Vaughan J, Nahon JL, Vale W, Sawchenko PE. The melanin-concentrating hormone system of the rat brain: an immuno- and hybridization histochemical characterization. J Comp Neurol 1992; 319:218-45. [PMID: 1522246 DOI: 10.1002/cne.903190204] [Citation(s) in RCA: 817] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In addition to a nonadecapeptide homologous to the teleost melanin-concentrating hormone (MCH), the amino acid sequence predicted from a rat prepro-MCH (ppMCH) cDNA suggested that at least one (neuropeptide EI, or NEI), and possibly a second (NGE), additional neuropeptide may be encoded by this precursor. Cross-reactivity with epitopes of NEI or NGE can account for reported localization of alpha-MSH, rat CRF, and human GRF in rat dorsolateral hypothalamic neurons. We have used antisera raised against rat MCH and NEI in immunohistochemical studies at the light and electron microscopic levels, along with hybridization histochemical localization of ppMCH mRNA, to define the organization of this system. As expected, ppMCH mRNA is prominently expressed in cells in the lateral hypothalamic area and zona incerta. The MCH and NEI peptides were extensively colocalized in neurons in both of these areas. In addition, smaller cell groups in the olfactory tubercle and pontine tegmentum were also positively hybridized for ppMCH mRNA and immunostained for MCH and NEI. Fibers stained for MCH and NEI were similarly, and very broadly, distributed throughout the central nervous system in patterns that generally conformed with known projection fields of the lateral hypothalamic area and zona incerta. A differential distribution was seen in at least one region, the interanterodorsal nucleus of the thalamus, which contained a prominent terminal field stained for MCH but not NEI. At the electron microscopic level, MCH-stained perikarya displayed a prominent staining associated with the Golgi apparatus; this was not encountered in NEI-stained cells. Both peptides were distributed similarly in terminals in the lateral hypothalamic area and median eminence, with staining associated principally with dense-cored vesicles. The results suggest that ppMCH-derived peptides may serve as neurotransmitters or modulators of prominence in a surprisingly expansive projection field of incerto-hypothalamic neurons. The terminal distributions of this system seem most compatible with functional roles in generalized arousal and sensorimotor integration, processes previously implicated as being subject to modulation by the lateral hypothalamic area.
Collapse
Affiliation(s)
- J C Bittencourt
- Laboratory of Neuronal Structure and Function, Salk Institute for Biological Studies, La Jolla, California 92037
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Quinn J, Eckenstein FP, Baughman RW. Novel antigenic determinant expressed in neurons of the dorsolateral hypothalamus in rat and human. J Neurosci Res 1992; 31:715-23. [PMID: 1374480 DOI: 10.1002/jnr.490310415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Previous studies have identified a group of cells in the dorsolateral hypothalamus that project to many different areas in the CNS, such as thalamus, diagonal band of Broca, basal ganglia, cerebral cortex, hippocampus, and olfactory bulb. Their role is presently unknown, but the cells have been reported to stain for an intriguing array of putative neurotransmitter-related substances, including alpha-melanocyte-stimulating hormone (alpha MSH), melanin-concentrating hormone (MCH), human growth-hormone-releasing factor 1-37 (hGRF 1-37), corticotropin-releasing factor (CRF), metorphamide, and acetylcholine esterase. A monoclonal antibody produced in the present study, alpha C11, stains both the cell bodies of this system in hypothalamus, with a punctate pattern, and varicose fibers in the various target areas. In double-label immunocytochemical experiments in rat DLH, alpha C11 and MCH staining exactly overlaps. Concentrations of alpha MSH and MCH high enough to completely block staining with the corresponding antisera had no effect on staining with alpha C11. Similarly, CRF, hGRF 1-37, and metorphamide were unable to block alpha C11 staining. The results suggest that the antigenic epitope for alpha C11 is not contained in alpha MSH, MCH, CRF, hGRF, or metorphamide, and thus, that alpha C11 is detecting another antigen uniquely expressed in these neurons. The punctate appearance of staining in the hypothalamus and the concentration of staining in fiber varicosities suggests that the alpha C11 epitope may be involved in synaptic function.
Collapse
Affiliation(s)
- J Quinn
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115
| | | | | |
Collapse
|
15
|
Geeraedts LM, Nieuwenhuys R, Veening JG. Medial forebrain bundle of the rat: IV. Cytoarchitecture of the caudal (lateral hypothalamic) part of the medial forebrain bundle bed nucleus. J Comp Neurol 1990; 294:537-68. [PMID: 2341625 DOI: 10.1002/cne.902940404] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In the preceding study (Geeraedts et al.: J. Comp. Neurol. 294:507-536, '90), the rostral or telencephalic portion of the rat's bed nucleus of the medial forebrain bundle (MFB) has been parcellated into several cytoarchitectonically distinct cellular groups and subgroups. The purpose of the present investigation is to subject the caudal or lateral hypothalamic (LH) portion of the MFB bed nucleus to a detailed cytoarchitectonic analysis. This analysis is based on the same materials, methods, and cytoarchitectonic criteria that were also employed in the preceding study. In contrast to descriptions in the literature, it was found that the LH-region constitutes a very heterogeneous population of neurons with an evident arrangement into groups, several of which have not been identified previously. Many of these cellular groups are partly or entirely located within the boundary of the LH-trajectory of the MFB as previously established by Nieuwenhuys et al. (J. Comp. Neurol. 206:49-81, '82). These groups are designated here as the MFB-related cellular groups. They appear to be arranged into two longitudinal zones. Both zones are caudally replaced by the ventral tegmental area (VTA) and a part of the mesencephalic tegmentum (TEGM1). The lateral zone lies in close proximity to the internal capsule/cerebral peduncle and comprises the following cellular groups: the ventrolateral subarea of the lateral hypothalamic area (LHVL), the anterolateral subarea of the lateral hypothalamic area (LHAL), the lateral tuberal nucleus (TUL), the pre-subthalamic nucleus (PSUT), the retro-subthalamic nucleus (RSUT), the anterodorsal subarea of the lateral hypothalamic area (LHAD), and the lateral hypothalamic nucleus (LHN). The medial zone consists of the following cellular groups: the intermediate hypothalamic area (IHA), the medial tuberal nucleus (TUM), the perifornical nucleus (PFX), the lateral supramammillary nucleus (SUL), the submammillothalamic nucleus (SMT), and the nucleus geminus posterior (GEP). The cellular groups of the medial zone together with the tuberomammillary nucleus groups of the medial zone together with the tuberomammillary nucleus (TUMM) are positioned at the interface between the lateral and the medial hypothalamus, and form an array of cellular groups indicated in our study as the intermediate division of the hypothalamus. The MFB-related cellular groups are dorsally, medially, ventrally, and laterally surrounded by rather well-known brain structures. Both the MFB-related cellular groups and the surrounding structures have been identified and delimited. This resulted in a new, elaborate cytoarchitectonic atlas of the rat's lateral hypothalamic region.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- L M Geeraedts
- Department of Anatomy and Embryology, University of Nijmegen, The Netherlands
| | | | | |
Collapse
|
16
|
Ossowska K, Wardas J, Golembiowska K, Wolfarth S. Lateral hypothalamus-zona incerta region as an output station for the catalepsy induced by the blockade of striatal D1 and D2 dopamine receptors. Brain Res 1990; 506:311-5. [PMID: 2154287 DOI: 10.1016/0006-8993(90)91269-m] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Our previous study reported that the blockade of GABAA receptors of the lateral hypothalamus-zona incerta region (LH-ZI) by local injections of bicuculline methiodide inhibited the haloperidol-induced catalepsy. The aim of the present study was to determine (1) whether the blockade of GABAA receptors of the LH-ZI may counteract the catalepsy evoked by SCH 23390 and by sulpiride, and (2) whether the GABAA receptors of the LH-ZI affect the function of the striatal dopaminergic system. Bicuculline methiodide (2.5 and 5 ng/side) injected bilaterally into the LH-ZI inhibited in a dose-dependent manner the catalepsy induced by SCH 23390 administered peripherally (0.2 mg/kg s.c.). SCH 23390 (2 micrograms/side) and sulpiride (1 microgram/side) injected bilaterally into the rostroventral part of the striatum induced potent catalepsy. The catalepsy induced by injection of SCH 23390 (2 micrograms) and sulpiride (1 microgram) into the striatum was inhibited by bicuculline methiodide (2.5 ng and 5 ng) injected into the LH-ZI. Neither bicuculline (5 ng/side) nor muscimol (50 ng/side) injected bilaterally into the LH-ZI changed the levels of dopamine and its intraneuronal metabolite, 3,4-dihydroxyphenyl-acetic acid, or the concentration of noradrenaline and 5-hydroxyindole-acetic acid measured in the striatum and nucleus accumbens by HPLC with an electrochemical detection. It is concluded that GABAA receptors of the LH-ZI are an output station for the catalepsy induced by the blockade of the striatal D2 and D1 dopamine receptors.
Collapse
Affiliation(s)
- K Ossowska
- Department of Neuropsychopharmacology, Polish Academy of Sciences, Krakow, Poland
| | | | | | | |
Collapse
|
17
|
Villalobos J, Ferssiwi A. The differential descending projections from the anterior, central and posterior regions of the lateral hypothalamic area: an autoradiographic study. Neurosci Lett 1987; 81:95-9. [PMID: 2447527 DOI: 10.1016/0304-3940(87)90346-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The descending projection sites of the anterior, central (or tuberal) and posterior regions of the lateral hypothalamic area were studied by anterograde axonal transport after local injection of tritiated amino acids. The results show that the neurons of the anterior regions project to the lateral mammillary nucleus, the ventral tegmental area, the midbrain central gray and the anterior parts of the dorsal raphe nucleus. The neurons of the central region project in the same structures and extend a projection into the dorsal tegmentum at the level of the pontine central gray, the midbrain and pontine reticular nuclei. In the ventral tegmentum region, the substantia nigra pars compacta, the interpeduncular nucleus and the anterior group of raphe nuclei were also found to be labelled. The neurons of the posterior region of the lateral hypothalamic area extend a projection to the level of the prepositus hypoglossi nucleus and to the nucleus of solitary tract. In the ventral tegmentum they project at the level of posterior group of the raphe nuclei and the inferior olivary complex.
Collapse
Affiliation(s)
- J Villalobos
- Laboratoire de Psychophysiologie, UA C.N.R.S. 339, Université de Bordeaux I, Talence, France
| | | |
Collapse
|